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Abstract
In radiotherapy, tumors are irradiated with a high dose, while surrounding healthy tissues are spared. To quantify
the probability that a tumor is effectively treated with a given dose, statistical models were built and employed in
clinical research. These are called tumor control probability (TCP) models. Recently, TCP models started incor-
porating additional information from imaging modalities. In this way, patient-specific properties of tumor tissues
are included, improving the radiobiological accuracy of models. Yet, the employed imaging modalities are subject
to uncertainties with significant impact on the modeling outcome, while the models are sensitive to a number of
parameter assumptions. Currently, uncertainty and parameter sensitivity are not incorporated in the analysis, due
to time and resource constraints. To this end, we propose a visual tool that enables clinical researchers working
on TCP modeling, to explore the information provided by their models, to discover new knowledge and to confirm
or generate hypotheses within their data. Our approach incorporates the following four main components: (1) It
supports the exploration of uncertainty and its effect on TCP models; (2) It facilitates parameter sensitivity anal-
ysis to common assumptions; (3) It enables the identification of inter-patient response variability; (4) It allows
starting the analysis from the desired treatment outcome, to identify treatment strategies that achieve it. We con-
ducted an evaluation with nine clinical researchers. All participants agreed that the proposed visual tool provides
better understanding and new opportunities for the exploration and analysis of TCP modeling.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—
Applications; J.3 [Computer Applications]: Life and Medical Sciences—Life and Medical Sciences

1. Introduction

At some stage, 60% of all men diagnosed with prostate can-
cer receive radiotherapy (RT) treatment [DJFB05]. RT aims
at irradiating tumors with a sufficiently high radiation dose,
while sparing the surrounding healthy tissues. Before treat-
ment, a plan is performed, during which, different treatment
strategies can be followed. These alternatives consider sev-
eral points, such as dose escalation, uniform or non-uniform
tumor irradiation, the amount of the received dose and even-
tual fractionation of the treatment, i.e., the division of the
total radiation into smaller doses per session over a period
of time. For the treatment plan, a specific strategy is cho-
sen among these alternatives, based on clinical experience
and guidelines. Then, the plan is performed in a planning

system, based on information from imaging acquisitions of
the patient, such as Computed Tomography (CT) and Mag-
netic Resonance Imaging (MRI), by radiation oncologists
and dosimetrists.

Although clinical practice aims at choosing the most ef-
fective RT strategy based on clinical knowledge and guide-
lines, clinical research aims at thoroughly evaluating all pos-
sibilities. In this way, more targeted treatments can be de-
signed and provided to clinical practice. To simulate and
evaluate the effects of a specific strategy, clinical researchers
need Tumor Control Probability (TCP) models [WN93].

Conventional TCP models are statistical models that
quantify the probability that a tumor is effectively controlled,
i.e., treated, given a specific radiation dose. In few words,
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TCP models answer the question: What is the probability Y
that a tumor is treated with this strategy, given a dose X?
For example, Figure 1 depicts three different outcomes of a
specific TCP model, each from a specific RT treatment strat-
egy. In this case, by providing a total treatment dose of 77
Gy, the first strategy (black) results in 88% probability of
treating the whole tumor, while the other two have a lower
treatment probability response of 63% (red) and 31% (blue).

In the last years, radiation dose can be delivered in a more
localized way and clinical research focuses on providing
better tailored tumor treatment. Therefore, patient-specific
tissue characteristics from imaging modalities started being
included in planning. This has influenced also TCP mod-
eling, where additional per-voxel information, i.e., proper-
ties indicative of tumor characteristics, are being incorpo-
rated [TOG06]. In this way, clinical researchers can predict
more accurately the tumor treatment probability at a voxel
level, by adding in their statistical models radiobiological
information, e.g., from Diffusion Weighted (DW) MRI.

