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ABSTRACT
Immersion is the ultimate goal of head-mounted displays (HMD)
for Virtual Reality (VR) in order to produce a convincing user expe-
rience. Two important aspects in this context are motion sickness,
often due to imprecise calibration, and the integration of a reliable
eye tracking. We propose an affordable hard- and software solution
for drift-free eye-tracking and user-friendly lens calibration within
an HMD. The use of dichroic mirrors leads to a lean design that
provides the full field-of-view (FOV) while using commodity cam-
eras for eye tracking. Our prototype supports personalizable lens
positioning to accommodate for different interocular distances. On
the software side, a model-based calibration procedure adjusts the
eye tracking system and gaze estimation to varying lens positions.
Challenges such as partial occlusions due to the lens holders and
eye lids are handled by a novel robust monocular pupil-tracking
approach. We present four applications of our work: Gaze map
estimation, foveated rendering for depth of field, gaze-contingent
level-of-detail, and gaze control of virtual avatars.

Categories and Subject Descriptors
C.3 [Computer Graphics]: Special-Purpose and Application-based
Systems - Real-time and embedded systems; I.3.1 [Computer Graph-
ics]: Hardware Architecture - Input devices; I.3.7 [Computer Graph-
ics]: 3D Graphics and Realism - Virtual Reality; I.3.8 [Computer
Graphics]: 3D Graphics and Realism - Applications

Keywords
eye tracking; gaze; wearable; virtual reality; head-mounted display;
mobile

1. INTRODUCTION
Virtual Reality (VR) has become a well-established field in re-

search and industrial applications, e.g., for simulations, scientific
visualization, or gaming. Previously, high hardware costs prevented
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Figure 1: Prototype visualization. A rendering of our self-
contained eye tracking head-mounted display. Based on a system
of dichroic mirrors (red), infrared light illuminating lense holders
(white) and tracking cameras (yellow) the device captures the user’s
eye motion for binocular eye-tracking while he is fully immersed
in the virtual world.

a wide-spread application and development. But recent advances
in the mobile device market, lead to high-quality, low-cost virtual
reality hardware (Oculus Rift, HTC Vive, Sony PS4 HMD, etc.).
These low-weight, low-latency head-mounted displays (HMDs), in
combination with a wide field of view (FOV), enable a never before
experienced immersion and presence within a virtual environment.
Future developments of HMDs will include even higher resolution
displays, higher refresh rates, and wider FOVs [8].

Commodity HMDs mostly use fixed hardware setups. However,
preconfigured HMDs are often difficult to parameterize for indi-
viduals, e.g., to account for differing interocular distances; both,
in horizontal and vertical direction (previously often ignored and
known as Hypertropia [17]). Further, existing software calibration
is often unsatisfactory and cumbersome with current HMDs. This
limitation can lead to non-frontal relative positioning of the eye and
non-converging lenses inside the HMD, resulting in reduced per-
ceived sharpness, and an increased likelihood of motion sickness
and headaches for the user.

The wide adoption of VR equipment makes it crucial to investi-
gate methods to simplify calibration and to improve the experience
for each user. Here, analyzing user behavior in virtual environ-
ments can deliver many insights: What is drawing attention? What
emotional response results from certain content?

For a desktop setup congeneric findings are usually investigated
involving an eye tracker (measuring pupil size for emotions or fo-
cus points of interests on the screen). Unfortunately, when using an
HMD setup, the integration of eye tracking is not straightforward
and existing solutions are not convenient for commodity HMDs.
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Figure 2: HMD design comparison. Common HMDs setup (left
part): converging lens (A), display (B), eye ball (C), visible light
(D), orientation tracker (E); Our system adds (right part): eye track-
ing cameras (F), dichroic mirrors (G), lens controller with infrared
LEDs (H), infrared light (I), positional tracking camera (J).

Stationary solutions for eye tracking are state-of-the-art with re-
gard to tracking quality and mostly applied to estimate scan paths
(fixations and saccades) [26, 36]. The user’s head is locked in
a position using a rigid positioner and a camera records the eye.
While the systems are very accurate at a high tracking sample rate,
the fixed viewing position is not an option for immersive VR and
even small head movements lead to drifts if recalibration is not fre-
quently performed.

Mobile eye-tracking solutions overcome the motion restrictions.
In this case, an integration into a headgear or special-glasses frame
enables free head movement (e.g., SMI Eye Tracking Glasses, Ar-
rington Research 3DViewPointTM, Biopac Systems, Inc. HMD).
However, due to the smaller form factor it is significantly more am-
bitious to integrate such a solution into an HMD: The tracking re-
lies on a camera, whose position is constrained by the HMD lenses
and lens holders, which would block the view partially. Hence, a
point right below the eyes is chosen, where precision is unfortu-
nately non-uniform. An alternate more-frontal placement inadver-
tently reduces the FOV, which is often not an option because the
feeling of immersion only starts at a horizontal FOV of 80◦and in-
creases quickly until 110◦[8, 14]. Such an eye tracking procedure
is further complicated since typical corneal-reflection-based eye-
tracking algorithms [23] are not applicable, as they would produce
disturbing reflections on the lenses.

Our work addresses these limitations and works towards gain-
ing more insights into the VR experience. We propose an afford-
able, drift-free, and binocular eye-tracking solution, which is us-
able within the limited space of current HMD hardware designs
without FOV reduction (Fig. 1). Throughout this paper, we will
show how to overcome the challenges involved in designing such a
VR system and solve several other issues, for instance calibration
and adaptation to the user. Specifically, our contributions are:

1. a personalizable lens positioning system (horizontal and ver-
tical) for HMDs and an integration of an unobtrusive camera
setup for eye tracking in a lens-based HMD based on a spe-
cialized infra-red lighting (Sec. 3);

2. a model-based gaze estimation algorithm and calibration pro-
cedure to adjust the system to the user (Sec. 4);

3. a robust monocular pupil-tracking algorithm, which can deal
with partial eye occlusions due to the lens holders and eye lid
(Sec. 5);

We present applications showing the potential of our (binocu-
lar) eye tracking HMD, which are foveated rendering for depth of
field, gaze-contingent level-of-detail, gaze map creation and realis-
tic gaze control of virtual characters. In general, these applications
illustrate the ability of our system to also perform psychophysical
experiments and to extend the experience in immersive environ-
ments (Sec. 6). To validate our proposed system, we performed
an objective comparison with a state-of-the-art pupil-tracking algo-
rithm for near-field eye-trackers [31] and conducted a user evalu-
ation (Sec. 7). We discuss the limitations of the current setup and
give an outlook on future work (Sec. 8) before concluding this pa-
per (Sec. 9).

