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Authoring adaptive game world generation
Ricardo Lopes, Elmar Eisemann, and Rafael Bidarra

Abstract—Current research on adaptive games has mainly
focused on adjusting difficulty in a variety of ways, for example,
by providing some control over adaptive game world generation.
These methods, however, are mostly ad-hoc and require quite
some technical skills. To the best of our knowledge, so far
there has been no adaptive method that is truly generic and
explicitly designed to actively include game designers in the
content creation loop. In this article, we introduce a generic
method that enables designers to author adaptivity of game
world generation, in a very expressive and specific fashion.
Our approach uses adaptation rules which build atop gameplay
semantics in order to steer the on-line generation of game
content. Designers create these rules by associating skill profiles,
describing skill proficiency, with content descriptions, detailing
the desired properties of specific game world content. This
game content is then generated on-line using a rule matching
and retrieval approach. We performed user studies with both
designers and players, and concluded that adaptation rules
provide game designers with a rich expressive range to effectively
convey specific adaptive gameplay experiences to players.

Index Terms—Procedural content generation, adaptive games,
gameplay semantics.

I. INTRODUCTION

Adaptive games are steadily becoming a focus of interest.
There is significant academic and even commercial investment
into games that dynamically adjust their content or mechanics
to better fit individual player-dependent needs, preferences
or goals. However, most work has been focusing on the
development of new methods for modeling the behavior of
players or automatically generating game content or mechanics
in an adaptive fashion [1].

In this work, we are motivated to empower game designers
to author adaptivity. In particular, our goal is to harness and
integrate designers’ specific knowledge into adaptive content
generation methods. We believe their rich design knowledge
has a strong and unique role to play, when authoring more
dynamic games. This can lead to a new game design paradigm:
designing multiple personalized experiences by coordinating
the use of content generators [2]. Game designers would then
use co-creation tools to create not standardized game worlds but
rather sets of instructions which would steer in-game content
generators, yielding personalized world experiences [3].

The main contribution in our work is a semantics-based
method that enables designers to author adaptivity of game
world generation, in an expressive and specialized fashion.
In particular, we propose the use of adaptation rules to
steer adaptive, fully on-line game world generation. Designers
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specify these adaptation rules as associations between player
profiles and content descriptions. A player profile is basically
a set of abstract concepts, representing distinct gameplay profi-
ciencies (termed as player gameplay abstractions), and a content
description is a specification of game world characteristics,
expressed in terms of semantic game world entities as proposed
by Kessing et al. [4]. In this context, we define semantics as
all information about the game world and its objects, beyond
their geometry. To support the use of adaptation rules, we
implemented a new generation method in which semantic
game world entities are retrieved for a given input of a player
model.

To demonstrate and evaluate the use of adaptation rules,
we implemented an authoring tool for adaptive game world
generation around an existing game. For this case study, we
performed both design tests and player tests, to assess to which
extent our method can effectively be used to author adaptive
game world generation.

II. RELATED WORK

Our research goal is to enable game designers to author
adaptivity. The key motivation for adaptive games is to
improve individual player experience beyond the one-size-fits-
all approach of most current games and their static, manually-
designed content [1], [5]. By dynamically tailoring game
content to respond to the players actions and choices, games
can become more personal and therefore can appeal to a higher
audience, become more replayable and less frustrating.

The cornerstone of achieving such goals lies in the adaptive
experience. Imagine a Super Mario game player who is unable
to defeat any enemy, i.e. unable to jump on their head. The
adaptive experience will define how and why the game should
react in order to improve the player experience. Should the
game exclude all enemies? Or should it first focus on jump
training and then gradually insert enemies? Or should it add
more enemies to maximize practice through frustration? Typical
adaptive games make one of these choices and hard code it in
their adaptation logic. We believe the adaptive experience(s)
should be defined much earlier, at design time and not at
compile time. And we state that game designers are best
equipped to author such adaptive experiences. Our goal is to
enable them to both explore and reuse design choices in a more
scalable way, i.e. with less dependency on programmers. We
therefore aim for an approach where game designers can declare
what the adaptation logic should produce, in an interactive
fashion.

This designer-driven research stems from our previous work
on declarative modeling [6]. This research enabled designers to
declare what procedural content generation (PCG) algorithms
should create, in a mixed-initiative approach. Using procedural
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sketching, designers can quickly layout at the level of large
terrain features of a virtual world, while fine-grained details
are automatically generated by PCG algorithms. Such approach
to designer involvement was also researched by Liapis et
al. [7] where the playability, alternative designs and other
evaluations are studied by linking high-level map sketching
with evolutionary algorithms which use the manual map sketch
as a guideline that constrains what to automatically generate.

Our solution for enabling game designers to declare adaptive
experiences was driven by case-based reasoning (CBR), where
a knowledge base of cases (problem to solution mappings) is
used to solve new problems through retrieval and adaptation of
past solutions to similar problems [8]. Like CBR, we (i) use
a retrieval step to match solutions (the content the designer
deems appropriate) to problems (the current player needs),
and (ii) re-use and adapt known solutions to similar problems
(content appropriate for different but similar player needs).
Unlike CBR, (i) the knowledge base is not meant to be a global
representation of all possible cases, but only those landmarking
the desired adaptive experience; (ii) cases and solutions are
explicitly declared by game designers (thus not a direct formal
collection of similar past experiences); and (iii) cases and
solutions act as a set of constraints given to algorithms which,
respectively, model player needs and generate content. The
dynamic nature of such algorithms gives them a higher level
of variability than that of the CBR approach.

Previous research on adaptive games has mainly focused on
establishing player modeling techniques and/or PCG methods.
Therefore, for most examples, the adaptive experience is a
fixed initial assumption (e.g. dynamic difficulty adjustment).
However, our goal of authoring adaptive experiences still links
to this previous research since both sides of the experience,
player needs and content, are taken into account through,
respectively, player models and PCG algorithms.

Player models can classify players under predefined labels
and preferences [9], [10], predict affective states of the
player, based on neuro-evolutionary preference learning [11] or
physiology monitoring [12], and classify player styles, using
clustering techniques [13]. The majority of player modeling
research results propose discrete and bounded representations
of player characteristics, e.g. a discrete number of bounded
classes of players [14], [5]. When players ‘fall outside’
those representations, they are usually ‘projected’ onto the
closest bound. For research purposes, this observation has
been typically deemed as a sufficiently good approximation.
Accordingly, our research will also assume the same discrete
and bounded nature of player models.

