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Abstract

We present multi-valued solution algorithm for geodesic-
based fiber tracking in a tensor-warped space given by dif-
fusion tensor imaging data. This technique is based on solv-
ing ordinary differential equations describing geodesicsby
a ray tracing algorithm. The algorithm can capture all
possible geodesics connecting two given points instead of
a single geodesic captured by Hamilton-Jacobi based al-
gorithms. Once the geodesics have been computed, using
suitable connectivity measures, we can choose among all
solutions the most likely connection pathways which cor-
respond best to the underlying real fibrous structures. In
comparison with other approaches, our algorithm gives the
possibility of applying different cost functions in a fast post-
processing. Moreover, the algorithm can be used for cap-
turing possible multi-path connections between two points
that can happen when, e.g., pathologies are presented. Syn-
thetic second order diffusion tensor data in a two dimen-
sional space are employed to illustrate the potential appli-
cations of the algorithm to fiber tracking.

Keywords. geodesic, diffusion tensor images, fiber track-
ing, Hamilton-Jacobi equation, ray tracing.

1. Introduction

Diffusion tensor imaging (DTI) is the first non-invasive
technique based on magnetic resonance imaging (MRI) that
enables the measurement of the restricted diffusion of wa-
ter molecules in tissues, see for example Basseret al [3].
It is possible to calculate, for each voxel, a diffusion tensor
which is a symmetric positive definite3×3 matrix. This ma-
trix describes the three-dimensional diffusivity, [11]. The

principal application is in imaging of the brain white matter,
where the location, orientation and anisotropy of the fiber
tracts can be measured [2]. It is assumed that fiber tracks in
brain white matter follow the direction with the largest dif-
fusivity. This means that the time a water molecule travels
a given distance in this direction is the shortest.

Many different approaches have been devised for fiber
tracking. The most common techniques reduce the infor-
mation of the tensor to the main eigenvector. The integral
lines of the vector field generated by the main eigenvector
are used to indicate fiber tracks. However, these methods
do not use the full information of the tensor and are very
sensitive to noise, see Junet al [6].

Another set of techniques uses the full tensor information
by computing geodesics in a Riemannian space with a met-
ric defined by the inverse of diffusion tensor. Early DTI
geodesic connectivity approaches are based on solving the
standard eikonal equation [4, 8, 16], where connectivity
measurements are represented by cost functions of eikonal
equation based on the similarity measurements of tensors.
The more recent approaches introduce cost functions which
consider the directionality as well as the shape of the ten-
sor. For example, Kaoet al [5] represented a front propa-
gation algorithm based on an anisotropic Hamilton-Jacobi
equation in which the front propagation is given by the dif-
fusivity rate in the normal direction of the front.

A third class of algorithms is based on high angular resolu-
tion data images (HARDI). For example, Melakons [9, 10]
considers the directionality of the diffusion data by apply-
ing the cost function depending on the diffusivity directions.
In these approaches, in order to overcome the restriction
of Riemannian geometry to ellipsoidal diffusion profile, the
Finsler metric is used, and a new Hamilton-Jacobi equation
is derived by minimizing the given cost function. We con-
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centrate on the 2nd order tensor model of diffusion which is
still the most commonly used.

A characteristic of Hamilton-Jacobi(HJ) based approaches
is that they give only the single-valued viscosity solution
corresponding to the minimizer of a cost function. How-
ever, this is a limitation. In some cases multiple geodesics
or fibers connecting two points. For example, if a ”pathol-
ogy” is present like a tumor that pushes the fibers, it can
be multiple paths which are connecting two points. Fur-
thermore, in some studies, like the one by Parkeret al
[13], it is shown that some structures (i.e., Broca and Wer-
nicke) have multiple path connections. Therefore, the HJ
approach suffers from the stated deficiency that it singles
out a preferred geodesic that does not necessarily corre-
spond to the desired geodesic in case of multiple geodesic
connections. Moreover, different cost functions have been
developed [1, 14, 8, 9, 16]. Since in different cases, it is not
a priori clear which cost function to choose, having the solu-
tion of different cost functions may be interesting. However,
different cost functions result in different Hamilton-Jacobi
equations, and in order to examine several cost functions,
one needs to solve several equations, which can be compu-
tationally expensive.

In this paper, we present a new geodesic-based algorithm
which can be used for fiber tracking in a tensor-warped
space. This algorithm computes possible multi-valued so-
lutions using the entire tensor information. Note that be-
tween two given points on a manifold, depending on initial
directions, there may be more than one geodesic, and there-
fore multiple solutions may arise. Once the geodesics have
been computed, using suitable connectivity measures, we
can choose between multiple solutions the most likely con-
nection pathways. For example in brain fiber tracking, the
most likely connection pathways are the ones which corre-
spond best to the underlying real fibrous structure. In the
case of having more than one geodesic between two points,
the pathways can be sorted by indexing them with connec-
tivity value obtained for each one.