2. RELATED WORK
Head-mounted Eye Trackers The success of the Oculus-Rift

HMD led to a renewed interest in VR for the consumer market. The
most-evolved HMDs in this low-cost sector, Crystal Cove (Oculus
VR) and HTC Vive, offer a display resolution of at least Full-HD as
well as positional and rotational tracking. Eye tracking is a natural
next step and gained much attention in the research and develop-
ment sector (e.g., FOVE Inc., Arrington Research, ASL Eye-Trac
6, SR Research, or Senso Motoric Instruments (SMI)). Even though
first attempts have been undertaken in the year 2000 [20], current
prototypes are still far from being consumer-ready with prices up
to 15,000$ (SMI’s eye tracker in the Oculus Rift case). One ma-
jor cost factor are the miniature cameras and specialized digital
processors for tracking at high speed. While the interior design
of these Eye-tracking HMDs (ETHMD) is mostly kept secret, the
comparatively low vertical FOV could suggest that the camera is
placed inside the user’s FOV occluding parts of the display. Our
eye-tracking HMD setup has several benefits. It is a low-cost so-
lution (approximately 450$), which offers the full FOV of current
state-of-the-art HMDs.

Closest to our design is the EyeSeeCam [37]. This wearable eye
tracker is used to align the focus of an external camera and the
user in real-time for medical applications, surgery, or behavioral
sciences. We similarly use dichroic mirrors to reflect infrared light
from the eyes back to the cameras located outside the FOV. The
custom-built EyeSeeCam can rely on traditional eye-tracking algo-
rithms, but is also more expensive. We propose a customization,
but it implies additional challenges to be solved, such as partial
occlusions by the lens holders and view distortions by the lenses.

Eye-Tracking Algorithms Eye-tracking algorithms have a long
research history and are often optimized for specialized setups which
vary greatly in their design. A more general survey on eye track-
ing, including the employed eye models can be found in [23], while
methods to evaluate eye-tracking quality are presented in [27]. Here,
we will focus on the most-related work.

An essential step for feature-based eye tracking is the pupil de-
tection. It forms the darkest part of the eye if illuminated from
an off-axis view, and the brightest part if illuminated from a near-
camera-axis view. Consequently, it is often well-separable from the
surrounding iris. Most techniques rely on edge or contour detection
of the pupil followed by an ellipse fitting. The main challenge is to
deal with glints and reflections [30, 16], blinks [15], or noise [31],
especially for near-eye devices, as e.g. Google Glasses [15, 11].
The gaze is then often estimated using the Purkinje effect (a bright
glint appearing in the recorded infrared image resulting from the
reflection of a spotlight LED used for illumination) in conjunction
with camera and LED positions [18]. A taxonomy of the different
approaches is given in [39].

In an HMD the Purkinje effect cannot be directly applied due
to the converging lenses. LED illumination in front of the lenses
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(camera side) results in visible reflections from the lenses them-
selves, while a placement behind the lenses (closer to the eye) has
the drawback that glints will not always be visible for the targeted
wide FOV. We will show how to overcome this challenge.

Appearance-based methods do not extract features (pupil or glints)
but use the complete input image to estimate the observed screen
position. Several approaches built upon this idea in form of multi-
layer networks [10], Gaussian processes [40] or manifold learning
[38]. While flexible (requiring only a calibration step), these tech-
niques are often computationally costly and less applicable for VR
scenarios, where high tracking rates are required. We make use
of a novel approach combining image features with an underlying
simulation model of our HMD; we detect the pupil in the recorded
views, calibrate our HMD model, and derive the observed screen
pixel position using a physical eye model.

3. EYE-TRACKING HMD
In the following, we describe our low-cost low-weight and per-

sonalizable design for immersive VR with unobtrusive eye track-
ing. After a general overview, we describe the details of each of the
HMD’s main components (Sec. 3.1).

3.1 Device Construction
General The most important elements are visualized in Fig. 2

and the working prototype in Fig. 3a–b. Our basic setup resembles
a classic HMD with converging lenses (A) to focus the view on
the display (B). The difference lies in infrared cameras at the outer
boundary of the body case (F), dichroic mirros (G) and a circular
LED-light array along the adjustable lens holders (H) to illuminate
the eye (C). Reflected infrared light passes through the converging
lenses and is reflected towards the cameras via two tilted dichroic
mirrors (G). Display light (D) passes unhindered towards lenses
and eye. An additional front camera (J) is used for markerless posi-
tional tracking and an integrated Inertial Measurement Unit (E) for
orientation [21]. The electronic components are wired to a single
harness connected to an external box with the display controller, an
Arduino for orientation tracking, and the LED power supply [3].

Body Case The body case encapsulates all internal components
(Fig. 2). A central barrier with a gap for the nose divides the display
(C) into two disjoint symmetric parts, one for each eye. The case is
firmly closed and tightened with foamed material to avoid exterior
stray light and covered with comfortable tissue, except at the nose
tip to enable normal breathing. The dimensions of the body were
determined by fitting it to several 3D head scans (Fig. 3c).

Display We integrated a 5.6" LCD (1280×800 pixel resolution)
with a refresh rate of 60 Hz. As indicated before, display controller
and display are separated, which reduces the HMD weight.