Research in adaptive games can support the generation
of game worlds, using evolutionary algorithms for racing
tracks [15] and recombination of annotated level segments
[16], grammatical evolution [17] or gameplay-based grammars
for platform games [18].

To the best of our knowledge, there has been no research
on enabling game designers to combine player modeling and
content generation to author adaptive games in an interactive
fashion. Previously, the use of gameplay semantics as a suitable
vocabulary to support the control over PCG methods and its
integration with player modeling techniques has been proposed

[19]. We believe that our approach, together with current
research advancements in PCG and player modeling, already
provides a mature basis to start incorporating designers as
active agents in the adaptive game creation loop.

III. AUTHORING ADAPTIVE GENERATION

In this section, we describe the two main elements of our
approach to authoring of adaptive generation: designer creation
of adaptation rules, and rule matching and retrieval. In summary,
game designers declare which content should be generated for
which player profiles (adaptation rules created in the tool of
Fig. 1). A retrieval algorithm finds which rule(s) apply best for
a player at a given gameplay moment and the content specified
in the adaptation rules is retrieved and used for the generation
process in the game world.

Throughout the remainder of this article, we will use the
term skill profiles interchangeably with player profiles. We
chose player skill models as the best way to exemplify our
method since they are easy to understand and they are widely
used in many games, including that in our case study. As
discussed in Section VII, a player profile does not need to be
described exclusively in terms of skills. Many other features
(e.g. preferences, styles) can be modeled, as long as they can
be captured in a scale of values.

A. Adaptation rules

Adaptation rules are responsible for encoding the knowledge
of game designers, by associating each player profile with the
game world characteristics the designers envision for them.

To construct an adaptation rule, designers create a skill profile
description and associate it with some content description(s).

A skill profile is a sequence of player skill values, each
one indicating a proficiency level, measured in a given skill
scale. An example of a player skill could be the ability to jump
over platforms in Super Mario, measured by the percentage of
successful jumps. Player skill profiles can be very conveniently
created and visualized on a radar chart, where each axis
represents a specific skill. The shape of a skill profile is the
polygon created by connecting all skill proficiency values on
the radar chart axis. If a certain profile of in-game player
behavior, measured along these axes, occurs inside that shape,
we say the player belongs to that skill profile.

A content description is a set of quantitative characteristics
indicating how specific game world elements should be created.
Examples include the (number or size of) gaps to be jumped
on a Super Mario level or even constraints over them (e.g. their
order, proximity or placement).

As mentioned before, the main advantages of these adapta-
tion rules lie in the expressiveness and specificity of their control
over adaptive game world generation. Specificity stems from
the use of individual player skills (captured in skill profiles), as
well as from the wide range of world entities that can be used in
a content description (any object that can be included in a game
world). This range allows designers to create adaptation rules
holding highly specialized, and therefore personalized, value.
For example, again in Super Mario, an adaptation rule could
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Fig. 1. Design tool for creating adaptation rules. Skill profiles are created through the specification of their shape in a radar chart (a). Content descriptions are
associated to skill profiles and they are created through the instantiation of semantic entities and their relevant attributes. Content descriptions are visualized
through point and range charts representing the attribute values for each semantic entity (b). The tool includes an overall visualization of all adaptation rules,
by showing an overlapping graph for skill profiles and a sequential graph for content descriptions (c).

create hardly accessible coins for a player who is excellent at
collecting them.

Expressiveness relates not only to this open range of entities
but also to the lack of assumptions in our model. Our skill
profiles make no assumptions on player behavior or psychology,
and allow designers to freely decide on the scale, for example,
where and when do beginners or experts stay. We also make
no assumptions on the value or characteristics that the world
entities in a content description might mean. In short, content
can be combined in any way to convey a desired experience,
as intended by a designer.

Adaptation rules, skill profiles and content descriptions
significantly extend and generalize our previous work on
semantic gameplay descriptions, cases mapping content (se-
mantic classes to use) and player experience (preconditions of
application) [20]. Adaptation rules are represented internally
as semantic gameplay descriptions. Skill profiles take the role
of the preconditions of a semantic gameplay description, and
content descriptions take the role of the semantics classes
of a description. These semantic gameplay descriptions (now
adaptation rules) are created directly by designers, and are
not automatically derived from classes labeled with gameplay
semantics, like in previous work [19], [21], [22].

Skill profiles are internally represented by sequences of
player-skill gameplay abstractions [20]. This data structure is
already integrated within our gameplay semantics model and
allows for parameterizing skills with proficiency values.

Content descriptions are internally represented by sets of
semantic entities and corresponding semantic attributes [20].

Each semantic entity can be associated to one or more
geometric models, representing the geometry of that entity [4].
These models are helpful for the actual game world generation
based on synthesis of game objects. However, that is not
necessarily the only possibility: semantic entities can include
(or be used as input for) algorithms to procedurally generate
the corresponding geometry, as will be done in our case study,
in Section IV.

Adaptation rules are created using a new design tool,
expressly developed for this research; see Fig. 1. This design
tool builds on top of Entika, our previous semantic editor, and
it assumes the previous creation of semantics for valid entities,
attributes and player-skill abstractions [4].

B. Rule matching and retrieval

Similarly to previously-proposed semantic gameplay descrip-
tions [19], adaptation rules are solutions, outlined by designers,
for a class of adaptation problems. For adaptation rules to
work, two tasks have to be performed: (i) identify in which
circumstances they apply, and (ii) trigger the creation of an
appropriate set of game content. Identifying when rules apply,
i.e. step (i) above, relies on the existence of a player model,
responsible for capturing and classifying player behavior into
a quantitative model. Significant changes in this model reflect
significant changes in player behavior, possibly indicating the
need for game adaptation.

A player model is also responsible for steering the selection
of which adaptation rule(s) to apply, i.e. step (ii) above. To
this extent, the player model, based on captured behavior,
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should be matched against the skill profiles in adaptation rules
to identify (a) whether the player is (still) performing as a
designer predicted, and (b) which content the designer specified
as appropriate for that (new) player behavior. For our approach
to work off-the-shelf, player models should capture the same
features as the adaptation rules are configured to contain. They
should therefore be (suitable to be) expressed in the same skill
axes as the skill profiles in the adaptation rules. This allows
an immediate matching process between the player model and
adaptation rules.

Semantic gameplay descriptions used in previous work [19],
were matched against the player model and retrieved for use
in content generation. With a semantic gameplay description,
designers had to be aware that it might apply to players who
only partially matched its player preconditions [19]. Although
not incorrect, that was not always desired, and the matching
and retrieval algorithm for adaptation rules was created with
this aspect in mind.

