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Abstract. In segmentation techniques for Diffusion Tensor Imaging (DTI)
data, the similarity of diffusion tensors must be assessed for partition-
ing data into regions which are homogeneous in terms of tensor char-
acteristics. Various distance measures have been proposed in literature
for analysing the similarity of diffusion tensors (DTs), but selecting a
measure suitable for the task at hand is difficult and often done by trial-
and-error.

We propose a novel approach to semiautomatically define the similar-
ity measure or combination of measures that better suit the data. We
use a linear combination of known distance measures, jointly capturing
multiple aspects of tensor characteristics, for comparing DTs with the
purpose of image segmentation. The parameters of our adaptive distance
measure are tuned for each individual segmentation task on the basis of
user-selected ROIs using the concept of Kernel Target Alignment. Ex-
perimental results support the validity of the proposed method.

1 Introduction

Diffusion Weighted MRI [1] constitutes a valuable tool that allows a non-invasive
look at fibrous structures. Among the most important applications of Diffusion
Tensor Imaging (DTI) is the study of brain connectivity or of the fibrous struc-
ture of muscle tissue such as the heart [2,3]. DTI has also been used to identify
subtle abnormalities in several diseases such as stroke schizophrenia and multiple
sclerosis [4].

In DTI more than six gradient directions are scanned, enough to compute
the diffusion tensor (DT) per voxel, representing the local pattern of directional
tissue diffusivity. The diffusion tensor is represented by a 3× 3 positive definite
symmetric matrix D. The diffusion coefficients in each direction r are given by
rT Dr.

A common way to visualise the tensor data (Vilanova et al. [2]) is by fiber
tracking. Given the DT field, fiber tracking techniques try to reconstruct the
fibrous structures (i.e., fiber tracts).



In several applications, such as comparison between subjects, it is interesting
to segment structures at a higher semantic level, e.g. coherent white matter bun-
dles such as the corpus callosum, [5–7]. It is also necessary to derive statistical
properties of diffusion tensors (DTs) to identify differences in tissue morphol-
ogy, e.g., between healthy and pathological areas [4]. For these reasons, clustering
techniques have been used to group individual fiber tracts into coherent struc-
tures [8]. However these methods deal with derived structures from the tensor
field (i.e., do not use directly the original full tensor information). Therefore they
are very sensitive to the used fiber tracking method and the parameter setting of
those. An alternative to clustering fibers is the direct segmentation of the tensor
field in volumetric regions. These methods assume that tensors will belong to the
same bundle if they are similar to each other. Several segmentation techniques
have been presented in the last years [5–7, 9–11]. These techniques require the
notion of (dis)similarity of two DTs, i.e., a measure which indicates when a ten-
sor is considered to be similar enough to belong to the same region. Clearly,
the segmentation results are highly dependent on the choice of measure. So here
again the problem of how to define distance (or other dissimilarity measures)
in the DTI codomain imposes itself. Different similarity measures for DTs have
been introduced in the past. Alexander et al. [12] and Peeters and Rodrigues
et al [13] extensively analysed the different (dis)similarity measures, which are
of different nature and sometimes lack physiological significance. Therefore, it is
difficult to predict which measure will give better, or similar results. The choice
of measure depends on the application at hand. Usually an ad-hoc definition of
parameter values and choice of similarity measures is used.

The contribution presented in this paper lies in the assessment of tensor field
homogeneity characteristics by automatically determining a suitable parame-
terised similarity measure simultaneously capturing multiple aspects of tensor
characteristics. The results of the presented method can then be used in any
segmentation algorithm as, for example, region growing.

This problem of metric learning and parameter estimation has been ad-
dressed before in the machine learning and pattern recognition literature [14,15].
We extended these methods for the particular problem of diffusion tensor seg-
mentation. With the proposed pre-processing distance learning algorithm, the
parameters for a segmentation algorithm, Region Growing, are inferred from the
data. A seeding region is selected (by the user) and the algorithm will segment
the spatially connected 3D section with the diffusion tensors that are similar to
the initial chosen region and dissimilar to the rest. The initially flexible learning
scheme adapts itself to the task at hand. This technique can be used for different
segmentation algorithms and for illustration we present the results using region
growing.