One advantage of our algorithm is that it gives the pos-
sibility of applying different cost functions in a fast post-
processing procedure. Another advantage is the capability
of capturing the possible multi-path connections between
two given points. In order to show the potential of the al-
gorithm for fiber tracktography, we apply it to two dimen-
sional synthetic data.

2. Governing Equation

In this section we present the governing equations for com-
puting geodesics. A geodesic connecting a pair of points
on a Riemannian manifold embedded inR

2 is defined as a
curveu(τ) = (u(τ), v(τ))⊤ extremizing the length func-
tional

L(u) =

∫ T

0

(u̇⊤Gu̇)1/2dτ , (1)

whereG = G(u(τ)) is the Riemannian metric. The pa-
rameters(u, v) belong to a two dimensional bounded set
Ω ⊂ R

2 and specify the location of the geodesic, andτ is
a parameter along the geodesic. Geodesics are given by a
system of two second order ODEs onΩ [7],

ü + Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0,

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0.

(2)

Here the dot denotes differentiation with respect toτ and
Γk

ij(u, v) are Christoffel symbols defined by

Γk
ij =

2
∑

m=1

1

2
gkm[(gjm)i + (gim)j − (gji)m], (3)

where(gij) denotes the matrix component ofG and(gij)
the ones ofG−1. In DTI applications, the metricG is the
inverse of the diffusion tensorD. Subscripts1 and2 on
the r.h.s. indicate differentiation with respect tou and v,
respectively.

We reduce equation (2) to three first order ODEs by setting

u̇ =
du

dτ
= cos θ, v̇ =

dv

dτ
= sin θ, (4)

and thereforėv = u̇ tan θ. Differentiating with respect toτ
gives us

v̈ = ü tan θ + u̇
1

cos2 θ
θ̇. (5)

Now letγ = (u, v, θ)⊤. Using (5) and (2) we have

θ̇ = sin θ(Γ1
11 cos2 θ + 2Γ1

12 cos θ sin θ + Γ1
22 sin2 θ)−

cos θ(Γ2
11 cos2 θ+2Γ2

12 cos θ sin θ+Γ2
22 sin2 θ) =: ρ(γ).

Therefore the system of ODEs (2) for geodesics reads

γ̇ = g(γ) :=





cos θ

sin θ

ρ(γ)



 , (6)

Note that by the particular choice of (4) we identifyτ with
theEuclideanarc length parameter.



3. Two-Point Ray Tracing

By equation (6) we can compute all possible geodesics
starting at an initial point and ending at some point on
the domain. We concentrate on the problem of computing
geodesics between two given points inside the boundary.
In order to tackle this problem we first solve (6) for these
two given points as initial locations and all initial directions
in a discrete domain. This gives us two sets of geodesics
starting at these two points and ending at the boundary. We
then post-process these solutions to obtain the geodesics be-
tween the two points. This procedure is called two-point ray
tracing [15].

We consider the tripletγ0 = (u0, v0, θ0)
⊤ as a point in the

spaceΩp = Ω × S, whereS = [0, 2π). Let F (γ0) =
(U, V, Θ)⊤ be theescape pointof the geodesic satisfying
(6) and starting atγ0, i.e., F (γ0) is the point where the
geodesic starting at(u0, v0) ∈ Ω with direction θ0 ∈ S

crosses the boundary ofΩ at (U, V ) with directionΘ ∈ S,
see Figure 1. Moreover, letT (γ0) be the Euclidean length
of the geodesic between the starting point and the corre-
sponding escape point. We callT (γ0) the escape length.
We note that given an initial pointγ0 we can computeF (γ0)
andT (γ0) by solving (6) using an ODE solver such as the
fourth order Runge-Kutta method.

Figure 1. A geodesic in the parameter space. The functionF is
defined asF (u, v, θ) = (U,V, Θ).

Now suppose we want to find all possible geodesic paths
between two points(u1, v1) and (u2, v2) in Ω. We first
observe thatF (γ1) = F (γ2) if and only if the points
γ1 = (u1, v1, θ1)

⊤ andγ2 = (u2, v2, θ2)
⊤ lie on the same

geodesic. We can thus findθ1 andθ2 as the solution to

F (u1, v1, θ1) = F (u2, v2, θ2). (7)

There maybe multiple solutions to (7) giving multiple
geodesics. The Euclidean length of the geodesic connect-
ing these two points is then given byT = |T (γ1)−T (γ2)|.