Converging Lenses We use converging lenses of an Oculus Rift
(DK1) to increase the perceived field of view [6]. Hereby, we
also maintain compatibility to the Oculus Rift. Our prototype of-
fers a horizontal field of view of 86◦per eye. We provide dedicated
controllers to adjust the position of the lenses in both horizontal
and vertical direction for optimal lens placement (Fig. 1). Com-
pared to a traditional HMD with interchangeable lens cups, our de-
sign makes more flexible and precise adjustments for varying head
anatomy possible. For calibration, a circular IR reflecting ring is
located on the backside of the lens holders.

Dichroic Mirrors We use two dichroic flat surfaces (also known
as hot mirrors), which reflect light at wavelengths longer than 730
nm (infrared), while short wavelengths ( < 720 nm) are entirely
transmitted. They redirect infrared light reflected by the illumi-
nated eyes towards the integrated cameras, which allows us to track
the gaze without obscuring the field of view of the user.

(b)(a) (c)

Figure 3: HMD design and assembly. User wearing the eye track-
ing HMD (a), working prototype (b), 3d scans of different human
heads used for case dimensioning (c).

(a) (b) (c)

Figure 4: Eye illuminating lense holder. 3d printed lense holder
with manufactured circuit board (a), working infrared SMD-LED
array (b), illumination units within the HMD (c).

The dichroic mirrors have a size of 80× 80× 2 mm with cen-
tral cutouts for the nose and an inclination angle of 19.5◦along
the vertical axis. The angle is a tradeoff between space and op-
timal view on the eye (45◦inclination). Higher inclination angles
increase the necessary screen distance and, thus, screen size and
weight. Smaller inclination angles lead to partly occluded views
on the eye, which need to be dealt with during the pupil tracking.

Infrared Illumination Unit Twenty-five infrared LEDs mounted
on a ring circuit lead to a uniform eye illumination from all direc-
tions (Fig. 4). The circuit has an inner diameter of 37 mm and
width of 1.5 mm to minimize the lens controller size. The LEDs
radiate with a wavelength of 830 nm over a wide angle of 140◦.
This infrared light enhances the pupil’s contour in comparison to
the contour of the limbus, but is outside the visible spectrum, thus,
invisible to the user. We ensure safety of the user with regard to the
impact on the user’s exposure to the involved infrared radiation. An
analysis can be found in the supplemental material.

Eye Tracking Cameras For binocular eye tracking, we inte-
grated two low-cost cameras focusing at the distance of the user’s
eyes and having a fixed diagonal field of view of 56◦. We ex-
changed their infrared filters with a long-pass filter blocking all but
infrared light, in form of a single layer of a raw film negative. The
cameras have fixed positions in the HMD (Fig. 2 (F)) and record
at a 640× 480 pixel resolution in grayscale at 75 Hz with a delay
of 13 ms due to the internal image processor. This sampling rate
suffices to track fixations and smooth pursuit eye movements.

Head Tracking For the viewpoint estimation in a virtual envi-
ronment the rotational and translational component of the HMD are
required as well. To this extent, we integrated an orientation sensor
into the HMD and perform positional tracking via a head-mounted
front camera. This combined setup is inexpensive and enables the
required 6-degrees-of-freedom head tracking with sufficiently high
precision and low latency.

We include an inertial measurement unit (IMU) holding multiple
sensors connected to an Arduino microcontroller board to track the
orientation (Yaw-Pitch-Roll). The IMU consists of an accelerome-
ter, a gyro sensor and a digital motion processor (DMP). We set the
update rate to 200 Hz to avoid a noticeable delay when moving the
head and to reduce motion sickness.

The DMP supports automatic self-calibration and the angular
drift of the IMU is less than 1◦ per minute, which is sufficient for
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longer usage. The positional tracking of the IMU could suffer from
an integration error over time, resulting in an accumulated drift.
However, over short periods of time, the IMU delivers sufficiently
precise data. Our tracking solution combines the low-latency IMU
output with markerless camera tracking, which results in a robust
low-latency positional tracking with good precision. The pose esti-
mation of the HMD front camera in world space is based on SLAM-
feature tracking, implemented in the Metaio SDK [21, 2]. Our pose
estimation proceeds as follows: The world frame is oriented and
positioned automatically after a few seconds of feature initializa-
tion. Features are then detected and refined adaptively over time
during tracking. Since world scale cannot be estimated from the
tracker, it is automatically adjusted in the initialization phase, such
that the camera-tracker results share the magnitude of the velocity
measured by the IMU. This positional tracking takes≈ 23 ms in our
setup (13 ms for frame transmission, 10 ms for pose estimation).

4. CALIBRATION
This section describes calibration and reconstruction procedures

for the different HMD components (Sec. 4.1) and the user-specific
calibration (Sec. 4.2). Both are required for precise eye tracking,
gaze estimation, and personalized adjustments. It is an important
step in adapting the device to the user, which, ultimately, leads to a
better VR experience. We describe the setup for one eye, the second
eye is handled equivalently. The eye tracking implementation will
be described in Sec.5.

4.1 HMD Calibration
To avoid motion sickness and create a convincing 3D impres-

sion, we require precise knowledge about each component in our
HMD projection chain, meaning the relative position and orienta-
tion of the eye-tracking camera, the dichroic mirror, the lens and
lens holder, as well as the refractive properties of the converging
lens, and the intrinsic parameters of the eye-tracking camera. As
a reference point oH for all components of the HMD, we use the
horizontal center of the HMD’s front-most point.

Eye-Tracking Camera Calibration. We estimate both the
intrinsic and extrinsic parameters for the eye-tracking camera. In-
trinsics are derived via the technique by Bouguet [13]. Providing
image resolution and sensor size is sufficient to transform a record-
ing of a checkerboard or circle pattern of known size on a flat sur-
face into focal length, principal point, as well as radial and tangen-
tial lens distortion.