2 Methods

The main goal of this work is to assess what distance or combination of distances
better express the homogeneity characteristics of a structure defined in a tensor



field, e.g., the brain. The results of the distance/parameter learning are then
used to drive a Region Growing segmentation algorithm (see Figure 1). The dis-
tance learning algorithm infers the distance(s) that best discriminates a selected
Region of Interest (ROI) from the entire image volume represented by a random
sample of DTs. The optimal combination of distances will then be used in the
segmentation algorithm and a spatially connected volume of tensors is obtained.
Then the user will be able to further improve the process by adding additional
negative ROIs, i.e., examples of tensors that are different from the target region
and provide complementary information.
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Fig. 1. Global gist of the distance/parameter learning and segmentation

Figure 2 shows the details of the distance learning algorithm. From the tensor
field volume data we define a labeled set S = (Di, li) of n DTs D with a label l.
The set S is defined as the union of two subsets of DTs: P, a set of representative
DTs from a user defined ROI (positive ROI), where l = +1; and N, a set of
representative DTs for the whole volume (negative ROI), where l = −1.

Distance matrices are constructed by calculating the distance between all
pairs of tensors in the set S. Each row is considered as a feature vector with
the distance from a tensor to all others in the training set. From these feature
vectors, symmetric matrices, referred to as kernel matrices (i.e., Gram Matrices),
are calculated by computing all possible inner products between each vector. For
a uniform behavior of the algorithm, without minding the scale, a normalisation
of the individual kernel matrices is performed. Then, with a linear combination
of the different kernel matrices, one per considered distance, we define a new
kernel matrix K with a set of unknown parameters (the weights).

Using a grid search based method, the weights are estimated in order to
maximize the Kernel Target Alignment measure described in Section 2.3. This
maximum gives the best alignment between the kernel matrix K and an equally
sized label matrix, i.e., which combination of distances provides the best dis-
crimination for the considered data.

In the following, we describe the optimization of the kernel target alignment
for the distance learning. In Section 2 several elements of the algorithm are
introduced and in Section 3 experiments of the distance learning algorithm are
presented.
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Fig. 2. Detailed scheme of the distance learning algorithm

2.1 Distances

A distance measure d has to be such that d(A,B) is small if tensors A and B
are similar [13]. The distance learning algorithm does not require the distance
to be a metric, the triangle inequality is not a requisite.

Distance measures convey different aspects of a diffusion tensor. While some
capture changes in individual degrees of freedom (e.g., difference in anisotropy),
others use the full tensor information. Thus their use is sometimes redundant,
i.e., different measures describe common tensor attributes. There are measures
that use the full tensor, like Riemannian based measures, that have a mathemat-
ical nature which does not have a direct intuition of the physiological meaning.
Thus, the results are not that predictable. Other measures like the ones presented
by Kindlmann et al [10] decompose tensor variations into changes in shape and
orientation, covered by three invariant gradients and three rotation tangents.
In this work, a tunable difference measure between two DTs is introduced. This
measure uses a weighted sum of the individual measures. However, the definition
of the weights depends on the task. Furthermore, this is only good for very small
differences, since the invariant gradient and rotation tangent coordinate frame
is not accurately defined for a large difference between tensors. Therefore, we do
not use these measures.

In order to show the flexibility of our framework, we evaluate the follow-
ing set of different distances [13]: difference of FA (dsFA), difference of MD
dsMD, angular difference dang1, Frobenius distance dL2, geometric distance dg,
Log-Euclidean distance dLE and the symmetrized Kullback-Leibler dKL. These
measures are chosen because they are distances, d(D1,D1) = 0, symmetric and
positive. Other similarity measures could be used, however they must be con-
verted into a distance measure, see Haasdonk et al [16].

2.2 Empirical Kernel Matrices

The main idea of kernel methods is to map the input data (i.e. here distance
between tensors) to a feature space provided with a dot product. The mapped
data is then dichotomized. A kernel matrix for a measure m, can be regarded as



a pairwise similarity (i.e., an element is similar to itself, m(A, A) = 1) between
all elements of a set, represented in a feature space.

A kernel matrix K for a set of L feature vectors can be regarded as a matrix
of pairwise similarity, measured by their pairwise innerproduct. Each feature
vector represents a single object, in our case a DTI voxel. For a set S = P ∪N
of L objects oj , the feature vector fi = [d(oi, o1), ..., d(oi, oL)] representing oi is
computed by evaluating a distance measure between oi and all other objects in
S.

