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Abstract 

One of the most powerful characteristics of feature-based 
modeling is the ability to associate functional and engi- 
neering information to shape information in a product 
model. Current feature modeling systems embody this 
paradigm in their graphical user interfaces, providing 
the user with “engineering rich” dialogs aimed at the 
creation of feature instances. Most systems, however, fail 
to consistently maintain the meaning of the features 
throughout the modeling process. For example, a model- 
ing operation on one feature may affect the semantics of 
other features without the user being notified by the sys- 
tem, let alone assisted in overcoming the situation. 

Semantic feature modeling is a declarative modeling 
approach that not only provides a well-defined specifica- 
tion of feature semantics, but also effectively maintains 
this semantics during the modeling process, for all fea- 
ture instances in the model. This paper describes the 
validity maintenance mechanisms of the semantic fea- 
ture modeling approach. These include (i) detecting each 
invalid situation, (ii) reporting it to the user, with appro- 
priate explanation on its causes and effects, and (iii) pro- 
viding the user with a convenient choice of reaction 
hints, aimed at recovering validity in the model. An ex- 
ample modeling session is also given, illustrating which 
high-level user assistance is provided under this ap- 
proach. 

Keywords: feature modeling, feature semantics, validity 
maintenance, validity recovery 

1 INTRODUCTION 

Current feature modeling systems provide the user with 
“engineering rich” dialogs aimed at the creation and ma- 
nipulation of feature instances. In some systems, “fea- 
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tures” occur solely at the user interface level, whereas in 
the product model only the resulting geometry is stored. 
Such systems are in essence only geometric modelers. 
Most other feature modeling systems, see for example 
1151, although they store information about features in 
the product model, fail to adequately maintain the 
meaning of features throughout the modeling process. 
For example, a modeling operation on one feature may 
affect the semantics of other features, without the user 
even being notified by the system, let alone assisted in 
overcoming the situation. 

This is illustrated in the example of Figure 1 on the 
next page. Assume that the two longer blind holes in the 
part were positioned relative to the block right side face, 
whereas the rounded pocket was positioned relative to 
the step side face, as indicated in Figure 1.a. If the width 
of the step is now increased, the rounded pocket overlaps 
with the two blind holes, “suppressing” their circular 
bottom faces from the model boundary, see Figure 1.b. 
Consequently, the two blind holes have now the shape 
imprint of through holes. Although geometrically this is 
correct, it is incorrect in the sense that the meaning, or 
semantics, of the blind holes has been changed. If the 
shape now produced was indeed desired, it might have 
been more appropriate not to use blind holes, but 
through holes instead, attached to the bottom of the 
rounded pocket and the bottom of the base block. 

Reference 1161 provides a good insight into some high- 
level feature validity issues, alerting for inconsistencies 
that might arise from a ndive interpretation of usual 
editing commands on feature models. Some more recent 
research work has focused on validation of features, both 
validity specification [7,101 and validity maintenance 
issues [9, 131. One of the main conclusions of this re- 
search is that a declarative scheme is preferable over the 
conventional procedural modeling approaches. In a de- 
clarative approach, the specification of each feature class 
includes the validity criteria that determine the seman- 
tics of all its feature instances. The feature modeler, in 
turn, is responsible for the maintenance of all features in 
the product model, in conformity with those criteria. 

Research prototype systems that do have some form 
of validity maintenance, see for example 118, 81, are lim- 
ited to the detection of a number of predefined invalid 
situations, for which the only solution offered by the 
modeling system is the rejection of the concerning mod- 
eling operation. This rigid scheme considerably hinders 
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(a) (b) 

Figure 1 - Changing feature semantics with a modeling operation 

the modeling process, yet permitting many unant.icipated 
inconsistencies in the model. 

Semantic feature modeling is a new declarative mod- 
eling approach 111. It provides a well-defined constraint- 
based framework for the specification of feature seman- 
tics in each feature class. Furthermore, it effectively 
maintains this sema.ntics for all features in the product 
model, throughout thte modeling process. 