So far, several interesting aspects of TCP modeling are
not incorporated in clinical research, due to complexity,
lack of resources and time constraints. First of all, imag-
ing modalities are subject to uncertainties with significant
impact on the model outcome and the simulated treatment
response [KTH∗10]. Additionally, there are many different
TCP models and different parameter assumptions in each
one of them [WN93, SMB∗07]. Usually, these assumptions
are educated guesses, and awareness on the sensitivity of
the models is important. Moreover, TCP modeling is often
applied to entire patient cohorts, to investigate the inter-
patient response variability. This knowledge can help de-
signing more robust treatment strategies. Finally, clinical re-
searchers are interested in exploring and analyzing their data
in a reverse manner: given a target treatment outcome for a
tumor, identify the RT strategy(-ies) to achieve it. In this pa-
per, we introduce a visual analytics approach to extend the
exploration of TCP modeling, to cover also these topics that
are currently not possible to incorporate in the analysis.
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Figure 1: An example of the resulting TCP curves for a
given dose, with three different RT treatment strategies.

Our contribution is the design and implementation of a
visual tool that enables clinical researchers to explore the in-
formation provided by their TCP models, to discover knowl-
edge and to confirm or generate hypotheses within their
data. As far as we know, there is no other tool to serve
this purpose. Our approach incorporates the following four
main components: (C1) It supports quantifying and explor-
ing imaging-induced uncertainty and its propagation to TCP
modeling. (C2) It facilitates exploring and analyzing the
sensitivity of TCP models to different assumptions and pa-
rameter variations. (C3) It enables identifying and explor-
ing inter-patient response variability within cohorts. (C4)
It allows, given a targeted treatment outcome, to identify the
treatment strategies or parameters that would achieve it.

2. Clinical Background

In the last years, RT research aims at designing more effec-
tive and better targeted treatments, to be applied in clinical
practice. For the simulation and evaluation of all different
treatment strategies, TCP models are being built [WN93].
Conventional TCP models are usually regression models that
summarize empirical knowledge about the effect of radiation
to tumors and represent the probability that a tumor is effec-
tively treated with a specific dose [WN93, SMB∗07].

To achieve a more targeted treatment, tailored to the
patient-specific tumor tissue characteristics, information
from imaging modalities was recently incorporated to TCP
modeling [TOG06]. In this way, properties indicative of tis-
sue characteristics were included to improve the radiobio-
logical accuracy of modeling, at a voxel-level [TOG06]. In
this work, we employ a novel TCP model that involves DW-
MRI [CMvdHR∗16]. This in-vivo imaging technique mea-
sures quantitatively the per-voxel water diffusion, from ap-
parent diffusion coefficient (ADC) maps, and is employed to
identify high-density tissue like tumors [BJEK∗11].

This ADC-based TCP model is subject to uncertain-
ties [KTH∗10], often due to calculation restrictions in
the clinical setting or due to magnetic field inhomo-
geneities [BJEK∗11]. Although we are considering a spe-
cific TCP model, uncertainties are present in all modali-
ties and our proposed approach could be extended also to
them. These uncertainties need to be quantified and prop-
agated into modeling to identify their effect on the predic-
tion outcome. More details about the source, quantification
and propagation of uncertainty in the employed TCP model
are discussed in Section 4. Additionally, all TCP models,
including ADC-based ones, incorporate a number of dif-
ferent parameter assumptions. For example, in the explored
TCP model, researchers make assumptions for the amount
of dose or fractionation, or when quantifying the per-voxel
cell density from ADC maps, or when selecting values for
parameters that model the survival or death of tumor cells
after irradiation [CMvdHR∗16]. Still, it is not known which
choices lead to better results, or the effect of different alter-
natives. Thus, the parameter sensitivity of the model needs
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Figure 2: The proposed Visual Analytics approach for the Prediction of RT Treatment Response in TCP Modeling. With colors,
we denote the four requirements (T1-T4) described in Section 2, which are our contributions to the workflow employed in
clinical research.

to be incorporated in the analysis. In state-of-the-art clin-
ical research, the ADC-derived uncertainty and the model
sensitivity to parameter assumptions are not considered yet,
as they cannot be explored with the existing tools. This is
further obstructed by the fact that the evaluation and analy-
sis of TCP models is usually applied to cohorts of patients,
to account for inter-patient response variability. Finally, the
current TCP modeling workflow is based on the question:
What is the probability that a tumor is controlled, given a
specific dose? Yet, clinical researchers have not managed to
find an easy and insightful way to answer the inverse: Which
RT delivery strategy can achieve a specific target treatment?