The extrinsic camera parameters are derived during production
as follows. Before the dichroic mirror is inserted into the body
case, we cover the screen with a checkerboard calibration pattern,
which is carefully adjusted to align with the edges of the body case.
The eye tracking camera records the pattern and the extrinsic para-
meters are derived in relation to the pattern. We use the same CAD
model, which we used to print the body case, and transform the
extrinsic camera parameters into oH , the coordinate system of the
HMD [24]. This virtual/real-world relationship will be exploited
for the calibration. For validation, we compare the captured im-
age with a rendered version of the checkerboard using the derived
camera parameters. The reprojection error is less than 3 pixels and
would be further reduced in an industrial production setting.

Mirror Calibration. After the camera has been calibrated the
dichroic mirror is inserted and calibrated. We cover the mirror with
a carefully aligned calibration pattern, to later match it to the CAD
model, and capture it from the eye-tracking cameras. Performing

(c)(a) (b) (d)

Figure 5: Lens reconstruction. Converging lens with artificial sur-
face features (a), reconstructed 3d point cloud (b), derived lens pro-
file (c), smooth reconstructed model (d).

(a) (b) (c)

Figure 6: Refractive index estimation. Calibration object (a),
ground truth refraction through the lens (b), rerendered calibration
object (c) rendered on top of (b).

the same calibration procedure as for the cameras this gives us the
camera parameters in relation to the mirror position, and vice versa.
We then transform this relative mirror position into oH . Again, we
validate the correctness of the derived parameters by rendering the
checkerboard and comparing it with the captured image. In our pro-
totype, the rotation angles of the mirrors were∼ 18.9◦ and∼ 19.5◦

for the left and right mirror, respectively. The slight asymmetry
was due to a fabrication imperfection when printing the HMD.

Lens Reconstruction. We require an accurate geometric model
of the aspheric lens as well as the index of refraction (IOR) to sup-
port the user calibration later on. In our case, details about the used
optics have not been available and accordingly had to be recon-
structed. As this is the situation for most lens models in HMDs, we
describe our lens reconstruction approach in the following.

Lens Geometry To avoid a complicated reconstruction of a trans-
parent surface, we artificially colorize the lens with ink and create
a set of discriminative features (Fig. 5a). We then reconstruct a
lens-surface point cloud based on different input views [1], which
we capture at high quality and resolution using a DSLR camera
(Fig. 5b). As a point cloud may contain holes, we fit a paramet-
ric lens model (Fig. 5c) as follows. We assume a disc-like and
radially-symmetric shape. The mean positional vector µ of the
point cloud and the eigenvectors e1,e2,e3 provide a convenient
coordinate space for the lens reconstruction, as µ is equal to the
center of the lens and together with e3 describes the rotation axis
r = µ + te3. Because of the symmetry assumption, we only need to
derive the 2D profile (Fig. 5c). It can be conveniently described by
two 2nd order polynomials for the front and back curvature. We ro-
tate each point of the point cloud around r onto the plane centered
at µ and spanned by e1,e3. We then fit two 2nd order polynomials
to the point cloud, one for the front facing points and one for the
backfacing points [33]. This approach also increases robustness as
the symmetry assumption leads to a better use of the redundancy in
the point cloud. The lens is then reconstructed from this parame-
terized profile (Fig. 5d).

Index of Refraction Since the lens’ index of refraction (IOR)
is wavelength-dependent, we estimate it for infrared and the visi-
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ble spectrum to incorporate both light paths in our HMD (Fig. 2).
The following procedure is the same for both, only the recording
camera is exchanged. We apply an analysis-by-synthesis approach
based on the lens’ geometric properties. First, we record a front
view of a circular calibration pattern (Fig. 6a) having an outer di-
ameter of 50mm at a known distance and calibrate the cameras as
before. After adding the lens between camera and pattern we take
several images at different known distances between pattern and
lens (Fig. 6b). We then optimize the IOR by comparing syntheti-
cally rendered scenes of the lens and calibration pattern (Fig. 6c)
using the physically-correct and wavelength-dependent Maxwell
Renderer [5] to the recorded camera images. We estimated an IOR
NI = 1.472 for the wavelength λ = 950nm and NV = 1.515 for
λ = 560nm which are typical values for materials like Acrylite,
Lucite or Plexiglass.

4.2 User Calibration
Most components of our system can be calibrated at production

time (Sec. 4.1). User-specific components, such as the lens holder
position, interpupillary distance, and eye-to-lens distance need to
be estimated for every user separately. These are important for a
natural 3D impression and meaningful eye-tracking results, as they
are essential to predict the virtual viewpoint, which can otherwise
only be roughly estimated. The components of the gaze simulation
model being calibrated are visualized in Fig. 7a. First, the user
adjusts the lenses parallel to the screen, to have a frontal view when
looking straight. Next, the lens distance is adjusted until the screen
appears sharp.

Lens-Holder Localization. To detect the lens-holder position,
and, hereby, the lens’ position, we use the white IR reflecting ring
on the backside of the lens holder (Fig. 7a). Additionally added in-
frared LEDs are located around the eye tracking camera solely for
illuminating the ring (Fig. 2 (F), red LEDs at the camera). When
turning off the screen and the interior LED ring, the lens holder
can be detected by thresholding the image captured by the eye-
tracking camera. We then derive its center and eccentricity [22].
We compute the 3D position and orientation of this ring again via
an analysis-by-synthesis procedure; we render a model of the ring
and iteratively optimize its position and rotation via a gradient-
descent approach based on the difference between the ellipse cen-
ters, size and eccentricity, which proved fast and accurate.

Eye Calibration. Next, we estimate the eye’s distance to the
lens. The main problem is that a view of the eye does not provide
useful information regarding scale, as eye sizes differ. Further, the
view might be distorted in complex ways by the converging lenses.
Analysis-by-synthesis can again help us in this situation. The LED
ring in the lens holders produces a characteristic reflection on an
eye, also known as glint (Fig. 7b–c). This reflection can be used to
determine the distance between lens and eye. Nonetheless, to make
this step possible we need a physically-plausible eye model.