This paper focuses on the validity maintenance as- 
pects of the semantic feature modeling approach. In par- 
ticular, it emphasizes how assistance can be offered to 
the user of the modeling system, in order to keep the 
design intent in a model in a large variety of situations. 
First, the main aspects of validity specification in a fea- 
ture class are presented (Section 2). Next, the main prin- 
ciples of validity maintenance are discussed (Section 3). 
These are further elaborated into validity checking (Sec- 
tion 4) and validity recovery (Section 5). An example 
modeling session is alsa given, illustrating the high-level 
user assistance provided (Section 6). Finally, some con- 
clusions are drawn on the present work (Section 7). 

2 VALIDITY SF’ECIFICATION IN 
FEATURE CLASSES 

Feature class specification involves specification of its 
shape, its validity conditions, and its interface to the fea- 
ture model, according to the general structure depicted in 
Figure 2. For all aspects, constraints are used. These fea- 
ture constraints are members of the feature class, and are 
therefore instantiated automatically with each new fea- 
ture instance. 

The basis of a feature class is a parameterized 
shape. For a simple feature, this is a basic shape, e.g. a 
cylinder for a hole. A basic shape encapsulates a set of 
geometric constraints that relate its parameters to the 
corresponding shape :faces. For a compound feature, the 
shape is a combination of several, possibly overlapping, 
basic shapes, e.g. two cylinders for a stepped hole. 

The geometry of a feature, designated the feature’s 
shape extent, accounts for the bounded region of space 

comprised by its volumetric shape. Moreover, its bound- 
ary is decomposed into functionally meaningful subsets, 
the shape faces, each one labeled with its own generic 
name, to be used in all modeling operations. For exampl.e, 
a cylinder shape has a top, a bottom and a side face. 

A feature class associates also to each feature shape 
the notion of feature nature, indicating whether its fea- 
ture instances represent material added to or removed 
from the model (respectively additive and subtractive 
natures). 

-F - 

Figure 2 - Feature class structure 

86 



The specification of validity conditions in a feature class 
can be classified into three categories: geometric, topo- 
logic and functional. 

One way of constraining the geometry of a feature 
class is by specifying the set of values allowed for a 
shape parameter. We use dimension constraints applied 
on shape parameters. For instance, the radius parameter 
of a through hole class could be limited to values be- 
tween 1 and 10. Feature shapes can also be geometrically 
constrained by means of explicit relations among their 
parameters. These relations can be simple equalities 
between two parameters (e.g. between width and length 
of a square section passage feature) or, in general, alge- 
braic expressions involving two or more parameters and 
constants. For this, we use algebraic constraints. 

The specification of a feature shape yields a set of 
shape faces providing full coverage of the boundary of a 
volumetric feature. However, for most features, not all 
these faces are meant to effectively contribute to the 
boundary of the modeled part. Some faces, instead, have 
a closure role, delimiting the feature volume without 
contributing to the model boundary. The specification of 
such properties is called topologic validity specification. 

To specify topologic validity in a feature class, we use 
semantic constraints on each shape face. Semantic con- 
straints, first proposed in [51, specify which topological 
variants of a feature instance are allowed, by stating the 
extent to which its feature faces should be on the model 
boundary. Semantic constraints are of two types: on- 
Boundary, which means the shape face should be present 
on the model boundary, and notOnBoundary, which 
means the shape face should not be present on the model 
boundary. Furthermore, both types of semantic con- 
straints are parameterized, stating whether the presence 
or absence on the model boundary is completely or only 
partly required. An example of this is a blind hole class 
for which the top face has a notOnBoundary(completely) 
constraint, the side face has an onBoundary(partly) con- 
straint, and the bottom face has an onBoundary(com- 
pletely) constraint. 

Geometric and topologic validity specifications alone, 
as described above, are unable to fully describe several 
other functional aspects that are inherent to a feature 
class as well. These are better described in terms of the 
feature volume or feature boundary as a whole, and 
therefore require a higher-level specification, not directly 
based on shape parameters or faces. An example of this 
is the requirement that every feature instance of some 
class should somehow contribute to the shape of the part 
model. 