As presented in Pekalska et al [17], a kernel K can be defined as a mapping
of the feature vectors fi. The kernel matrix is then the inner-product between
the feature vectors

Kij ≡ < f i, f j > =
∑

k

d(Di,Dk)d(Dj,Dk) (1)

where Kij is the element in row i and column j of the kernel K.
Each element in the kernel matrix effectively depends on all tensors in the

training data. The kernel has high values for similar classes, but close to 0 for
inter-class tensors. For geometric interpretation, consider that the inner product
depicts the angle between two vectors. Now we have a kernel matrix, i.e., the set
of all possible inner products, and it is symmetric and positive definite.

For a uniform behavior of the algorithm, without minding the scale of the
used measures, a normalisation must be performed. We can normalise kernel
matrices in such a way that the features lie on the surface of a unit hypersphere.
This normalisation [18] can be done directly in the kernel as follows:

K̃(fi, fj) =
K(fi, fj)√

K(fi, fi)K(fj , fj)
(2)

A normalised kernel K from a distance measure m will be referred as Km.

2.3 Alignment

Christiani et al [19] proposed a method to assess the quality of a binary clus-
tering. This measure, referred to as Kernel Target Alignment (KTA), depicts
how good a kernel is with respect to a given set of labeled objects (the target)
with the notion of good clustering, i.e., high similarity within clusters and low
similarity between clusters. This notion is captured using the Frobenius inner
product between these matrices. The Frobenius product between two matrices
V, P is defined as < V,P >F =

∑
ij

vijpij .

The alignment between two arbitrary kernels K1 and K2 is

A(K1,K2) =
< K1,K2 >F√

< K1,K1 >F < K2,K2 >F
(3)

A target matrix is constructed from the set of n tensors S. We define a vector
of labels y ∈ {−1, +1}n where 1 is the label for the positive set P, and −1 for the



negative set N. The target is then calculated using the matrix product T = yT y
and the alignment can now be expressed as

A(K,T) =
< K,T >F

n
√

< K,K >F
, since < T,T >F = n2 (4)

Linear combination of kernels: In machine learning, the problem of learn-
ing an adequate distance metric for the input space of data from a set of sim-
ilar/dissimilar objects has been addressed in many studies in the recent years
like Igel et al [14].

So far, we have a set of normalized kernels Km, one for each m measure.
However, some kernels, i.e. some measures, may be more discriminative than
others. Therefore, we introduce new parameters wm, m = 1, .., l, with l as the
number of distances to evaluate, and a new kernel will be constructed from the
linear combination of the individual kernels:

K(w) =
l∑

m=1

wmKm, and
l∑

m=1

wm = 1, w = (w1, ..., wl), ∀mwm ≥ 0 (5)

Now, using the KTA measure, equation 4, with this kernel, and analysing
the result of the alignment for different weights will result in assessing which
linear combination of measures gives best discrimination for the analysed data.
KTA is then a function of the weights wm and its maximum will give the most
appropriate measure, i.e., combination of measures. If the measures are not or-
thogonal to each other and do not represent specific characteristics of the tensor,
a clear interpretation of the resulting weights cannot be given. Furthermore, an
unique solution is not, necessarily, achieved. However, we still expect that the
method will give a good balance of the measures and they will give good results
although we cannot associate to the measures a clear interpretation.

2.4 Parameter Tuning using a Grid-Search based Method

The selection of weights is achieved by maximizing the alignment between the
linear combination of kernels K and the target matrix T

argmaxw(A(K(w),T)) = argmaxw

(
< K,T >F

n
√

< K,K >F

)
(6)

To determine the KTA’s maximum, a grid-search in the parameter space
spanned by the weights wm is performed. The KTA is calculated at each point
on the grid of parameter values, i.e., for each combination of wm, with the above
mentioned constraint, equation 5.

2.5 Region Growing

We apply our method for region growing segmentation as a proof of concept
of the presented distance learning method. The weights, w, that result from



the previous distance learning method are used to drive the Region Growing
segmentation algorithm. The algorithm starts growing from the initially selected
ROI. During the growing process the assignment of voxels is controlled by a
voxel-to-neighborhood homogeneity predicate. A voxel is added to the region if
its average weighted distance to the neighborhood, i.e., voxels already segmented
and directly adjacent, is smaller than the average and standard deviation of the
weighted distance between all pair of tensors in the seeding ROI.

3 Results

Fig. 3. Superquadric glyphs [20] showing the five distinct regions in a 30 × 30 tensor
synthetic image. DTs have λ as eigenvalues.