Eye Model The eye ball of a healthy adult human has a quite
consistent shape [9]. The main part can be modeled as a sphere ro-
tating around its center with a diameter of 24mm and only few indi-
vidual deviations (Gaussian distribution with a standard deviation
of±1mm). The cornea forms an additional spherical surface above
the sclera with a smaller radius of 7.8mm. The direct light reflected
from the sclera produces the most prominent glints. We set the IOR
of the cornea to ND = 1.2 and the eye fluids to ND = 1.276 [9].

Eye Registration We extract the glints using a simple thresh-
old tG = 0.9. When a user looks along the optical axis of the eye
tracking camera (taking the reflection from the dichroic mirror into

account) the glints form an almost perfect circle on the sclera, oth-
erwise this circle is distorted. The shape of the glints can, thus, be
used in a feedback loop to guide the user’s view towards the opti-
cal axis (Fig. 7b–c). To this extent, the user is asked to focus on a
marker on the screen. The glints from the resulting image are ex-
tracted and an ellipse is fitted to it [22]. The marker is then moved
and the ellipse is evaluated again. The movement of the marker is
given by α(cg−cp) where cg is the glint-ellipse center in pixel co-
ordinates and cp the estimated pupil-center position. The process is
computationally cheap and α can be small, which lets the marker
smoothly move over the screen until the algorithm converges.

We then derive the eye-lens distance and the absolute 3d position
of the eye based on the eye model. In practice, we rendered the
characteristic positions, where the glints are as circular as possible,
for different eye distances and positions and record the diameter
and center of the fitted ellipse. The result is a Look-Up table, which
allows us to calibrate for the eye position quickly.

Gaze Calibration. Finally, for the gaze estimation, we need a
mapping from pupil positions in the eye-tracking camera to screen
positions. We rely on our virtual HMD model configured with the
derived calibration values and estimated eye position. Here, we
compute the light path from a pixel, representing a detected pupil
center, of the eye-tracking image over the dichroic mirrors, through
the lens towards the eye. By construction, this ray has to cross the
eye at the pupil center (Fig. 2 red light paths). We can, thus, map
eye-tracking camera pixels to an eye rotation. Similarly, the eye
rotation can be used to determine a screen position by computing
the light path from the eye through the lenses onto the screen (Fig. 2
green light paths). This mapping is precomputed for approximately
1300 virtual eye rotations per eye covering the full motion range of
the human eye (Fig. 8k, black and red dots). Using barycentric
interpolation, we can then map each potential pupil position cp in
the eye-tracking camera (Fig. 8k, green dot), to a view vector~v and
a pixel position on the display cs.

Figure 7: Simulated gaze model. Virtual gaze setup (a), realistic
synthetic eye (b), glints and pupil mask for characteristic gaze (c).

5. MONOCULAR PUPIL TRACKING
Our gaze estimation (Sec. 4) relies on the current pupil posi-

tion in the eye-camera image. The pupil extraction is described in
this section, for which noise, (partial) occlusions by the eye lid or
lashes, and dust or smears on the lens or mirror need to be handled.

Since our off-axis illumination units result in a dark pupil, we de-
tect low intensities, which differ significantly from the high amount
of reflected infrared light from the sclera and limbus. The limbus
only absorbs more light in the visible light spectrum.

For the pupil tracking (Alg. 1), we rely on the grayscale-image I
normalized to [0,1] and a binary mask ML indicating pixels belong-
ing to the lens, which is obtained during the calibration step. For
real-time performance and robustness, we first determine whether
the eye is closed, open or halfway closed. Each configuration is
dealt with separately (Alg. 1).
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binarization (c), pupil closing (d), contour filtering (e), pupil ellipse fitting (f). Bottom row: Partially occluded pupil case, Alg. 5. Captured
image (g), pupil filtering and binarization (h), contour point filtering (i), pupil ellipse fitting (j). Barycentric interpolation for pupil-to-screen
mapping (green: current pupil position, black: precomputed positions, red: closest samples used for interpolation) (k).

Algorithm 1 Pupil Tracking (I,ML)

1: p̃← Approximate Pupil Position (I,ML) . Alg. 2
2: if I(p̃)> tvisibility then
3: Eye is closed
4: else
5: θ ← Compute Pupil Occlusion (I,ML, p̃) . Alg. 3
6: if θ < tocclude then
7:

{
p,ex,ey,φ

}
← Detect Visible Pupil (I,ML) . Alg. 4

8: else
9:

{
p,ex,ey,φ

}
← Detect Occluded Pupil (I,ML)

10: . Alg. 5
11: end if
12: end if
13: return

{
p,ex,ey,φ

}
Approximate Pupil Position To make a fast guess of whether

the eye is closed or not we approximately locate the pupil position
as follows (Alg. 2):

Algorithm 2 Approximate Pupil Position (I,ML)

1: pcum← (0,0) wcum← 0
2: for p ∈ML do
3: w← (1− I(p))γ

4: pcum← pcum + p ·w
5: wcum← wcum +w
6: end for
7: return p̃← pcum/ wcum

We accumulate a weighted average of all pixel positions p within
the lens mask ML. Each pixel p contributes with a weight w deter-
mined by (1− I(p))γ with γ = 10. Hence, darker pixels (higher
likelihood to be the pupil) will contribute more. The weighted-
average position is our initial pupil-position guess p̃.

Occlusion Estimation If the intensity in a 70× 70 pixels wide
window around the initial pupil position is above the threshold
tvisibility = 0.4, the eye is regarded as being closed. If the eye is
not completely closed, we further refine our strategy by classifying
it as either completely visible or partially occluded. The amount of
occlusion is defined by two measures m1 and m2 (Alg. 3). While
not being sufficient on their own the combination is significantly
more robust. The first m1 estimates the presence of eye lashes. The
second m2 tries to detect the amount of non-pupil pixels. Based

on their combination, the eye is declared visible or partially visible
and the corresponding detection algorithms are run.

To compute m1 and m2, we first remove glints by inpainting all
pixels with a higher intensity than tG = 0.9 [12]. These appear
especially in the 1.5 – 2 mm transition zone of the curvature of
the sclera and the curvature of the corneal surface that forms an
external and internal surface groove (scleral sulcus) [9]. For more
conservative results we slightly dilate the inpainted area MGlints.