Such functional requirements can be violated by fea- 
ture interactions caused during incremental editing of 
the model. Feature interactions are modifications of the 
shape aspects represented by a feature that affect its 
functional meaning. An example of this is the transmuta- 
tion interaction of the blind hole into a through hole in 
Figure 1. A classification of feature interactions can be 
found in 111. For completeness, it is briefly summarized 
here: 

Splitting Interaction that splits the boundary of a 
feature into two (or more) disconnected subsets. 

Disconnection Interaction that causes the volume 
of an additive feature (or part of it) to become 
disconnected from the model. 

Boundary clearance Interaction that causes (par- 
tial) obstruction of a closure face of a subtractive 
feature. 

Volume clearance Interaction that causes partial 
obstruction of the volume of a subtractive fea- 
ture. 

Closure Interaction that causes some subtractive 
feature volume(s) to become a closed void inside 
the model. 

Absorption Interaction that causes a feature to 
cease completely its contribution to the model 
shape. 

Geometric Interaction that causes a mismatch be- 
tween a nominal parameter value and the actual 
feature geometry. 

Transmutation Interaction that causes a feature 
instance to exhibit the shape imprint character- 
istic of another feature class. 

Topological Interaction that causes the violation 
of a semantic constraint in a given feature. 

We use interaction constraints in a feature class in 
order to indicate that a particular interaction type is not 
allowed for its instances 121. 

Feature constraints and parameters may require exter- 
nal data to be provided at feature instantiation stage - 
the so-called user-supplied data. Those feature members 
constitute the feature class interface. The specification of 
the feature class interface determines how feature in- 
stances will be presented to the user of the modeling sys- 
tem and, thus, how the user will be able to interact with 
them. Essential in the feature class interface is the posi- 
tioning and orientation scheme, which is specified by 
means of attach and geometric constraints, as depicted in 
Figure 2. 

An attach constraint of a feature couples one of its 
faces to a user-supplied feature face, to be chosen among 
those of the features already present in the model. At- 
tach constraints are a kind of coplanar geometric con- 
straints that take into account the natures of the two 
features involved in order to determine the appropriate 
normal orientations, For example, the top and bottom 
faces of a through hole are used to attach it to, say, the 
top and bottom faces of a block, respectively. 

Geometric constraints position and orient a feature 
relative to (faces of) other features present in the model, 
by fixing its remaining degrees of freedom. For this, a 
geometric constraint couples one of the feature faces to a 
user-supplied feature face in the model, possibly with 
some extra numeric parameter(s). For instance, to posi- 
tion a through slot, a distanceFaceFace constraint might 
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Figure 3 - Architecture of the SPIFF modeling system 

be used, which requires an external reference feature 
face and a distance value. 

Some shape parameters may be determined1 implic- 
itly from the feature attachments, e.g. the depth of a 
through hole or the length of a through slot. All other 
shape parameters neecl a user-supplied value at feature 
instantiation stage, and are therefore also included in 
the feature class interface. 

A detailed description of feature class specification 
following the semantic feature modeling approach can be 
found in 131. 

3 VALIDITY MAINTENANCE 

Embedding validity criteria in each feature class:, as de- 
scribed in the previous section, can significantly enhance 
the modeling proces s, as it guarantees that the seman- 
tics of each feature instance created in the model effec- 
tively matches the specific requirements of its feature 
class. In fact, one of the basic ideas of feature modeling is 
that functional information can be associated to shape 
information in a feature model. However, this association 
becomes useless if, for example, the modeling system 
would allow a modeling operation to significantly modify 
the shape imprint of a feature, once added to the model 
with a specific intent. In other words, arbitrarily modi- 
tying the semantics of a feature should be disallowed if 
one wants to make feature modeling really more power- 
ful than geometric modeling. 

Feature model validity maintenance is the process of 
monitoring each modleling operation in order to ensure 
that all features conform to the semantics specified in 
their respective classes. Maintaining feature model va- 
lidity throughout the modeling process requires not only 
managing all its constraints, but also assessing the con- 

formity of each feature in the model with its validity cri- 
teria. This guarantees that all aspects of the designer 
intent captured in the model are permanently kept. 