Therefore, we developed a new matching method for
adaptation rules. The new method simplifies the creation
process for designers while facilitating accuracy about their
intent, since it excludes the need for knowledge on how the
matching method or PCG algorithm work.

Listing 1. Matching and retrieval algorithm
FindRules ( PlayerModel <S1, S2, S3, ..., SN>)
{

f o r every Adaptat ionRule r
D i s t a n c e = CalculateProfileDistance (

S k i l l P r o f i l e ( r ) , PlayerModel ) ;
Axis = CalculateInclusion ( S k i l l P r o f i l e ( r ) ,

PlayerModel ) ;

i f ( D i s t a n c e < MinD )
S e l e c t e d R u l e 1 = r ;
MinD = D i s t a n c e ;

i f ( Axis <= MinA )
i f ( D i s t a n c e < MinD2 )

S e l e c t e d R u l e 2 = r ;
MinA = Axis ;
MinD2 = D i s t a n c e ;

i f ( S e l e c t e d R u l e 1 == S e l e c t e d R u l e 2 )
re turn S e l e c t e d R u l e 1 . Content ;

e l s e
re turn ContentFrom ( S e l e c t e d R u l e 1 ,

S e l e c t e d R u l e 2 ) ;
}

The matching and retrieval algorithm aims at identifying
which adaptation rule(s) best apply to a player at a given
gameplay moment. To this extent, in order to have a reliable
indication of the similarity between them, we compute the
Euclidean distance between the skills of the player model and
the skill profile in each rule. We investigated the use of weights
or normalization per skill in the Euclidean distance formula but
no significant differences in the adaptive mechanics were noted.
So we concluded this distance was a reliable approximation
of similarity.

The input for matching and retrieving adaptation rules is a
tuple < S1, S2, S3, ..., SN > originating from a player model,
in which each element represents the proficiency value for a
certain skill. For each input, we calculate the distance between
the input tuple and each tuple in the skill profile of each
adaptation rule. We also compute a measure of inclusion of
the input tuple in the skill profile, by counting the number of

axis along which the value of the input is not larger than the
corresponding value of the skill profile (CalculateInclusion).

The importance of inclusion originates from the common
practice among game designers, who often categorize players in
large or small clusters (e.g. beginners, experts). We, therefore,
considered inclusion as a fuzzy method of solving equidistance
in a way that maps well to the most typical principles of
game designers. One of the core principles of game flow is
that a task must be sufficiently challenging to be enjoyable
by a skilled enough player [23], [24]. This balance suggests
us a commonly observed game design principle: difficulty is
typically pulling the player to match it by improving in-game
skills. This suggests game cycles of: reachable higher difficulty
vs. lower player skills, flow, reachable higher difficulty vs.
lower player skills, flow, and so on. Therefore, opting for
inclusion, i.e. selecting the higher-bounded rule rather than the
lower-bounded one, seems the best way to meet that typical
designers’ practice. With inclusion in mind, designers can use
our approach to define such type of classes, choosing their
magnitude (inclusion radius) and shapes. However, often the
boundaries between such clusters will not be sharp, which is
why we propose to independently use both criteria: distance
and inclusion.

We identified two possible selection criteria to rank the
candidate adaptation rules retrieved. Both look into the shape
of their skill profile, selecting respectively: (i) for minimal
distance, the adaptation rule which skill profile has minimum
distance (along the skill axes) to the input player model tuple,
and (ii) for inclusion, the adaptation rule which skill profile
has the most number of axes with a value higher than that
in the input tuple (and if multiple rules, the closest one).
To increase variability and decrease predictability, whenever
both rules are retrieved, the respective content is combined.
Naturally, such combination also assumes that the designer
is coherent and does not create adaptation rules which are
radically distant from one another, let alone contradictory in
any way. This assumption, made on our side, was validated
by studying and playing traditional linear games, and it is
supported by the observation that, typically, designers already
think of game content (levels, narrative, difficulty, player power)
in a consistently gradual manner, in this design space. For
highly complex (e.g. GTA) or less linear (e.g. Minecraft) games,
typically with less frequent adaptation instants, this assumption
and combination mechanism might need to be revisited. Fig. 2
displays such a case, where two different rules are retrieved
that match an input player model tuple.

Even when two adaptation rules are retrieved and selected,
one for each criterion above, conflicting content descriptions
might be issued (e.g. generate 10 coins vs. generate 20 coins).
In these cases, the method ContentFrom examines the content
descriptions by observing if the same semantic entity (say coins,
in the above example) occurs in both. If that is the case, one of
the semantic entities is randomly removed from the respective
content description. This means that the resulting final content
is synthesized from (i) merging the semantic entities in the
content descriptions of both rules, and (ii) possibly with the
removal of one type of semantic entity from one rule side (only
if that entity is present in both rules.) In our experience, merging
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Fig. 2. A represents an example input player model tuple, and B and C
represent (the skill profiles of) the two adaptation rules selected by the rule
matching and retrieval algorithm. Rule C has the minimum distance to the
input tuple. However, values for for Skill 1, 3, 5 and 6 are lower than in the
input tuple A. The skill profile of rule B is such that simultaneously it: (i)
completely includes input tuple A, and (ii) does so at a minimum distance of
it. To avoid assumptions on what is best, both rules B and C are selected and
combined.

and random removal of the same type of semantic entity yield
content as intended by designers, because it occurs mostly
between two adaptation rules with ‘neighbor’ skill profiles
(due to the same assumption as the previous paragraph). If
merging two rules into one creates more content requirements
than in a typical rule (which may often happen), the PCG
algorithm should be responsible for increasing the size of the
virtual world to fit those requirements. Therefore, the resulting
list of semantic entities, attributes and relationships represents
a set of instructions and constraints (with possible geometric
models attached) that will steer an in-game generator to create
a game world, as exemplified in the next section.

IV. CASE STUDY: ACHTUNG DIE KURVE 3D

To demonstrate and evaluate our approach, we created an
adaptive modification of an existing game, and integrated
adaptation rules into it. For this case study, we use a 3D
graphics-based game, with full on-line PCG. Our aim was
to explicitly demonstrate that gameplay semantics can be
effectively applied to support and control on-line adaptive
generation of whole 3D levels.