We then detect eye lashes occluding the pupil in the resulting
image INoGlints. We restrict our computations to a small area MROI
of radius r = 35 pixels around p̃. Then a morphological opening
filter is applied (minimum before maximum filter) to INoGlints with
a kernel size kMinMax = 13, removing finer structures, such as eye
lashes. The first term m1 is then defined as the sum of absolute
intensity values of the difference image I∆ = |IMinMax− INoGlints|.

The second term aims at estimating the number of non-pupil pix-
els, which are brighter. To this extent, the gray value range [0.4,0.7]
in INoGlints is linearly mapped to the range [0,1]. Other values are
clamped accordingly. The second term m2 is then defined as the
sum of the resulting intensities inside MROI . Both terms are com-
bined into the final occlusion score θ = 0.5 · (1/3m1 +2/3m2). If
θ < tocclude = 0.3 the eye is considered visible otherwise as par-
tially occluded. The corresponding detection algorithm is applied.

Algorithm 3 Compute Pupil Occlusion (I,ML, p̃)

1: MGlints←
{

p ∈ML | I(p)> tG
}

. Glint Mask
2: MGlints← FDilate(MGlints)
3: INoGlints← FInpainting(I,MGlints) . Glints removed
4: IMinMax← FMin(INoGlints,kMinMax) . Eye lashes removed
5: IMinMax← FMax(IEyeLashes,kMinMax)
6: I∆← |IMinMax− INoGlints|
7: MROI ← FcircMask(I, p̃,r1)∩ML
8: I∆← Normalize(I∆∩MROI)
9: m1← ∑p∈MROI

I∆(p)/|MROI | . First Metric
10: IEyeLashes← F(Tonal Correction) (INoGlints, [0.4,0.7])
11: MROI ← FcircMask(I, p̃,r2)∩ML
12: m2← ∑p∈MROI

IEyeLashes(p)/|MROI | . Second Metric
13: θ ← (m1 ·w1 +m2 ·w2) ·0.5 . Combined Metric
14: return θ

Visible Pupil We will now describe how to localize a visible or
moderately-occluded pupil (Alg. 4). We build upon the observation
that pupil pixels in comparison to its surrounding are well separated
in an image histogram (Fig. 8a–b). We thus compute a histogram
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Algorithm 4 Detect visible pupil (I,ML)

1: IBP← 1− I . Inverts to bright pupil image
2: H← Histogram(IBP,ML)
3: H← FMedian(H,kHistMedian)
4: h← findGrayvalueOfBrightestLocalMinimum(H)
5: MPupilSeg←

{
p ∈Ω | IBP(p)> h

}
6: B← Blob Detection(MPupilSeg)

7: b← argmaxb̃∈B HullArea(b̃)
8: if HullArea(b)< tb ·∑b̃∈B HullArea(b̃) then . Merge blobs
9: b← b∪

{
b̃ ∈ B | ‖Centroid(b)−Centroid(b̃)‖< d

}
10: end if
11: C← Convex Hull Contour(b)
12: C← Remove Close Points(C)
13: C← Remove Colinear Points(C)
14:

{
p,ex,ey,φ

}
← Ellipse Fit(C)

15: return
{

p,ex,ey,φ
}

Algorithm 5 Detect occluded pupil (I,ML)

1: I← 2 · I−G∗ I
2: I← FMin(IFilt ,kMin)
3: Ī← Normalize(I)
4: MPupilSeg←

{
p ∈Ω | Ī(p)> tPupil

}
5: B← Blob Detection(MPupilSeg)
6: C← Convex Hull Contour(B)
7: C← FErode(C)
8:
{

p,ex,ey,φ
}
← Ellipse Fit(C)

9: return
{

p,ex,ey,φ
}

H on the inverted input image IBP = 1− I with 64 bins. A me-
dian filter of size kHistMedian = 2 removes outliers. Marking pixels
brighter than a threshold h separates the pupil well. Following our
observations, we set h to be the grayvalue belonging to the brightest
local minimum within H (Fig. 8b, red bar in histogram).

Next, we want to clean up the derived pupil pixels and perform a
blob detection (B) to find connected components. Inspired by Chen
et al. [15], we work on the convex hull for every blob in B to remove
residues of the glint removal. In difference to [15], we check if the
blob detection already detected the pupil. We assume this to be
the case if the largest convex hull of each blob covers more than
70 % of the summed area of all blobs. Otherwise, we merge blobs
whose center is closer to the center of the largest blob (Fig. 8c) than
half the maximum extent of the largest blob d. The contour of the
convex hull of the merged blobs then gives us a first estimate of the
pupil contour C (Fig. 8d). We refine this contour by first removing
any point closer than 5 pixels to each other and secondly removing
colinear points since those are probably generated by the (mostly)
straight geometry of the eye lid (Fig. 8e). Finally, we fit an ellipse
to the remaining contour points to obtain position p, eccentricity ex
and ey and angle φ of the projected pupil (Fig. 8f).

Partially Occluded Pupil The last case to treat is a strongly
occluded pupil (Alg. 5). Here, we boost the contrast using un-
sharp masking; I = 2 · I−G ∗ I (Fig. 8h), where G is a Gaussian
and ∗ the convolution operator. We then apply a minimum filter
with radius kMin = 21 pixels to remove eye lashes. By normal-
izing the input image I to the range [0,1], we can detect pupil
segments by an adaptive thresholding. Setting the threshold to
tPupil = 0.12+(‖ p̃− pE‖)0.5 derives an approximate mask of the
pupil fragments, where pE is the pixel position of the center of the
eye ball. We chose this formula to countervail an observed vignette
effect at the border of the eye.

As in Alg. 4, we perform the blob detection and merge the re-
sulting blobs to estimate the convex hull of the result (Fig. 8h). To
counteract the minimum filter, we erode the result with a similar
kernel of size kMin. Finally, we extract the contour of the blob and
again perform an ellipse fitting to obtain the ellipse parameters of
the projected pupil (Fig. 8j).