The two basic principles of validity maintenance can 
be summarized as follows: 

(i) A modeling operation, to be considered as valid, 
should yield a feature model that conforms to all 
constraints. 
This ensures that every feature in the model 
conforms to the designer intent explicitly speci- 
fied up to that moment. 

(ii) After an invaZid modeling operation, the user 
should be assisted in overcoming the constraint 
violations in order to recover model validity 
again. 

This can reduce the frequency of backtracking 
by enlarging the choice of possible reactions to- 
wards validity recovery. In particular, explana- 
tions on what is causing a constraint violation, 
and context-sensitive corrective hints, can sig- 
nificantly improve the modeling process. 

Together with the declarative validity specification 
scheme presented in Section 2, feature model validity 
maintenance forms the core of the semantic feature 
modeling approach. 

This approach has been implemented in the SPIFF 
system, a prototype multiple-view feature-based modeler 
developed at Delft University of Technology [61. Figure ,3 
depicts the architecture of the system. Several system 
modules have been described elsewhere 111, 9, 21, and 
will be only briefly summarized here. 

The Feature Model Manager receives command,s 
from the user via a graphical user interface, and trans- 
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1 - <block> 
2 - <block, step> 
3 - <block, blind slot l> 
4 - <block, blind slot 2> 
5 - <block, through slot> 
6 - <block, through slot, rib> 
7 - <block, through slot> 
8 -crib> 
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(b) Cellular Model (c) cell owner lists 

Figure 4 - Cell owner lists in the Cellular Model 

lates them into elementary tasks, which are then dis- 
patched to the other Managers. It is responsible for the 
control of all modeling operations, and for maintaining 
model validity Furthermore, the Feature Model Manager 
maintains the Feature Dependency Graph, a high-level 
representation of the structure of the product [ll. 

The Feature Dependency Graph contains all feature 
instances in the product model, each of them with its own 
set of entities (e.g. shape elements, parameters and con- 
straints), and all model constraint instances (i.e. con- 
straints that are separately defined by the user, possibly 
between different features in the model, with the goal of 
further specifying design intent). These instances are 
interrelated by the dependency relation, yielding a di- 
rected acyclic graph structure, consisting of the set of all 
model entities (features and model constraints), and the 
set of dependency relations among these entities. A fea- 
ture f, depends on a feature f, whenever f, is attached, 
positioned, or in some other way constrained relative to f, 
(i.e. some feature constraint off, has a reference to some 
entity of feature 6). 

The Feature Manager supervises the model process- 
ing tasks of each modeling operation, which are actually 
performed by the Constraint Manager and the Feature 
Geometry Manager. The Constraint Manager is responsi- 
ble for all constraint solving tasks, maintaining all con- 
straints in the Feature Dependency Graph. The Feature 
Geometry Manager maintains a geometric model of the 
product in the so-called Cellular Model, and takes care of 
updating it as required by each modeling operation. 

The Cellular Model is a non-manifold representation 
of the feature model geometry, integrating the contribu- 
tions from all features in the Feature Dependency Graph 
141. The Cellular Model represents a part’s geometry as a 
connected set of volumetric quasi-disjoint cells, in such a 
way that each one either lies entirely inside a shape ex- 
tent or entirely outside it. The cells represent the point 
sets of the shape extents of all features in the model. 
Each shape extent is, thus, represented in the Cellular 
Model by a connected subset of cells. The cellular decom- 
position is interaction-driven, i.e. for any two overlapping 
shape extents, some of their cells lie in both shape ex- 
tents (and are called interaction cells), whereas the re- 

maining ones lie in either of them. In order to be able to 
search and analyze features and their faces in the Cel- 
lular Model, each cell has an attribute -called owner list- 
indicating which shape extents it belongs to, see Figure 
4. Similarly, each cell face has also an owner list, indi- 
cating which shape faces it belongs to. 

The Interaction Manager is responsible for the 
analysis of the Cellular Model, in order to detect any 
disallowed feature interactions possibly resulting from a 
modeling operation. 