A. Achtung Die Kurve 3D

The game we chose to use in our case study is Achtung Die
Kurve 3D 1, a third-person 3D version of the classic Blockade
or Achtung Die Kurve games; see Fig. 3. In this game, players
spawn at random places on a maze-like playing field composed
of multiple floors connected by ramps. Players leave a solid
tail behind their moving head as they progress through a level
at a constant speed, using only left and right keys to control
trajectory, until they eventually crash. The goal is to survive

1http://graphics.tudelft.nl/ mkt4/2011/groep7/

and be the last one standing. Crashes can occur when players
collide with: their own tail, other players’ tails, obstacles, floor
edges, and ramp limits. As seen in Fig. 3, power-ups can spawn
at random places and be collected by the players. Power-ups
combine a target (self, only others, all) with an action type
(increase speed, decrease speed, turn harder, turn softer, switch
keys, no tail, thicker tail, thinner tail and clear all tails, all with
a temporary effect) and are visually identified using a color
and icon system.

(a)

(b)

Fig. 3. Achtung Die Kurve 3D game. In (a), notice the player’s green tail, on
the left, the white and blue AI enemies, power-ups on the right, and ramps and
obstacles ahead of the player. In (b), a tower of stacked floors was generated
on-line, as the player progressed through the level

For this study, we implemented an adaptive modification
of the original Achtung Die Kurve 3D. Our modification is
a single player game, in which the human player tries to
reach the highest floor possible. Each new floor is generated
automatically as soon as the player enters a ramp, and floors
can be generated indefinitely. Opposing players are AIs who
are constrained to the floor they spawn in, only trying to kill
the human player by confinement.

For our modification2, we had to implement the following
minor changes in the original game: (i) we changed the scoring

2see http://rlop.es for a gameplay video of this modification of Achtung
Die Kurve 3D
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system to highest score in cleared floors, (ii) we extended the
AI behavior to avoid entering ramps, and (iii) we added the
feature of different ramp widths (only a single ramp width was
available before). Naturally, our largest changes were in the
level generation algorithm.

B. Floor generation

In the original Achtung Die Kurve 3D game, an off-line
generation algorithm was responsible for creating a game world
with equally fixed-sized floors, each represented by a n×m
matrix. Each element in this matrix represented a unit-size cell
in the 3D environment, indicating either empty cells, obstacles,
ramps, power-ups or AI spawn points.

We drastically modified the level generation algorithm to
support on-line PCG, including: (i) the level representation
became a dynamic list of matrices (i.e. floors), with each new
matrix, typically with its dimensions different from the previous
one, being generated when a player enters a ramp; and (ii)
each newly generated floor has only one entry, namely the
ramp used by the player to enter it, which is randomly placed.

Finally, we changed the stochastic nature of level generation
to a more controlled method. The generator can solve a variety
of constraints requested for each new floor, typically describing
its size, as well as number, type or placement of content like
ramps, objects and AIs. In Sub-section IV-D, we discuss the
format of these constraints in more detail.

C. Player model

As discussed in Section III, a player model, capturing a
player’s behavior, is responsible for providing the matching
input for retrieving adaptation rules. We designed and imple-
mented a skill-based player modeling method for Acthung Die
Kurve 3D.

Since our main focus is on authoring adaptive generation,
we defined a clear set of design principles for our player model:
(i) simplicity, and (ii) intuitiveness in matching to skill profiles.

Our player model was inspired by the concept of experience
points through practice, as observed in RPGs (e.g. Skyrim [25]).
The player model captures six individual players skills, on: (i)
ramp use, (ii) obstacle avoidance, (iii) floor edge avoidance,
(iv) power-up selection, (v) AI defense, (vi) AI offense. We
are confident these six skills are sufficient to capture most
individual player behavior we could identify in this game. This
choice was taken in collaboration with the original designers
of Acthung Die Kurve 3D. Player behavior was identified by
the observed in-game player actions (avoid, crash, use, kill),
with relation to all content. Each skill is measured on an
individual proficiency scale and, following from section II, is
bounded on its lower value (positive only). An investigation on
more complex player modeling methods and their (comparative)
effectiveness is beyond the scope of this research. The following
algorithm illustrates the player model:

Listing 2. Player Model algorithm

PlayerModel ( Event e , Target t )
{

i f ( e == Avoidance )

i f ( t == o b s t a c l e )
s k i l l O b s t a c l e A v o i d a n c e ++;

i f ( t == f l o o r E d g e )
s k i l l F l o o r E d g e A v o i d a n c e ++;

i f ( t == AI )
s k i l l A I d e f e n s e ++;

i f ( e == Use )
i f ( t == ramp )

sk i l lRampUse ++;
i f ( t == PowerUp ( he lp , s e l f ) | | t == PowerUp

( harm , o t h e r s )
s k i l l P o w e r U p S e l e c t i o n ++;

i f ( t == PowerUp ( harm , s e l f ) | | t == PowerUp
( he lp , o t h e r s )

s k i l l P o w e r U p S e l e c t i o n−−;

i f ( e == Crash )
i f ( t == ramp )

sk i l lRampUse −= 1∗
Consecut iveCrashes ( t ) ;

i f ( t == o b s t a c l e )
s k i l l O b s t a c l e A v o i d a n c e −= 1∗

Consecut iveCrashes ( t ) ;
i f ( t == f l o o r E d g e )

s k i l l F l o o r E d g e A v o i d a n c e −= 1∗
Consecut iveCrashes ( t ) ; ;

i f ( t == AI )
s k i l l A I d e f e n s e −= 1∗

Consecut iveCrashes ( t ) ;
s k i l l A I o f f e n s e −= 1∗

Consecut iveCrashes ( t ) ;

i f ( e == K i l l )
i f ( t == AI )

s k i l l A I o f f e n s e ++;

re turn <sk i l lRampUse , s k i l l O b s t a c l e A v o i d a n c e ,
s k i l l F l o o r E d g e A v o i d a n c e , s k i l l P o w e r U p S e l e c t i o n ,

s k i l l A I d e f e n s e , s k i l l A I o f f e n s e >

}

This player model increases or decreases a proficiency value
for each of the six skills, where each increase/decrease unit
corresponds to a specific action being registered. If a player is
successful in avoiding a crash into a specific type of content, the
corresponding skill is incremented. Successfully using ramps
or killing AIs increases the corresponding skills. Power-up
usage detects if the used power-up had a positive or negative
effect for the player’s success and increases or decreases the
corresponding skill accordingly. Finally, crashing into a specific
type of content decreases the corresponding skill. However, this
decrease is proportional to the number of consecutive crashes
into the same content type.

For this player model, we implemented the detection of all
these in-game events, which was not present in the original
game. The occurrence of each event fires an update to the
player model. Furthermore, each event is being persistently
registered in a individual log file.