In order to solve (7) we note that, sinceF = (U, V, Θ)⊤ is
a point on the boundary∂Ωp, it can be reduced to a point
(S, Θ) ∈ R

2, whereS represents the escape location on
the boundary. For example in a rectangular domainΩ we
chooseS ∈ [0, 2π] along∂Ω, see Figure 2a. The left and
right hand sides of (7) are therefore curves inR

2 parame-
terized byθ1 andθ2, [12]. Solving (7) amounts to finding
crossing points of these curves, see Figure 2b.

Numerically, we first solve the geodesic equation (6) for the
initial points (u1, v1, θ

k) and (u2, v2, θ
k) whereθk = k△θ

and△θ = 2π
N . Discretizing the computational domainΩ

into N2 points, the complexity of solving the ODEs for two
initial points(u1, v1) and(u2, v2) with N initial directions
is O(N2). Having the discrete solutions (escape points and
escape lengths) for the initial points(u1, v1) and (u2, v2)
with all N directions we find the crossing points of two
curves ofN straight line segments. This can be done with a
complexity ofO(N), [17]. Therefore the total complexity
of finding all possible geodesics betweenM pairs of points
will be O(M N2).

Figure 2. A geodesic in the parameter space, starting at point γ1 =
(u1, v1, θ1)

⊤ and ending at the escape pointF (γ1) = (U, V, Θ)⊤.
In a discrete case, curves in Figure (b) containN straight line seg-
ments.



4. Numerical Examples

In this section, we apply the two-point ray tracing method to
compute all possible geodesics in a tensor-warped field. We
present the method on two different computational fields.
The main difference between these two fields is that in the
first one we have a continuous tensor field expressed in ana-
lytic form. Therefore we can compute the metric derivatives
and Christoffel symbols analytically as we integrate equa-
tion (6). In the second one, we have a discrete tensor field
only at grid points. In order to find the metric derivatives
at any point in the domain, we interpolate component-wise
the metric derivatives at the grid points.

4.1. Example 1

We consider a two dimensional metric field

G =

(

g11 g12

g21 g22

)

,

where

g11 = 2π2sin2(πv) (1 + sin2(2πu)),

g12 = g21 = −
3

8
π2 sin(4πu) sin(2πv),

g22 = π2(1 −
3

4
sin2(2πu) cos2(πv)),

in a rectangular domainΩ = [0, 1] × [0.1, 0.9]. The dif-
fusion tensor isD = G−1. DifferentiatingG with respect
to u andv and using (3) gives us the required Christoffel
symbols.

Figure 3a shows the geodesic paths for two initial points
(u1, v1) = (0.3, 0.6) and (u2, v2) = (0.8, 0.2) with
N = 50 initial directionsθk ∈ S, k = 1, 2, . . ., N . Fig-
ure 3b shows two intersecting curves in the(S, Θ)-plane
corresponding to all geodesics starting at the two initial
points. There are two crossing points which determine two
geodesics connecting these two points. The two geodesics
are in fact the same(in this case) and lie on top of each other,
indicate by the bold line in Figure 3a.

4.2. Example 2

In this section, we consider a discrete two dimensional syn-
thetic tensor field. Isotropic tensors are defined as a back-
ground (excluding the effects of noise) and anisotropic ten-
sors form curved fibers. The shape of the tensors in the
spatial domain represents a section of U-fiber bundle struc-
ture. To examine the method for noisy data gaussian noise

Figure 3. Left figure shows geodesics starting from given initial
points and ending at boundaries and the geodesics connecting
these two points. Right figure shows two crossing curves. Each
curve corresponds to all escape points and escape angles starting
from an initial point. The two crossing points are shown by circles
around.

is added to each eigenvalue and eigenvector of the diffusion
tensors, independently, see Figure 4.

We discretize the computational domainΩ = [0, 1]2 uni-
formly with the step sizes△u = △v = 1

N and grid points
ui = i△u, vj = j△v, i, j = 0, 1, . . . , N . HereN is the
number of grid points in each direction. Each grid point
(ui, vj) in this domain is labeled by a two-dimensional ten-
sorGij = D−1

ij .

To compute the metric derivative in each grid point we use
a finite difference scheme such as the second order central
difference

∂Gi,j

∂u
≈

Gi+1,j − Gi−1,j

2△u
,

∂Gi,j

∂v
≈

Gi,j+1 − Gi,j−1

2△v
.

(8)

We apply the second order one-sided difference scheme for



the grid points situated on the boundaries

∂G0,j

∂u
≈

−3G0,j + 4G1,j − G2,j

2△u
,

∂GN,j

∂u
≈

3GN,j − 4GN−1,j + GN−2,j

2△u
.