6. APPLICATIONS
We implemented several application for our HMD with inte-

grated eye tracker, based on the freely-available Unreal Engine
and game content [4]. Adaptive Depth of Field Rendering We
simulate the accommodation reflex inspired by previous studies for
desktop applications [25, 32]. In reality, accommodation allows us
to focus on objects at arbitrary distances by flexing our eye lens.
In consequence, other objects are naturally blurred. To compute
the focus distance, we cast a ray into the scene starting at the view-
point and directed by the estimated viewing direction from our gaze
estimation of one eye. We then determine the distance to the sur-
face the ray hits first (Fig. 9) and render the scene with the appro-
priate depth-of-field effect turned on. When thin objects are very
close to the viewer a binocular eye tracking is required, where the
convergence point of both viewing rays defines the focal distance.
Nonetheless, in most scenarios the increase of computational effort
seems unnecessary.

Figure 9: Real-time Gaze-contingent Rendering. Foveated ren-
dering (left): Rendering quality and saturation is decreased for pe-
ripheral vision. Adaptive depth-of-field effect (center, right): near
and far focus distances. Gaze vector shown as red marker.

Foveated Rendering In the second application, we show that
our gaze tracker enables simulation of a gaze-contingent display.
Previous work showed the potential of this techniques [35, 19].
Due to the rapid acuity fall-off from foveal to peripheral vision ren-
dering could massively benefit from Gaze-contingency. We demon-
strate the effect by rendering the scene with five different resolu-
tions describing circles of different radii on the screen. The highest
resolution is used in the foveal region where the user is looking at.
The render resolution is reduced by a factor of two for each follow-
ing circle. We smoothly blend between each render resolution to
avoid visible resolution seams.

Our current implementation is just a simulated Foveated Ren-
dering and does not lead to an actual performance boost for the
renderer we employed. When using a path tracer the number of
samples per pixel could be reduced in the peripheral vision whereas
in a rasterizer a lower level-of-detail or less texture lookups could
be performed (Fig. 9).

Additionally, similar techniques could be used to simulate var-
ious visual field defects, such as hemianopia (partial blindness),
color blindness, retinitis pigmentosa (night blindness, blurring of
vision, loss of central vision, and others) or pigmentary retinopathy
(deposits of pigments) (Fig. 9, left).
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Gaze Transfer for Avatars In this application, we enhance im-
mersion by mapping the gaze direction and head movements of the
user onto an avatar standing virtually in front of him. The eyes of
the avatar rotate as the user rotates his eyes and the avatar blinks as
the user blinks (Fig. 10). This increases perceived realism for ev-
ery entity in VR and offers novel opportunities for self-expression.
Gaze transfer can be a valuable extension for telepresence applica-
tions or user-to-user communication within VR applications.

Gaze Maps are an effective visualization of the user’s gaze over
time and an effective tool for user experience studies [36]. For a
demonstration using our binocular eye tracker, we implemented a
player for stereoscopic movies and recorded the gaze for multiple
users when watching the video. The gaze maps have been derived
by plotting and filtering the estimated screen positions for all the
viewers. The result is shown for one frame of the movie in Fig. 11.
Most viewers fixated the person in foreground as well as the pic-
ture in the background and the table. We used a temperature color
coding for visulization (hot areas are fixated more than cool areas).

Figure 10: Gaze Transfer and Avatar Animation. (Left, center)
Eye tracking enables more expressive and natural character anima-
tion. The estimated pupil size and blink event can also be used to
animate eye adaptation and blinks instantly (right).

Figure 11: Gaze visualization. Gaze maps for images or videos
show the fixated display area averaged over time or users. Temper-
ature color scheme represents fixation quantity.

7. EVALUATION
In this section, we evaluate our method by estimating tracking

quality and performance. We tested our pupil detection algorithms
against two other state-of-the-art algorithms [31, 15]. We conclude
the section with a user study with 33 participants.

Performance Evaluation We have implemented our eye track-
ing framework in C++ using the OpenCV algorithm library [7].
Our primarily CPU-based processing pipeline achieves a total end-
to-end latency from capturing the eyes by the cameras until a ren-
dered frame is visible to the user of 32 ms on current hardware
(i7-4930K @ 3.4 Ghz, GeForce GTX 780 Ti). The pupil estima-
tion of both eyes and the camera capture threads run in parallel
on multiple cores of the CPU. Some of the preprocessing filters

Figure 12: Gaze direction error. The absolute error for both eyes
over the available FOV, given in screen pixels.

(sharpening, blur) run in CUDA on GPU. The eye-tracking camera
resolution is 640×480 pixels at 75 frames per second. Timings for
each step of the processing pipeline are given in Table 1.

Process step Duration (milliseconds)

Frame grabbing (@75 Hz) ≈ 13
Pupil estimation ≈ 9
Gaze estimation < 1
Rendering (Application) ≈ 10

Total Latency ≈ 32

Table 1: End-to-end latency estimation.

Tracking Quality In this section, we evaluate our pupil-tracking
algorithm in terms of tracking stability and tracking precision. Af-
ter having calibrated the eye tracker for the two different male users
with corrected to normal vision, we measured the tracking preci-
sion. We conducted a fair-minded comparison to the STARBURST
eye tracking algorithm of Li et al. [31] and the auto-threshold algo-
rithm of Chen et al. [15] working for near-field eye tracking without
relying on the corneal reflection. As input we used the glint-free
images as these are required by all algorithms.