Our player model presents some noteworthy issues. Its
reliance on absolute proficiency values (and not in, for example,
percentages) is more effective and simple in capturing absolute
practice proficiency. However, just as its inspiration, RPG
experience points, it requires an elementary understanding of
how its values are affected to grasp the meaning of an individual
value. Furthermore, our player model makes the assumption
that consecutive crashes (or deaths) are an indicator that the
respective skill level is currently overvalued. Therefore, they
result in a decrease on that skill level, with a value that is
proportional to the amount of consecutive crashes.
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D. Integration with adaptation rules

In order to make Achtung Die Kurve 3D adaptive, we
integrated our semantic model of adaptation rules in three
steps, related to: player model, generation parameters and the
design tool for authoring adaptation rules. The choices outlined
below for the semantic model of the content generator can
be considered as examples of how a PCG algorithm could be
controlled. Section VII will further discuss the generalization
of such choices. The player model is used as input in the
algorithm for adaptation rules matching and retrieval (Section
III). To match the player model with adaptation rules, they use
the same six skills in their skill profiles. This means the input
(a player model tuple) is directly matched with one or more
skill profiles.

A matched adaptation rule will specify semantic entities and
attributes in its content description. For Achtung Die Kurve
3D, we decided on the following semantic model:
• Floor entities have Width and Length attributes
• Ramp entities have Quantity, Width and Placement at-

tributes
• Obstacle entities have Quantity, Type and Placement

attributes
• PowerUp entities have Frequency, Action, Type and

Placement attributes
• AIs have Quantity and Placement attributes

The non-numerical attributes require further explanation. The
Placement attribute constrains the location to assign to that
entity. It can hold three possible values: close to player, distant
to player or random. The Obstacle Type attributes indicates
obstacles that can be an individual block or a set of adjacent
blocks. As for PowerUps, Action refers to its positive or
negative effect (help, harm or random) and Type to the target
(self, others or random). As for numerical attributes, they can
be expressed as either a fixed value or an interval, in which
case a random value (uniform distribution) will be selected
in-game.

This type of attributes determines that each adaptation rule
can return, in its content description, several configurations of
entities and attributes. This includes configurations using the
same entity. For example, a content description might include
2 ramps of width 1 and 1 ramp of width 2. Furthermore, for
this research, we considered AIs as a specific piece of content,
able to be generated. We felt this was a reasonable assumption
since we are not changing (i.e. adapting) AI behavior but only
(the amount of) its instantiation.

The floor generation algorithm, as described in sub-section
IV-B, was implemented to accommodate the control constraints
from the semantic model above. In other words, the input pa-
rameters of the generator are expressed in the same vocabulary
and are able to steer it to create a floor with the specified
characteristics. The Placement constraint in the generator
dynamically computes a threshold, proportional to the floor size,
to decide between close or distant to player. As for power-ups,
positive or negative effects are randomly mapped to specific
ones: increase speed, decrease speed, turn harder, turn softer,
switch keys, no tail, thicker tail, thinner tail.

A useful feature of this generator is its behavior in the

absence of input parameters. In this case, the input parameters
of the previous floor are re-used, on an individual semantic
entity base. For example, if the input parameters omit the floor
size, the previous floor dimensions are used.

Finally, the design tool for creating adaptation rules was
enriched with a semantic model that included the six matching
player model skills and the semantic entities and attributes
above. Using the tool’s interface, designers can use this
data to create and edit adaptation rules by instantiating and
shaping skill profiles and associating each of them with content
descriptions.

V. DESIGNING ADAPTIVE GENERATION

In this article, we propose adaptation rules as a generic
semantic model that enables game designers to author adaptive
game world generation. In the following sections, we assess this
contribution by evaluating both the expressive range and the
specificity range of our authoring mechanism. Ultimately, this
assessment aims at finding out whether the use of adaptation
rules by game designers can enable a player to experience the
adaptive game they intended.

The goal of this research was to investigate how game
designers can control adaptive game world generation, in an
expressive and specific way, to create a desired user experience,
i.e. an adaptive gameplay experience. To evaluate this approach,
we asked game designers to create a wide range of adaptive
gameplay experiences in Achtung Die Kurve 3D,

In order to maintain control and comparability within our
design tests, we selected three game designers, all of them
with amateur experience with game design and significant
background in game technology, game development and content
generation. They were all experienced gamers. The choice
for amateur designers aimed at minimizing the impact that
professional pre-conceived design strategies might have in the
experiment, i.e. we wanted to take a first step in investigating
the effectiveness of our approach, avoiding any bias discussion
on any of the two design paradigms (adaptive vs. non adaptive).

Each of the designers was tasked with creating the same set
of three adaptive versions of Achtung Die Kurve 3D, pertaining
to three very different adaptive gameplay experiences, as
follows:
• Low-challenge game: design a game that adapts to the

player’s skills, always maintaining a low challenge level.
• Sudden-challenge game: design a game that adapts to

the player’s skills, being easy to learn and hard to master.
• Balanced game: design a game that adapts to the player’s

skills in the most balanced and fair way.
Each type of adaptive experience entails (i) different degrees

of dynamic behavior (the low-challenge game being the less
dynamic in its adaptivity, followed by the balanced game and
the sudden-challenge game), and (ii) different paces in adapting
content (the sudden-challenge game offering less frequent but
stronger challenge changes, the balanced game offering frequent
but closely related changes and the low-challenge game offering
less frequent and even more closely related changes). These
two aspects were discussed in detail with the designers to
confirm the same concepts were well understood and agreed
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upon. The goal was to capture examples of different types of
adaptive experiences for the same game. So, we ended up with
nine different adaptive versions of the game: three of each of
the games above. We observed all design sessions, providing
support and engaging in open-dialog interviews.

A. Results

Fig. 4 (a to c) illustrates the skill profiles that all designers
(A, B and C) considered for each game. They correspond to
all adaptation rules created in these experiments.

Designer A was fairly consistent throughout his games, by
creating adaptation rules focused on variation of all skills in a
consistent manner, except for power up selection, which was
ignored as a relevant skill. This designer increased the number
of adaptation rules, using 4 in the low-challenge game, 6 in
the sudden-challenge game and 10 in the balanced game.

As for designer B, he varied the most throughout the three
games. In the low-challenge game he chose to focus only on
the ramp use skill, using 5 different adaptation rules. In the
sudden-challenge game he extended his focus on ramp use, to
also considering the obstacle handling skill, using 6 adaptation
rules. In the balanced game, designer B focused on all skills
except floor edge avoidance and power up selection, using 11
adaptation rules.