The synthetic image shown in Figure 3 was designed so that the regions,
despite having distinct DTs, share some properties with other region but are
different to others., e.g., R1 has the same anisotropy as R2 and R3. With this
synthetic data we intend to illustrate the behavior of the presented algorithm.

Considering this, to segment R1 an adequate distance must be chosen, for
example dFA would segment R1, R2 and R3. In these tests, the grid search
method is done with step = 0.1. Choosing a ROI in R1, and randomly sampling
45 DTs, our algorithm estimates wdL2 = 1.0 as the best discriminating distance.
With these parameters, the region growing algorithm successfully segments only
R1. Choosing a ROI between R1 and R2, the algorithm estimates a combination
of two distances, wdF A

= 0.3 and wdang1 = 0.7. As we can reason, what discrim-
inates these two regions from the rest is their coherent orientation (45 degrees),
distinct to R3, and FA, distinct to R4 and R5. The results were computed in a
AMD Athlon 64 X2 Dual Core Processor 4800+ 2.41 GHz, with 3GB of RAM.
The distance learning algorithm took about 8 seconds, per example.



Fig. 4. Right: Fusion of the segmented corpus callosum, in a 128 × 128 × 30 DT
volume, and the commissural fibers, colored using the typical RGB mapping of the
main eigenvector. The estimated combination of distances is dFA = 0.5 and dang1 = 0.5.
Left: P1 and P2 were used as positive ROIs.

Figure 4 shows the algorithm applied in a DTI brain dataset. Two positive
ROIs were selected within the corpus callosum. Because the random sampling
of the brain selected several DTs in the gray matter, the algorithm infers dFA

as the most suitable measure. This results in the segmentation of the white
matter. In order to improve this, a white matter masking is done by sampling
of DTs with a FA threshold, i.e., 50 DTs are used as negative examples if FA >
0.70. Then, the algorithm estimates wdF A

= 0.5 and dang1 = 0.5 as the best
discriminating combination of measures. The obtained result does not capture
entirely the corpus callosum, as can be seen by the commissural fibers manually
clustered by physicians. The result is not surprising since the defined region of
interest does not represent the span of DTs orientations. The distance learning
algorithm took 10 seconds to compute.

In Figure 5 a positive ROI was selected within the right cingulum. With 30
random DTs taken with anisotropy FA > 0.65, the algorithm took 9 seconds to
estimate wdang1 = 1.0 as the best measure, since the cingulum is a cylinder-like
bundle with DTs coherently aligned.

4 Conclusions and Future Work

We proposed a distance learning method, based on kernel target alignment,
for the optimization of Diffusion Tensor Imaging segmentation algorithms. As
demonstrated, the method infers the most suitable distance(s) and parame-
ters for the selected segmentation problem from the homogeneity/inhomogeneity
characteristics of the data.

The used measures are of different nature and capture different aspects of
the tensor data. Some measures isolate changes in individual degrees of freedom



Fig. 5. Right: Right cingulum segmented with estimated wdang1 = 1.0, in a 231 × 172
× 131 DT volume, with p (yellow) as positive ROI, as seen in the Left. The sagittal
plane, on the right, shows the FA map while the plane on the left shows the RGB
color coding of the main eigenvector (red: sagittal plane; green: transverse plane; blue:
coronal plane).

in the tensor data (e.g., difference in anisotropy). However, other measures, e.g.,
Log-Euclidean distance, dLE , have no physiological significance and yield no clear
intuition of distance between tensors. We present an initially flexible learning
scheme that infers the combination of measures that give good results. Although,
the resulting similarity measure will not be necessarily intuitive.

Furthermore the developed methods can be applied in other segmentation
problems. For instance, Schultz [11] extended the use of structure tensors to
diffusion tensor fields by combining Kindlmann’s invariant gradients and rotation
tangents [10,21]. The invariant’s weights used to define the distance measure are
set in an ad-hoc way. Our framework could help in the definition of the weights
needed to tune the segmentation, based on the specific problem at hand.

In this paper, we presented a proof of concept with synthetic data and real
data. This shows the potential of the presented method. However, doing a good
evaluation is a challenging problem, starting in the definition of a good ground
truth.

The grid search method used to find the optimal weights can be improved. As
future work, we will investigate other, more computationally efficient, methods
to solve the KTA optimization.

The present algorithm can be extended to HARDI (High Angular Resolution
Diffusion Imaging) approaches to diffusion. It is still unknown what are the
useful distances between two spherical functions such as DOT and Q-ball for
applications like segmentation [22,23].
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