T1 Pupil Position and Size We test the pupil position and size
objectively against ground-truth data derived from manually cre-
ated pupil masks of a 1987 frames video recorded with both eye
tracking cameras. The error values for pupil position and size are
computed by the differences of the extracted pupil-ellipse position
and eccentricity. The result of the test is summarized in Table 2.
The pupil position error εPos is computed as the average pixel devi-
ation of the computed position pe from the reference position pgt :

εPos =
1
n

n

∑
i=1

(∣∣pe− pgt
∣∣) (1)

and the pupil size error by the equation

εSize =
1
n

n

∑
i=1

(∣∣ex− ex,gt
∣∣+ ∣∣ey− ey,gt

∣∣) , (2)

where ex,ey are the eccentricities of the estimated ellipse. In terms
of accuracy, our algorithms clearly outperforms the competitors as
they can hardly deal with partially occluded pupils in which case
our algorithm clearly stands out. Independent from the used pupil
detection algorithm the pupil size is closest to the real pupil size for
a central view. The pupil size artificially increases as the view tilts
towards the sides due to the increasing lens distortion resulting in
partial magnification of the projected pupil.
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Test εSize (px) εPos (px)

Ours 0.04 2.16
Auto-threshold [15] 0.63 21.67
Starburst [31] 0.24 13.15

Table 2: Pupil position and pupil size accuracy.

T2 Gaze Direction Error We also evaluate the difference of the
screen position returned by the eye tracker and the reference screen
position set by a visible marker on screen as

εScreen =
1
n

n

∑
i=1

∣∣se− sgt
∣∣ εAng = tan−1 εScreen

dEyeScreen
(3)

where se and sgt are the estimated and reference screen positions
and n the number of tracking samples (n = 30 in our test). The
pixel error is then transformed into the angular error by estimating
dEyeScreen via ray tracing using the calibrated model. The error is
evaluated for thirty different positions.

The error ranges from εAng ≈ 0.5 ◦to εAng ≈ 3.5 ◦, being gen-
erally higher at the borders of the screen due to stronger occlusion
and therefore aggravated pupil position estimation. The interpo-
lated screen position error is visualized in Fig. 12.

User Study We tested our eye tracker with 33 participants (25
males, 8 females); 15 had normal vision, but 18 had corrected-
to-normal vision. The current prototype does not support wearing
glasses when using the HMD. However, the lenses can be adjusted
to compensate for a wide variety of ametropia and hypertropia [17].
Every person started with the user calibration procedure and then
was able to use the Adaptive Depth-of-Field application (Sec. 6).

Afterwards, we asked the users to rate certain aspects of the de-
vice (update rate, latency, stability, accuracy) and the application
(naturalness, usefulness, user experience). The complete question-
naire and evaluated numbers are included in the supplemental ma-
terial. The evaluation of the user feedback is visualized in Fig. 13.

Summarizing the results the user feedback was very positive with
regard to the user experience and evaluation of the usefulness of the
system. Every user mentioned that they can think about and want
gaze usage in many application using the presented HMD.

The stability and accuracy was rated positive but not completely
convincing yet. There were two major issues, which explain the
reduced rating. The system is currently an early prototype, and it
includes disturbing redundant cables from the cameras, as well as
an inflexible display cable, which resulted in slight shifts of the
HMD when turning the head, which reduced the accuracy of the
gaze estimation. Another issue for some participants was the usage
of mascara on the eye lashes which negatively influenced our pupil
estimation resulting in a reduced user experience.

8. DISCUSSION AND FUTURE WORK
Limitations The concept of adjustable lens controllers provides

a sharp vision even for people usually wearing glasses. Wearing
glasses inside the HMD is an open problem as this would require
larger lens-to-eye distance, larger lenses, and a larger screen for the
same view. A strict positioning of the HMD with respect to the
head is also crucial. Otherwise a recalibration becomes necessary.

Long-term user study In this work, we tested the tracking qual-
ity of our gaze estimation algorithm just for a small number of peo-
ple and a limited time (several minutes) of usage. In the future,
we plan a larger user study to improve the hardware design and
software of our prototype. Additional studies with longer usage
sessions will provide more information about robustness, usability
and wearing comfort.
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Figure 13: User study results. Blue bars show user ratings con-
cerning specific aspects (entitled on the left). Scale ranging from
[1, 6] (negative/positive). Black bars represent standard deviation.

Auto-calibration In the literature there are software methods for
auto-calibration that rely on natural scan pathes of the environment
and provide a seamless transition between calibration and interac-
tion phase [34]. These concepts may be beneficial for our system.
However, to the best of our knowledge none of those methods have
been tested within an HMD yet. Alternatively, by using additional
hardware, it might be possible that the calibration process can be
largely simplified or completely automated. Klefenz et al. and
Kohlbecher et al. exploit the precalibration in a stereoscopic cam-
era setup to track the pupil without additional user calibration [28,
29]. Alternatively a depth sensor could provide valuable informa-
tion about the actual anatomy of the individual eye. An automated
calibration process seems interesting, even if additional hardware
would increase weight and complexity of the device.

Applications With the presented applications we only scratch
the surface of possible VR scenarios. Many other applications are
enabled with instant knowledge of the users gaze or at least could
benefit from this input, e.g., gaze-based selection and manipulation
or studies on user interfaces.

Perception studies can assess the potential of eye tracking to ex-
ploit or examine the perception of the human visual system or an
individual user. These insights may lead to methods, which will im-
prove viewing experience or accelerate the rendering process. Per-
ception studies also enable evaluation of simulations in VR, e.g., in
the fields of assembly processes or training for aerospace, military
or surgery, psychological therapy, or eye disease simulation.

Using eye tracking as an input device enables novel gaze-based
interaction metaphors, hands-free interaction with Attentive User
Interfaces (AUIs) or an additional communication channel. The
user is able to express his interest naturally by gaze. With additional
cameras our HMD prototype could be extended for Augmented Re-
ality usage (AR) where hands-free interaction is beneficial and pre-
cise IPD estimation and calibration are very important. Instead of
using a closed body, the mirror-based setup, and gaze-estimation
technique could also be used for See-Through HMDs.

9. CONCLUSION
We have presented a complete binocular eye-tracking solution

for head-mounted displays. Our system relies on low-cost compo-
nents that should be affordable for every user group. This aspect
opens the door for a large variety of novel applications and con-
tributes to progress in research. The prototype has been tested by
a small group of subjects. For the future, we will work with a
larger group of people in order to improve pupil detection and user
comfort. We also plan to investigate new ways for continuous and
automatic user calibration.
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