Designer C was fairly consistent, using fairly similar shapes
throughout his three games. For the first 2 games, and like
designer A, this designer focused on all skills, except power-
up selection. However, the shapes of the skill profiles are
substantially different between both designers, since they are
determined by the different used values in each skill axis. In
his balanced game, designer C chose to only focus on ramp
use, obstacle avoidance and AI defense.

From the above description, we can appreciate how creative,
diverse and specific the paths were that each designer chose,
when defining which player profiles were deemed relevant for
the assignments received. The same can be said regarding
the content descriptions on which designers focused their
adaptation rules. Designer A used all types of available content
but chose to focus much more on ramp and obstacle variation
throughout his games. Designer B excluded power ups from
all his games and typically only varied one type of element
at a time throughout his rules. He typically used lower AI
variation and lower overall absolute values for the amount of
content. Designer C used less adaptation rules than any of the
other designers, using less wide variation in terms of content
and choosing to specialize on type of content per game. More
details about the content descriptions, including plots describing
the declared content, can be found in [26]. Table I summarizes
the most-specific elements in each game of each designer, in
terms of content descriptions, by detailing the semantic entities
that designers change most, and most frequently, across the
three games.

B. Discussion

The results of this design experiment provide us with
valuable data on the expressive range of our approach. Even
though asked for the same three game versions, three different

(a)

(b)

(c)

Fig. 4. Skill profiles created for: (a) Low-challenge game, (b) Sudden-
challenge game and (c) Balanced game, by all 3 designers (A, B, C)

designers were able to design them in significantly disparate
ways, resulting in nine games with easily recognizable differ-
ences.

Skill profiles were able to offer flexibility at capturing the
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TABLE I
CONTENT DESCRIPTIONS: SPECIFIC FOCUS IN TERMS OF SEMANTIC ENTITIES VARIATION

Low-challenge game Sudden-challenge game Balanced game
Designer A Obstacles, ramps Floor size, obstacles, ramps Everything (gradual)

Designer B Everything (slight) Floor size, ramps (drastic
changes)

Everything (very gradual,
one entity or attribute at a

time)

Designer C AI Floor size, ramps Ramps, obstacles and
power ups

designers’ intent for distinct player characteristics. Designers
A, B and C created significantly different shapes for their skill
profiles. This was possible not only through a focus on different
skill sets (e.g. notice the differences between designer A and
B in the sudden-challenge game, in Fig. 4(b)), but also due
to the use of different values in each skill set. Furthermore,
designers were able to experiment with different skill profile
shapes between their own 3 different games (e.g. designer B
and his three games). The concept of absolute values in the
player model (as explained in section IV) was easily understood
by designers, with designers shaping their different desired
player classes. However, in this type of experiment, the chosen
values are influenced by the individual designer play testing,
as well as by their assumptions about their target audience.

As for content descriptions, they were able to offer a large
expressive range for designing nine very distinct adaptive
games. This variety was straightforward to assess by both
analyzing the content data on the resulting adaptation rules and
observing gameplay. [26] Different designs naturally emerged
from the variation offered by semantic entities and attributes,
even within the same task. We argue that this is not only a result
of the varied content, available to be combined, but mainly
of the expressive power in the concept of adaptation rules. A
good example is the balanced game, with: (i) designer A using
all available content for very gradual but wide variations, (ii)
designer B creating an adaptive experience where only one type
of content varies at a time, very gradually, and (iii) designer
C focusing on specific content (ramps, obstacles, power ups)
on a narrower interval of variation.

Regarding specificity and the design experiment, it links
with the available expressive range of our tool. As observed in
Table I, adaptation rules are a valuable tool to construct specific
and recognizable adaptive game features. Designer B provides
the best example for this: in the low-challenge game he chose
to specifically focus only on the ramp-use skill (Fig. 4(a)),
and in the balanced game he created the very gradual content
variation, just explained above.

Overall, this design experiment allowed us to observe that
adaptation rules were able to effectively capture the intent
of the designers authoring the requested adaptive experiences.
Designers considered the design tool very expressive and were
able to identify several ways of performing the assigned tasks,
beyond their own designs. We very much would have liked
to involve a larger number of designers, but that would have
had a multiplicative effect on the rest of this study (see next
section), which we just were not able to cope with. We believe
it would have been much valuable to also involve some senior
game designers in this study; unfortunately, the dedication it

asked was incompatible with their intense schedule.

VI. ASSESSING ADAPTIVE GAMEPLAY

For the player experiment, our goal was to investigate if
a desired adaptive gameplay experience could be conveyed
through adaptation rules. The experiment consisted in play
testing all the nine previously designed versions of Achtung Die
Kurve 3D, inquiring players about their experience and logging
their performance data. Furthermore, gameplay experience was
discussed and recorded throughout the experiments. To capture
meaningful data, we considered three players for each of the
nine game versions, thus performing tests with a total of 27
different players. Players volunteered in an university campus
location and the experiments were conducted by the authors,
prior to any analysis of all the games characteristics.

Each play session consisted of: (i) brief explanation of the
game and its generative nature, (ii) brief training session with
the game, lasting typically 2-3 minutes, (iii) play testing one
of the games for 15 min. At the end of the session, players
were requested to:

1) plot how challenge/difficulty evolved over the time they
played;

2) answer the question: Which specific level features did
you feel were changing while you played, and how?

Players were asked to plot the perceived challenge over a
grid representing the total game session time (x axis), with a
minimum challenge of 0 and maximum challenge of 5 (y axis).
Our aim was to compare those plots with the desired adaptive
gameplay experiences (with the characteristics intended for
the three types of games, outlined in section V), as created by
designers, and check if, how and where they differ. Furthermore,
we posed the second question above to confirm if the specific
features of the adaptive game, as desired by each designer,
were (easily) perceived by the players, if at all. The game
registered all the events and player model values in individual
log files.

A. Results

Fig. 5(a) to 5(i) illustrate the play test results, for the three
players of each game (in rows) of each designer (in columns).
Each sub-figure, thus, refers to a single game and includes the
perceived challenge, as plotted by each of its three players
(question 1, above). Below, each figure also includes a time line
plotting each instant where a crash occurred for each player.
From all the logged performance data, we considered this to
be the best measure to illustrate how challenge evolved over
time.
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We also registered all the player answers to question 2.
Table II summarizes these answers by focusing on which
semantic entities were identified as the changing level features.
We also asked how they changed, although this was a mere
psychological mechanism to force reflection and, therefore,
identify semantic entities. The answers largely correlate with
the plotted challenge lines and with players referring to
increases and decreases of semantic entities.