In the remainder of the paper, we will concentrate on 
the role of the Feature Model Manager. In particular, its 
validity maintenance tasks will be described in detail. 
These can be classified into two types of tasks: 

(i) validity checking, performed at key stages of 
each modeling operation; 

(ii) validity recovery, performed when a validity 
checking task detected a violation of some va- 
lidity criterion. 

These are now separately discussed in the next two sec- 
tions. 

4 VALIDITY CHECKING 

As mentioned in Section 3, the first basic principle of 
model validity maintenance is that a valid modeling op- 
eration should entirely preserve the designer intent 
specified so far with each feature, as well as with all 
model constraints. In other words, after a valid modeling 
operation, the feature model conforms to all its con- 
straints. 

Modeling operations can be grouped into two major 
categories: feature operations and model constraint opera- 
tions (or simply constraint operations). Feature opera- 
tions include the following: 

Adding a new feature instance to the 
model This operation creates a new feature in- 
stance of the chosen feature class, and requests 
from the user a full set of initialization parame- 
ter values for the new feature. Together with 
this, all constraint members specified in its class 
are also instantiated, and initialized with the 
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Figure 5 - Generic scheme of a modeling oper.ation 

correspondi:ng user-supplied values for interface 
parameters (e.g. distance parameters and exter- 
nal feature :faces for attach constraints). 

Editing a feature instance in the mod,el This 
operation permits modifying any feature inter- 
face parameter value provided earlier to that 
feature instance. 

Removing a feature instance from the 
model This operation removes from the model 
the feature and all feature constraints instanti- 
ated at its creation stage. 

Consbraint operations are similar to feature opera- 
tions: model constraints can be added, modified and re- 
moved. They are, however, most often specified and exe- 
cuted in “batch form” for user convenience: several new 
model constraints can be added to the model in o.ne step, 
and existing model constraints modified or removed, 
while at the same time some feature constraints can be 
selected to be switched off, in order to avoid geometri- 
cally overconstrained situations. 

The generic scheme of the execution of a modeling opera- 
tion is presented in Figure 5, showing its main internal 
steps. Also shown in the diagram are the various points 
at which the operation can turn out to be invalid. When- 
ever this occurs, the operation branches into the reaction 

loop, instead of following the normal flow, and we say the 
model has entered an invalid state. We now concentrate 
on the description of the main steps in the diagram, and 
on the circumstances under which specific invalid sit-ua- 
tions may arise in each of these steps. An important goal 
here is to enter the reaction loop, if required, with suffi- 
cient knowledge of the current status of the model, so 
that it can be appropriately handled, reported to the user 
and, ultimately, overcome. The reaction loop itself will be 
dealt with in the next section. 

4.1 Dependency Analysis 
This step is only required by the removal of a feature 
from the model. The removal of a feature f is only al- 
lowed if f has no dependent entities (features or model 
constraints) in the Feature Dependency Graph (oth’er- 
wise, such dependent entities would be left referring to a 
non-existing graph node). In case there are entities de- 
pendent on f, they are collected and the operation enters 
the reaction loop. 

4.2 Interaction Scope Determination 
The feature interaction scope (FIS) of a feature operation 
is the set of all feature instances in the model that may 
potentially be affected by the operation. 

For the determination of the FIS, two important no- 
tions with regard to a feature f are: 

. the set of features that overlap with f, either 
volumetrically or with their boundaries; these 
features make up the overlapping set of f, d.e- 
noted OS ( f) , and they are identified by query- 
ing the Feature Geometry Manager, which 
keeps track of all feature shapes and their inter- 
sections in the Cellular Model (see Figure 4); 

. the set of features that depend on fi these fea- 
tures make up the dependency set off, denoted 
DS ( f ) , and they are identified by querying the 
Constraint Manager, which recursively traces :in 
the Feature Dependency Graph the dependency 
relations on f. 