After an extensive discussion with clinical researchers
working on TCP modeling, we defined together the most
relevant open tasks for their research: (T1) Quantification
and interactive exploration of the ADC-induced uncertainty
and its propagation to TCP modeling. (T2) Exploration and
analysis of the assumption-induced TCP model sensitivity.
(T3) Identification of inter-patient variability to treatment
response. (T4) Bi-directional TCP modeling workflow (RT
strategy ↔ Predicted/desired outcome). Figure 2 summa-
rizes in a schematic way these tasks.

3. Related Work

There are several frameworks that cover topics similar to
ours. To the best of our knowledge, there is none for the
exploration of TCP modeling. In this section, we review the
literature, related to the tasks mentioned in Section 2.

Visualizing Uncertainty. Uncertainty visualization litera-
ture is vast [BHJ∗14]. It can be roughly divided into the
following main categories: visualizations using visual vari-
ables, such as color [GR04], brightness [DKLP02], fuzzi-
ness [LV02], or texture [BWE05]; visualizations that adapt
the basic geometry to represent uncertainty [GR04,ZWK10]
or surrounding volume [PH11, PRW11]; visualizations with
additional graphical variables, such as glyphs [SZB∗09,
PRJ12, SSSSW13]; and visualizations employing anima-
tions [LLPY07]. The selection or combination of these ap-
proaches is not limitless and must be done in regard to the
data, avoiding clutter. In our case, we need to visualize not
only the inherent uncertainty of the imaging data itself, but
also how it propagates and affects the outcome of the TCP
model. Therefore, several of the previously mentioned ap-
proaches need to be carefully adapted to suit our application.

Analyzing Parameter Sensitivity. Parameter sensitivity
is often connected to forecasting or prediction models.
A conceptual framework for parameter sensitivity anal-
ysis was presented by Sedlmair et al. [SHB∗14]. Other
examples of systems for exploring multi-dimensional pa-
rameter spaces are the Ensemble-Vis [PWB∗09], Noo-
dles [SZD∗10], OVis [HMZ∗14] and the approach of
Berger et al. [BPFG11]. Visualizations for parameter sen-
sitivity analysis were also proposed for medical applica-
tions [BVPR09,PCR∗11,TWSM∗11]. Most of them employ
multiple views in an interactive environment, where linking
and brushing enables exploration and analysis. Yet, none of
these frameworks can be used directly for our purposes.

Studying Cohorts. In many cases, patients are not an-
alyzed individually. Previous work in cohort visualiza-
tion mainly focuses on the comparative analysis of shape
variability [SPA∗14, HSSK14]. Recently, Steenwijk et al.
[SMB∗10], Zhang et al. [ZGP14] and Klemm et al.
[KOJL∗14] proposed interactive visual analysis of cohorts
that goes also beyond shape analysis. However, these meth-
ods assume that the structure of interest has spatial cor-
respondance between patients and can be compared after
matching. This is not valid for tumors. In our case, we need
to treat each tumor in the cohort as an entity that we can
compare to the rest - still, considering and visualizing the
within-cohort heterogeneity.

Redesigning the workflow. Several visualizations for re-
designing the usual workflow in a specific application field
have been proposed [BM10,CLEK13,DPD∗15]. Inspired by
these strategies, we adapted their approaches to fit our re-
quirements.

4. Visual Analytics for the Exploration of TCP Models

The proposed visual tool aims at satisfying the specific
exploratory needs of clinical researchers working on TCP
modeling, as described in Section 2. Our visual tool consists
of the four main components (T1-T4) of Figure 2.

Quantification and interactive exploration of uncertainty
and its propagation to TCP modeling (T1). The ADC-
based TCP model [CMvdHR∗16] aims at incorporating cell
density (CD) information. This is a common measure in tu-
mor tissue characterization, referring to the number of tu-
mor cells within a volume. The first step in the ADC-based
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TCP model requires the calculation of CD from ADC val-
ues [CMvdHR∗16]. There are two main approaches for this:
(i) the sigmoid approach, where a sigmoid relationship
between ADC and CD is established, or (ii) the Gibbs
approach [GPT07], where histopathological information are
used to establish a linear relationship between ADC and CD.
Both of these approaches are affected by uncertainty. In the
first case, only the uncertainty of the ADC is present, while
in the second case, there is an additional uncertainty in the
experimental set-up that was used to determine the relation-
ship between ADC and CD [GPT07].