B. Discussion
The results of the player experiment (Figs. 5(a) to 5(i))

enable us to assess if the designers’ intended adaptive experi-
ences were conveyed by their adaptation rules and perceived
by players as desired.

Overall, the challenge plots show that adaptivity is working
and that the game is responsive to the players’ performance,
offering a variable and personalized challenge. This is visible
even in the sudden-challenge game, a game with a clear
tendency for gradually increasing challenge, where each
increase step still includes some challenge variation.

These plots also show that the player-perceived gameplay
experiences match with the intent of the game designers. All
versions of the low-challenge game illustrate an adaptive game
with a dynamic challenge variation, while keeping it at a low
overall value. This is more evident if we compare the range
of the challenge variation in all low-challenge games with the
sudden-challenge and balanced games: most of the time is
spent between challenge values 1 and 3.

In contrast, all versions of the sudden-challenge game show
a gradual increase in challenge, with most time spent in the
higher values (between 3 and 5). This fits with the designer’s
intent for the sudden-challenge game (very easy game for
players with lower skills and extremely hard for players with
higher skills).

The balanced game offered the most diverse results. This
task was intended to yield the most balanced and fair game
possible and was, thus, able to best accommodate all types
of players. With the exception of designer B (explained later),
the versions of the balanced game show a diverse challenge
variation behavior (with values varying between 1 and 5) with
no obvious tendency.

We consider that this lack of tendencies confirms that these
games accommodate a wide range of differently skilled players,
a natural expectation for a game with the characteristics of a
balanced game (as requested to designers). For example, in
the balanced game for designer C (see Fig. 5(i)), player 26
seems to quickly reach the top of his skills and is faced with
higher challenges (subsequent failures resulting in a drop in
challenge) while players 25 and 27 took more time to reach
higher challenge levels.

An interesting case is the balanced game of designer B (see
Fig. 5(h)), which can be explained by that game’s adaptation
rules. As mentioned in Table I, this game features a very gradual
adaptive experience, where slight variations are inserted at a
time, typically changing only one aspect with each adaptation
rule (e.g., increasing one AI at a time). The nature of this
game allowed players to have a consistent learning curve, with
gradual challenge increase.

We were interested in checking whether these observations
from player perception were corroborated by actual in-game
player data. Therefore, we compared these plots with logged
data on crash time instants (see crossed time lines, in Fig.
5). This analysis is interesting mainly for showing different
trends in challenge variation, since it is not accurate to match
an objective time line (logged crash events) with a subjective
one (player perception of challenge variation). The data on
all versions of the low-challenge game shows less crashes
than any of the other games with a slight increase towards
the middle of the experiment. Data on all versions of the
sudden-challenge game shows more crashes than any of the
other games. They distribute with a lower concentration in the
beginning of the game and a very high concentration towards
the end. As for the balanced game, data is more diverse and
does not show a clear tendency in the amount of crashes.
However, its distribution seems to be more uniform across all
the time line and, just like the remaining games, correlates
well with the perceived challenge, supporting our hypothesis
on whether player perception matched design intent.

Some of the results require further analysis, since they are
exceptions to these observations. In the low-challenge game, the
exceptions for the observed behavior are player 2 and player 8.
When discussing gameplay with player 2, it was noticeable that
this version of the low-challenge game eventually became too
easy for the improving player, who became visibly bored with
the experiment. We conclude that such boredom influenced his
plot. In the case of player 8, the player crashed very little in the
beginning, playing for a long time without dying. During play
test, we observed and discussed that when challenge actually
increased, the player and his lack of skill could not cope with
that slight but sudden change. Although we observed that
challenge would also slightly decrease with his now worse
performance, we think the significant ‘psychological shock’
between the two phases of his play hindered his perception
and determined his ‘binary’ answer.

From these results, we can conclude that the adaptation rules
were effective in enabling individual players to experience the
intended challenge variations, i.e. the adaptive experiences
we had requested. The players’ answers and gameplay data
typically matched with what was expected and what was
designed for each game. Furthermore, comparing Tables I
and II, we can observe that the specific features (variation in
a type of content) of each game were explicitly identified by
players, who always mentioned at least one of the specific
features summarized in Table I.

VII. GENERALIZATION

Supported by these results, one can wonder whether the
semantic model for adaptivity authoring proposed in this
article is substantially generalizable. In this section, we discuss
the inherent features of our approach that support such
generalization, its validity scope, as well as its limitations.

As mentioned before, adaptation rules pose no constraints
on how skills are linked to content. For example, there is
no obligatory amount of rules or skill profiles, nor is there
a minimum or maximum amount of content that should be
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TABLE II
VARIATION OF SPECIFIC LEVEL FEATURES, FOR EACH GAME AND DESIGNER, AS IDENTIFIED AND PERCEIVED BY THE 27 PLAYERS. THEY TYPICALLY

REFER TO QUANTITY OR SIZE OF THE SEMANTIC ENTITY (ATTRIBUTES BETWEEN BRACKETS WERE ADDITIONALLY IDENTIFIED AS A VARYING FEATURE).
ITALICS IS USED TO INDICATE AGREEMENT WITH THE FOCUS ORIGINALLY INTENDED BY DESIGNERS, FROM TABLE I.

Low-challenge game Sudden-challenge game Balanced game

Designer
A ramps obstacles

ramps,
obstacles

(posi-
tion)

ramps,
obstacles

(both dras-
tically),

power ups

floor size,
obstacles,
power ups

(type)

obstacles
(positions),
floor size,

ramps,
power ups

(type)

ramps, AIs,
obstacles

AIs,
ramps,

floor size,
power

ups (type)

floor size,
AIs,

obstacles

Designer
B

ramps
(width), AIs
(position)

obstacles
(posi-
tion),
AIs

AIs (posi-
tion)

floor size,
ramps

ramps,
obstacles

(both
drastically),
floor size,

AIs

floor size,
obstacles

empty in
beginning;

ramps,
obstacles,

AIs (slowly)

ramps
(position),

AIs
(slowly)

obstacles
(position),

AIs
(smarter)

Designer
C

AIs
(smarter),
obstacles

(type),
ramps

(width)

AIs (posi-
tion),
ramps

(width)

AIs
(smarter)

floor size,
ramps,

zero power
ups

ramps,
obstacles

(both
drastically)

ramps
ramps,

power ups
(type)

obstacles
(position),

ramps

ramps,
power

ups (type)

specified for each rule. This lack of assumptions implies that
the authored associations between player behavior and game
world content can be applied to any domain designers see fit.
This generic model is thus effectively applicable to any game
genre where steering content generation is a suitable means
for influencing gameplay.