Similar formulations hold for derivatives with respect to
v. In order to obtain derivatives needed for computing
Christoffel symbols in any point in the domain we apply
component-wise interpolation.

Figure 4 shows the two geodesic paths between two initial
points (u1, v1) = (0.3, 0.5) and (u2, v2) = (0.75, 0.57),
obtained by the algorithm, using diffusion tensor. It shows
that the geodesic with the shortest length between two
points (black-curve) does not always follow better fibrous
structure, i.e., the U-fiber bundle. This test shows the ro-
bustness of the algorithm to noise. The two-point ray trac-
ing algorithm gives the possibility of finding all possible
geodesics between two points. In contrast existing methods
would calculate just the unique optimal path. Getting the
desired path in these methods can be very sensitive to the
choice of the cost function using for optimizing the path-
ways. In the next section, we will show one of the ap-
plications of the algorithm to find the geodesic among all
geodesics between two points that better coincides with the
fibrous structure by using connectivity measurement. Note
that in some cases it can be that both geodesic connections
are physically meaningful, See for example [13].

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u

v

Figure 4. Geodesics computed for synthetic DT fields modeling
a curved fiber tract. This figure shows diffusion tensor field with
gaussian noise.

5. An Application to Connectivity Measure-
ments

In order to find a neural fiber bundle connecting two given
points, we need suitable connectivity measurements to se-
lect the optimal geodesic among all possible geodesics

between these two points. Recently [1, 16] presented
new measurements to assess the degree of connectivity of
geodesic paths. In this section, we briefly review these mea-
surements, and apply them to our numerical examples.

A geodesic connecting a pair of points on a Riemannian
manifold is defined as a curveu(τ) = (u(τ), v(τ))⊤ ex-
tremizing the length functional equation (1).

whereG = G(u(τ)) is the Riemannian metric. The ra-
tio of lengths given by the Euclidean and diffusion induced
Riemannian metric tensorsG = D−1 can be considered as
a measure for the connection strength of a geodesic. The
proposed measure is given by

mL(u) =

∫

T

0
(u̇⊤ u̇)1/2 dτ

∫

T

0
(u̇⊤Gu̇)1/2 dτ

, (9)

(10)

For the optimal geodesic coinciding with a neural fibrous
structure, the measure in (9) is larger compared to the one
for other geodesics. Note that (9) can be interpreted as in-
verse Euclidean-length averaged diffusivity along the curve.

We note that in the neighborhood of the pointu0 = u(0) the
limit of measurements in (9) asT → 0 gives the following
local measurement

ML(u̇0) =
(u̇0

⊤ u̇0)
1/2

(u̇⊤

0 G(u0) u̇0)1/2
, (11)

whereML(u̇0) = mL(u0) u̇+

0 and λ+ be the principal
eigenvector and the largest eigenvalue ofD(u0), respec-
tively, and thereforėu+

0 = λ+G(u0)u̇
+

0 . By (11) we then
have

ML(u̇+

0 ) = (λ+)1/2,

implying thatlocally the measurements give maxima in the
direction of the principal eigenvector of the diffusion tensor,
indeed a reasonable local connectivity measure.

We apply the measure (9) to the problem in Section 4.2 with
the synthetic data. We getmL = 5.23 andmL = 1.45
for the geodesics showed by (red) and (black) in Figure 4,
respectively. Here it can be seen that connectivity of the
geodesic coinciding with the fiber bundle are larger than the
one of the other geodesic.



6. Discussion and Conclusion

Common approaches for fiber tracking in diffusion tensor
imaging based on geodesics give only a single geodesic
representing the fiber pathway between two points. This
geodesic may not represent the appropriate connecting path.
Moreover, there might be multiple pathways which can
not be detected by such approaches. We have modified
a ray tracing algorithm for computing geodesics in a two-
dimensional tensor-warped space. In this approach we ob-
tain all possible geodesics between two given points. One
main application of this method is to cases where there are
multiple connections between two points in the diffusion
tensor field. Furthermore, we can apply different connec-
tivity measurements in order to select the geodesic with the
strongest connectivity among all geodesics, in the case just
one geodesic is expected.

In this paper, the method is presented to develop an exact
algorithm for the fiber tractography. We made use of the
second order diffusion tensor data which is still the most
commonly used. We applied the algorithm to two dimen-
sional synthetic tensor fields as a proof of concept.

In future work we will extend the algorithm to three dimen-
sions and will apply it to real brain diffusion tensor images.
Another future research direction is extending the algorithm
to region-region tracking. It is also interesting to investigate
how often the multiple geodesics appear in the brain and
give the more accurate results.
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