Uncertainty in ADC maps has been quantified in previ-
ous clinical work [GPT07,KTH∗10]. However, each institu-
tion has a specific set-up and the uncertainty of quantitative
measurements in scanners is usually obtained through ex-
perimentation. Our clinical partners modeled experimentally
this uncertainty, as the probability that an ADC value m is
measured in imaging, given a quantitative real value, r. This
is given by a probability density function p(m|r), which is
a Gaussian distribution with a standard deviation dependent
on the real value r. We are interested, though, in quantifying
the probability that the real ADC value r has occurred, given
m, i.e., p(r|m). From Bayes’ rule, we obtain:

p(r|m) =
p(r) · p(m|r)

p(m)
=

p(r) · p(m|r)∫
r p(r) · p(m|r)dr

(1)

where p(r) is the prior probability of the value r. This is
assumed to be uniform: p(r) = 1

R , where R is the range of
possible values. Since the standard deviation of p(m|r) de-
pends on the value r, the calculation of p(r|m) is not trivial
and was approximated analytically, using Taylor expansion.
It results to be a skewed Gaussian, dependent on the mea-
sured value m. Therefore, in the first case of CD calculation,
where it is modeled as a sigmoid function of the ADC, the
CD uncertainty is given as a function of p(r|m).

In the second approach, Gibbs et al. [GPT07] conducted
an experiment where they associated measured ADC values
to CD values, obtained from histopathological slices. These
are the data point samples in Figure 3. By calculating the
linear fit (red dotted line in Figure 3), Gibbs et al. obtained a
relationship between ADC and CD: CD = 2.1·10−3−ADC

3·10−5 . In
this empirical approach, the CD values are obtained from
histopathology and, hence, have no uncertainty, but ADC
uncertainty is not included. When ADC uncertainty, i.e.,
p(r|m), is incorporated, the relationship between ADC and
CD is affected. To quantify this, we randomly sample the
ADC uncertainty distribution of each data point of Figure 3
and calculate the resulting fits for 2 million sets of samples.
All generated fits can be seen in Figure 3: with the grayscale
colormap, we denote the probability of each one of the fitted
lines, which is calculated by the product of the probability
functions of the data point samples. White is the least proba-
ble and black the most probable. From the generated fits, we
calculate the CD probability function CD(r|m).

The remaining steps of the TCP model are mathematical

equations [CMvdHR∗16], which do not include additional
uncertainties and use the CD value as input. Therefore, for
the sigmoid approach, the uncertainty in the TCP model will
depend directly on the ADC uncertainty p(r|m), while for
Gibbs, it will depend on the CD uncertainty CD(r|m).

For the interactive exploration of the uncertainty, our users
are initially interested in having a global overview on the
regions of the prostate that are most subject to ADC and
CD uncertainty. To simultaneously explore the two uncer-
tainties, we employ a 2D colormap [Bre94]. In this visual
representation, we encoded the per-voxel difference between
the most probable real ADC value r and the measured value
m from the acquisition: ADCdi f f = argmax{p(r|m)} −m
(Figure 4). This difference is always positive and its mag-
nitude depends on the measured ADC values. Therefore,
we decided to map it to the luminance dimension of the
colormap (Figure 4). Also, we encoded the per-voxel dif-
ference between the most probable real CD value - after
the propagation of the ADC uncertainty - and the value
measured as proposed by the experiment in the literature:
CDdi f f = argmax{CD(r|m)}−CDGibbs (Figure 4). This is
mapped to a divergent hue dimension of the colormap, as
both positive and negative values are possible. No trans-
parency is employed in the colormap. Other approaches,
such height fields, were considered, but a discussion with
the users showed that the colormap was easier for them to
understand and use.