Furthermore, the underlying building blocks supporting
adaptation rules (player skill gameplay abstractions, semantic
entities and semantic attributes) can all be created by designers
to represent a given domain of player skills and game-world
content (e.g. coin collection skill and coin entities). The ability
to create generic adaptation rules is as large as the freedom
to create such building blocks, ultimately determined by the
underlying semantic model [27]. The authoring effort to create
these building blocks is largely outweighed by their potential
for reusability. For example, once specified, power up entities
can be used in many games, like Achtung Die Kurve 3D or
Super Mario, their sequels or any other game where power-up
generation is useful.

Skill profiles can consist of a large variety and number
of player skills. With no limitations on the number of the
axes (or dimensions) of a skill profile, the model is generic
enough to capture very complex multi-dimensional behavior.
In fact, skill profiles and the underlying player skill gameplay
abstractions are only limited by: (i) their representation on a
bounded scale of proficiency values and (ii) their matching
to the skills measured by a player modeling algorithm (to be
developed for each game).

Content descriptions include combinations of semantic
entities and attributes, which can represent a wide variety
of types of content, such as materials, objects, spaces, scenes
or whole worlds. Of course, the potential of these content
descriptions is dependent on the existence of specific generation
algorithms, which can realize those semantic entities and
attributes into a specific game world, such as the Achtung
Die Kurve 3D floor generator described in Section IV.

To summarize, our approach is generalizable for games
that follow the assumptions: (i) gameplay is strongly tied
with physical interaction with the game world content (e.g.
platform, racing, dungeon games), (ii) the player model used
can represent its features through bounded scale values, (iii) the
game is appropriate for integration with a PCG algorithm, and
(iv) the chosen PCG algorithm can be controlled or constrained
through the specification of desired virtual world features.

A. Limitations and future work

From the assumptions above, one should acknowledge that
player models and PCG may be seen as acting, at the same
time, as both drive and limitation of our research. And justly so,
as our design and proposals stem from both the advancements
and limitations of both fields. In particular, we consider that
player modeling limitations can be somewhat stronger. The
discrete and bounded nature of most player models (section II)
naturally leads to some false positives, with limitations on the
range of players that can be accurately captured. As a result,
adaptation will necessarily behave worse for such types of
players, which may be more or less critical. We applied this
bounded and discrete nature of player classification by defining
floor values (positive only) for skills levels. Many current
research results in the player modeling and adaptivity areas
seem to show that these are good approximations: these models
do not capture every possible player, but they significantly
improve on capturing much more players than static gameplay
experiences. Nevertheless, our method will necessarily need to
be expanded before using it with other player model techniques;
for example, using negative, continuous or infinite scales would
require reassessing our current matching mechanism.

One might argue that our approach seems to be dependent
on player skills. However, this apparent limitation is only a
consequence of our focus on skill-based games, and it is easily
overcome, provided that skills are simply represented by a
proficiency name and a value. Such a representation can be
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used to capture player preferences, styles or other analogous
features as long as they can be abstracted to bounded scales
of values.

Using the Euclidean distance to calculate similarity between
player profiles and adaptation rules was motivated by our
previous research on adaptive game methods [26], where
results were deemed quite successful. This was confirmed
by our evaluation, both while developing the method and
performing our user tests. However, we realize that for more
complex games, with more complex skills and content, a more
generic and standard metric like the Cosine similarity should
be investigated, in order to replace the Euclidean distance and
avoid its known limitations.

A valid issue to raise regards comparing the burden of
authoring adaptation rules and a compatible specific generation
algorithm (i.e., our contribution) to the burden of authoring
ad-hoc adaptive generation algorithms every time they are
needed, for each game. Due to its semantic nature, our
approach encourages reusability, where the semantic model
and adaptation rules can be reused in games with similar
domain and (player) features as, for example, game sequels.
More importantly, ad-hoc adaptive generation algorithms are
typically created by programmers. In contrast, as demonstrated
in our design experiments (see Section V), adaptation rules
enable an iterative loop between designing and testing, with no
programming involved. As a result, game designers can thus
directly focus on ways of controlling and tweaking adaptive
generation as they see fit, without depending on programmers.

VIII. CONCLUSIONS

We proposed the use of adaptation rules by game designers
to author adaptive game world generation. Adaptation rules are
built atop gameplay semantics to steer the on-line generation of
game content. Designers create adaptation rules by associating
sets of skill profiles, describing skill proficiency, with content
descriptions, detailing the desired properties of game worlds.
Personalized game worlds can then be generated live through
a matching and retrieval algorithm, whereby designer-specified
content descriptions are selected that fit the player model being
input.

We integrated this approach in a game, Achtung Die Kurve
3D, which served as a case study to perform both design
tests and player tests. From the design tests, we concluded
that adaptation rules provided game designers with a broad
expressive range to control the adaptive generation of this type
of game worlds and realize them into the requested adaptive
experiences. Furthermore, this expressive range provided our
game designers with the flexibility and variability to be specific
in their intent, i.e. allowing them to craft similar adaptive
experiences through rather different specific means.

From our play tests, we observed a considerable match
between the perceived, the logged and the designed adaptive
gameplay experiences, and concluded that adaptation rules
were effective in conveying to players the adaptive gameplay
experience intended by the tested designers.

Through our case study and subsequent reflection on our
approach, we also identified its potential for generalization. Its

lack of assumptions, as well as the freedom in authoring a
semantic model, enable the method to be easily adopted in a
variety of game genres, as long as content generation can be
used as an adaptation mechanism.

We see various directions to expand this approach. Regarding
skill profiling in adaptation rules, it would be interesting to
investigate the possibility of weighing individual skills, e.g.
with the goal of having the matching and retrieval process
distinguish between essential and non-essential skills. This
would allow for a fine-grained control over which skills are
more important. Furthermore, it would be interesting to find
more intuitive and interactive methods for creating content
descriptions, analogous to the skills’ radar charts. Inspired by
current research [7], a promising direction would be to sketch a
rough representation of the game world’s entities and attributes.

Finally, a more thorough evaluation of this approach, its
merits and potential is desirable. In particular, it will be
interesting to perform more and in-depth tests with professional
game designers, as well as with a broader base of players. We
believe such feedback will be instrumental in establishing to
which extent our approach can be used to support a new design
paradigm in the future: the interactive authoring of adaptive
game world generation.
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