In addition to color-encoding, we enable users to probe
the prostate and interactively explore the entire probabil-
ity density distributions for the ADC and CD values per
voxel (Figure 4). With this dual visualization, the user has
an overview on the uncertainty - at prostate level - and lo-
cally - at voxel level. Finally, when the user performs TCP
modeling, the uncertainty is propagated also to the model
outcome, as described before, and visualized on the result-
ing TCP curve as a density band (Figure 4, zoomed view).
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Figure 3: Dataset extracted from the experiment of Gibbs
et al. (blue points), and linear relation between ADC and
CD (red line) [GPT07], without uncertainty. Incorporating
ADC uncertainty results in a set of linear fits (shown with
grayscale: dark denotes higher probability).
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Figure 4: Quantification and interactive exploration of the ADC-induced uncertainty and its effect on TCP modeling (T1).

Exploration and analysis of the assumption-induced
TCP model sensitivity (T2). In this part, we use two main
components. First, the clinical researcher adds a finite num-
ber of combinations of TCP parameter sets, for the calcula-
tion of the respective TCP models. This is consistent with
the traditional way of exploration of TCP modeling, where
one or more TCP models are compared to each other. In this
case, each combination of TCP parameter sets is encoded
to the visualizations depicted in Figure 5-left, which we call
pianola plots, inspired by the scrolls used by the musical in-
strument. In this example, the clinical user has added three
parameter sets, depicted by the three white planes. Each row
of a pianola plot is a parameter. The first parameter cd is
the cell density calculation approach, which is a categorical
variable that defines which approach is used for the calcula-
tion of CD. It can either take the value Gibbs or sigmoid - or
more, if available. This is encoded with the dot that is located
respectively, either in the middle or the end of the first row.
The rest of the parameters are continuous variables, which
can take values between known and pre-defined ranges. For
these, the selected value for each parameter is encoded to the
location of each one of the scribbled lines. The user can ex-
plore also the effect of varying one or more parameters con-
tinuously through a range. This is denoted with a box instead
of a line, the width of which depicts the range of values. An
example for this is depicted in the second parameter set, for
parameter α (Figure 5-left). To intuitively link these sets to
the respective TCP curves, the scribbles of each pianola plot
are assigned to a different hue. In this way, the clinical user
can easily detect how much TCP curves are affected by dif-
ferent parameter choices (Figure 5-right).

With the current workflow, TCP models can be explored
only globally. Although TCP curves can be extracted per
voxel, clinical researchers currently calculate the expected
average response of the whole tumor to a given dose and
they only analyze the whole tumor TCP curve. They are not
able to perform a voxel-based exploration, to detect whether
there are specific parts of the tumor that behave differently
than the rest, or to analyze why this happens. To enable this,
we provide a functionality to probe the TCP curve: either

(i) for a TCP value and see the linked required dose per-
voxel (Figure 6), or (ii) for a specific dose and see the
linked achieved TCP per-voxel. The latter relates also to
task (T4). The linked variable is encoded with a heated-
body colormap on the imaging slices of the patient, for di-
rect anatomical reference (Figure 6). When the user has em-
ployed several TCP modeling approaches, we visualize also
the variability in the respective dose or TCP value, due to
the effect of these alternatives, using a circular glyph encod-
ing (Figure 6) [BKC∗13]. The size of the glyphs denotes the
per-voxel variability and the blue color is chosen to be com-
plementary to the underlying colormap. The circular glyphs
were chosen, as they preserve visibility on the underlying
color-encoded values. This design also helps identifying the
relation between values and their variability.

Identification of inter-patient variability to treatment re-
sponse (T3). The exploration and analysis of the perfor-
mance of a specific RT strategy is usually evaluated on a
cohort of patients. For example, it is interesting for clini-
cal researchers to know how much the per-voxel achieved
TCP or the required dose of their patients varies within a
cohort. Within-cohort variability is important as it can de-
termine whether a treatment strategy is robust or not with
different patients and can aid the design of better treatment
strategies. This step is linked to (T2): the user probes the
TCP curve for either the TCP response or the dose (Fig-
ure 6) and, respectively, the required dose or achieved TCP
per-voxel is calculated for the whole cohort, also for mul-
tiple TCP modeling approaches, as described in (T2). We
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Figure 6: Probing the model curve at a specific TCP
value, to inspect the required dose per-voxel (heated-body
colormap) and the respective variability (circular glyphs)
(T2).

provide functionality, with which the users can explore the
distributions of the calculated dose or TCP - or multiple sets
of these from multiple TCP modeling approaches. Subse-
quently, they can partition the cohort of patients to iden-
tify patients that behave similarly throughout different TCP
modeling approaches.

To illustrate our approach for the partitioning, we em-
ploy the example depicted in Figure 7. Here, distributions
of dose have been calculated for four patients through three
different parameter settings in TCP modeling. We want to
form groups of patients that have similar response patterns
along different parameter settings. For this, we need to clus-
ter the patients based on the spreads, i.e., the dispersions in
each set of distributions. We quantify the dispersion of each
distribution, using the median absolute deviation (MAD),
which is a robust measure of dispersion [Rup11]: MAD =
mediani (|Xi−mediani(Xi)|). It is described as the median
of the absolute deviations of the distribution data Xi from
their median. After calculating all MAD measures of the dis-
tributions, we employ a k-means clustering algorithm on the
per patient vectors of calculated MADs (Figure 7), which
was chosen due to simplicity and computational efficiency.

In our approach, the user interactively selects the num-
ber of clusters, k. To aid adequate selection of the num-
ber of clusters, we employ an additional cluster analysis
view. For this, we use a visualization employed in our previ-
ous work [RvdHD∗15], where the goal of the visual cluster
analysis view was to help the users decide whether the vi-
sual clusters are well-defined. This is similar to our present
goal and we decided to adopt their strategy in our system.
In this view, every cluster is mapped to a sphere. For each
cluster, we provide internal validity information, i.e., cohe-
sion and separation [RvdHD∗15], but also inter-patient and
inter-assumption variability. Cohesion is a measure of intra-
cluster similarity, while separation is a measure of inter-
cluster dissimilarity. For these two measures, we employ the
same encoding as in our previous paper [RvdHD∗15] (Fig-
ure 7-legend): small and opaque spheres depict high cohe-
sion within a cluster, while large and transparent spheres
depict low cohesion; also, thin arrows depict well-separated
clusters giving the illusion of distance, while thick arrows
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Figure 7: Partitioning a patient cohort based on TCP treat-
ment response (T3). The cluster analysis view adapted
from [RvdHD∗15] is used for the visual optimization of clus-
tering.

depict less separated clusters. The inter-patient and inter-
assumption variability are encoded to the size of the two
dimensions of a box, located at the core of each sphere (Fig-
ure 7-legend). With the cluster analysis view, the users in-
teractively change the number of clusters, while following
the graphical changes on the glyphs, and decide the most
satisfactory result based on the visual optimization of the
cluster view, depending on the goal. The users interactively
partition the patient cohort inspecting the achieved TCP re-
sponse, while at the same time, they can identify how much
these sub-cohorts of patient responses vary. An automatized
initial selection of a good cluster size or number of clusters
would be an interesting future extension.

Bi-directional design of TCP modeling workflow (T4).
With the introduction of (T4), we enable clinical re-
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Figure 8: Reversing the workflow in TCP modeling (T4).

searchers to start their workflow from the desired outcome,
to identify and compare the strategies that achieve it. For
this, the user defines an acceptability range for the desired
TCP outcome, by sketching it on a canvas (Figure 8). Then,
all the acceptable parameter combinations that can achieve
this are computed, using a brute-force search. The user is
presented with these combinations, using a heatmap matrix
(Figure 8). In this matrix, every column corresponds to an
acceptable combination and every row to one of the param-
eters. In the last row, we present also the quantified uncer-
tainty that is introduced by each one of these combinations,
calculated in the same way, as in (T1). The colormap de-
notes the range of values for each parameter. The user can
interact with the matrix and threshold values that are not
plausible or interesting for the analysis, or even select com-
binations based on their uncertainty (Figure 8). Probing and
linking is employed for the inspection of the TCP curve of
each combination. The functionality of (T4) is expected to
open new ways of exploration and analysis for clinical re-
searchers, as up to now the workflow was done in one direc-
tion. Now, also the inverse is possible.

Implementation. We implemented the visual tool in Python
as a DeVIDE module [BP08], using the Visualization
Toolkit (VTK), numpy, scipy, matplotlib and scikit-learn.

5. Results

To assess the value of our visual tool, we performed an eval-
uation, inspired by the paper of Lam et al. [LBI∗12]. The
evaluation was performed with nine domain experts from
two clinical institutions. The group of participants included
three physicists, five medical physicists and one biomedical
engineer. Their field experience varies from medium (<5
yrs) to very high (> 10 yrs). Two of the participants were
actively involved in the design of our tool; both with a very
high level of experience in the field of TCP modeling.

In the first part of the evaluation, all participants were in-
volved. We demonstrated the visual tool, where we showed
the main components, simulating the visual environment for
the exploration and analysis of a TCP modeling workflow.
The evaluation participants observed the demonstration and
were involved in an active discussion about the various visu-
alizations. Then, they completed a questionnaire.

The second part was conducted only with the two partici-
pants involved in the design of the tool and the analysis was
performed with data already familiar to them. For a deeper

understanding on the insights that the tool provides, we per-
formed a case study with hands-on exploration. Each of the
four tasks of Section 2 was performed with the thinking-out-
loud method, as the clinical researchers explained and rea-
soned on findings in the data. At the end, we asked them to
complete again the same questionnaire as previously, to see
whether their opinion changed or not, after interacting with
the tool.

5.1. Evaluation: Interviews

During the interviews, the participants completed a question-
naire. The first questions were related to the main tasks of
Section 2. Each question required an open answer, but also
grading using Likert scales (1-5) for the perceived effective-
ness, efficiency and satisfaction. To avoid compromising the
results, we separated in our analysis the two people involved
in the design from the other seven. Half of the tasks were
graded higher by the first group and the other half by the
second, but it results that the two groups had comparable re-
sults without significant difference. Also, we separated our
analysis based on level of experience, as it possibly indicates
different user categories, performing different tasks. Again,
the results were comparable among the different groups. All
measured variables received high scores (Figure 9), with a
minimum average grade of 4. Uncertainty (T1) and Sen-
sitivity (T2) received high grades. Partitioning (T3) re-
ceived lower grades, but not lower than 3 (Figure 9). This
was explained by the fact that participants wanted to see ad-
ditional information on the data, when partitioning their co-
horts. After the case study of the following section, the two
participants involved in the design recompiled the question-
naire. For the efficiency of (T1) and effectiveness of (T3),
the grades improved (Figure 9). This is interesting, as these
two participants consist half of our group with very high ex-
perience, who had initially graded (T3) lower than all the
others. This could be an indication that after hands-on explo-
ration, this task became clearer to them. Overall, the results
between the two rounds are consistently high (Figure 9).

The nine participants were also asked to compare the vi-
sual tool to what they are currently using and to evaluate
the overall usefulness of our tool. They commented that they
currently, "do not have any other means of analysis, apart
from looking at individual graphs". For them, the frame-
work requires training and a level of familiarization, but it
"removes a significant overhead from the analysis", giving
"important input". More specifically, the uncertainty part
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Figure 9: Schematic representation of the evaluation results, for each one of the tasks of Section 2.
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Figure 10: Results from the case study.

(T1) provides "directly understandable and quantitative
feedback", while with sensitivity analysis (T2) they can
"perceive directly the influence of the dose prescription". For
the cohort partitioning part (T3), there were mixed opin-
ions. According to the evaluation participants, it "raises a
lot of questions about the subgroups of the cohorts". It could
be the "most important clinical application", but it should
be done also "based on other variables", or also "for intra-
tumor regions". Reversing the workflow (T4) can have
"great potential". All participants agreed that the visual tool
is overall understandable and useful. The strong features of
the visual tool are the ability to perform a voxel-based anal-
ysis - especially, the probing and linking functionality in the
TCP curves and the view on the variability from the different
modeling approaches (T2), as well as the workflow revers-
ing task (T4). Improvement proposals were mostly related
to cohort partitioning (T3).

5.2. Evaluation: Case study

For the case study, ADC data from a cohort of 11 locally
advanced prostate tumor patients was used. The ADC maps
were derived with a b-value of 1000 and have a size of 256×
256×24 voxels and a resolution of 0.97×0.97×3.6.

During the task of uncertainty (T1), it was noticed that
CD might be overestimated in literature, as visualized by the
dominant purple color (see Figure 4). Some voxels (green)
have been noticed to be sometimes misdelineations of vox-
els that belong to the bladder or to the urethra. In the rest of
cases, like in Figure 4, these are locations in the prostate that
should be checked more thoroughly. Less uncertainty is ex-
pected within tumors, due to lower ADC values. The effect
of the uncertainty on the TCP was also found to be interest-
ing: it reaches almost 5% of the TCP for the Gibbs approach
(Figure 10-a, purple curve) and 2.5% for the sigmoid ap-
proach (Figure 10-a, orange curve), at D50%, i.e., the dose
required for achieving 50% control only in the tumor loca-
tion. During the exploration of sensitivity (T2), four exam-
ples of parameter sets were explored. The first two are Gibbs
approaches with the same RT strategy, but they differ in the
αVar parameter. The third is a sigmoid approach with the
same RT strategy. The last is an additional Gibbs approach
with a range of α between 0.17 and 0.21. In the result-
ing TCP curve graph, there are indications that the sigmoid
model might predict tumor control with a lower dose, i.e,
the curve is more to the left, than the respective Gibbs (Fig-
ure 10-b). Also, when the αVar, which is a parameter that
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models intra-tumor variability is neglected, then the model
suffers less from uncertainty (Figure 10-b). For ranging α,
the effect on the TCP is more prominent. In this case, prob-
ing the TCP at 70% shows that a dose ranging between 43
and 82 Gy is required within the tumor only. The variability
between the four models, though, is large for the whole tu-
mor (Figure 10-b). For cohort partitioning (T3), after prob-
ing the TCP at 70%, we obtain the dose distributions per pa-
tient (Figure 10-c). Patient 8 seems to have a different behav-
ior. His TCP curve (Figure 10-c, dotted TCP curve) is on the
right side of the average curve, which means that to achieve
a 70% TCP, he requires higher dose, as he is a patient with a
much larger tumor. After interactive clustering, the visually
optimal cluster analysis view is achieved with two clusters,
where patients behave similarly in terms of TCP curves, e.g.,
the ones in the blue cluster are all on the right side of the av-
erage TCP curve. In reversing the workflow (T4), patient 8
was explored to check whether a more satisfying strategy can
be identified. A wide range of acceptable TCP is drawn (Fig-
ure 8). More than 200 different combinations are identified,
as seen by the columns of the heatmap matrix. On first sight,
it seems that the sigmoid approach (Figure 8 - heatmap, first
row, purple section) may be less sensitive to changes in pa-
rameters than Gibbs (Figure 8 - heatmap, first row, white
section), as less combinations are computed for the sigmoid.
Also, this approach may suffer less from uncertainty (Fig-
ure 8 - heatmap, last row), as the range of uncertainties does
not go up to the maximum value of uncertainty (no deep pur-
ple). By redefining the acceptable limits for the parameters
and the uncertainty, only 24 different combinations are pre-
served (Figure 8). According to the evaluators, (T4) func-
tionality could be helpful, to determine the suitability of this
patient for a specific therapy. However, for this, no conclu-
sions can be made, as it would also require the involvement
of oncologists, and a more extensive study. The examined
cases are meant to demonstrate the use of the visual tool; not
as an actual analysis with direct clinical inferences.

6. Conclusions and Future Work

In this work, we proposed a visual tool to enable clinical re-
searchers to explore and analyze different aspects of the TCP
modeling workflow. We tackled the quantification and inter-
active exploration of uncertainty and its propagation to TCP
modeling, parameter sensitivity analysis of TCP models, co-
hort partitioning based on treatment response and a novel
functionality for enabling also a reverse workflow. Nine clin-
ical researchers evaluated and confirmed the usefulness of
the visual tool, as it opens new possibilities and provides ac-
cess to new insight in the data. We illustrated this also with
a case study. A direction for future work includes improv-
ing the partitioning of the cohorts to enable clustering also
based on other attributes, and also linking to intra-tumor tis-
sue characteristics [RvdHD∗15]. In this way, more mean-
ingful inter-patient analysis can also be performed. The pro-
posed visual tool is a promising basis for clinical researchers
to gain more knowledge on their complex TCP modeling

processes, to explore the data from the models in a more
insightful way and to generate and confirm new hypotheses.
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