Depending on the modeling operation, the FIS will con- 
sist of different combinations of overlapping and depend- 
ency sets, as follows: 

Adding a new feature instance to the 
model By definition, after adding feature f, 
there are no dependencies of other features on f 
yet, i.e. DS ( f) =0. The FIS of the operation is 
thus limited to 

FIS t (f} u OS(f) 

Editing a feature instance in the model In this 
case, the FIS has to be determined in two steps. 
First, it is initialized as 

FIS t {f) U DS(f) U OS(f) UUOS(fi) 
fiEDS(fl 
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in order to include those features whose overlap 
with feature f or with its dependent features will 
possibly cease after the operation. 

Later on, i.e. after the Cellular Model has been 
evaluated, the FIS is updated, so that all fea- 
tures that only then overlap with feature f or 
with its dependent features are also taken into 
account 

FIS C FIS U OS(f) UuOS(fi) 
fiEDS(fI 

With this scheme, interactions caused or suf- 
fered indirectly by any dependent feature are 
also detected. 

Removing a feature instance from the 
model As pointed out above, this operation re- 
quires that the feature to be removed has no de- 
pendent features, i.e. DS (f) =0. The FIS is 
therefore determined as 

FIS t OS(f) 

The determination of the FIS has as purpose to avoid 
checking for feature interactions in vain later: features 
that are known in advance to be left unaffected by the 
operation are simply not analyzed in the interaction de- 
tection procedure (last step in Figure 5). This strategy 
pays because: 

(i) 

(ii) 

Mostly, feature operations have a localized 
scope, affecting only a small subset of all fea- 
tures in a model. This is particularly apparent 
in large models. 

The information required to determine the FIS 
is explicitly stored in the feature model, either 
in the Feature Dependency Graph or in the 
owner lists of the Cellular Model, and its re- 
trieval has, thus, a low computational cost. All 
that is needed is to query the Constraint Man- 
ager or the Feature Geometry Manager, respec- 
tively (see architecture description, in Section 3). 

(iii)Many feature classes specify several interaction 
constraints for its instances. Checking all of 
them always, i.e. even when these instances 
would fall outside the FIS of an operation, has a 
higher computational cost than that of FIS de- 
termination. 

In other words, for moderately complex, realistic fea- 
ture models, situations for which the above strategy is 
not optimal occur very seldom, namely only: (i) when the 
FIS determined would include (almost) all features, be- 
cause the scope pruning achieved would then be mini- 
mal, yet time consuming; or (ii) when most features in 
the model would have few (or no) interaction constraints, 
because no real detection computations would then be 
pruned out with the FIS. 

4.3 Geometric and Algebraic Solving 
Process 

This step is required by all modeling operations, except 
feature removal. Its goal is to determine or update the 
dimensions, position and orientation of all features in the 
model. This task is performed by the Constraint Man- 
ager, which deploys two dedicated constraint solvers: a 
geometric constraint solver based on extended 3D de- 
grees of freedom analysis [12], and a SkyBlue algebraic 
constraint solver [1’7]. The iterative cooperation of these 
solvers, under the control of the Constraint Manager, is 
described in 181. 

At this stage, modeling operations are considered in- 
valid if this solving process detects: 

(i) an ouerconstruinecl situation, i.e. some feature(s) 
has (have) conflicting geometric and/or algebraic 
constraints, or 

(ii) an underconstrained situation, i.e. the features 
and/or model constraints specified, with the in- 
terface parameter values provided by the user, 
are not sufficient to uniquely determine and fix 
the degrees of freedom of all features in the 
model [ 141. 

In both cases, the operation enters the reaction loop. 

4.4 Dimension Constraints Checking 
When the solving process is successfully concluded, all 
feature shape dimensions have their values assigned, 
and checking of all dimension constraints takes place. 
The modeling operation is considered invalid if some 
feature dimension parameter is out of the range specified 
by the respective constraint. 

4.5 Cellular Model Re-evaluation 
When this step is reached, each feature in the Feature 
Dependency Graph has all its parameters successfully 
updated. In particular, all feature shape extents have 
their dimensions, position and orientation fully deter- 
mined. The Cellular Model may thus be updated, so that 
the effects of the operation are also reflected in the 
evaluated geometric model. Detailed Cellular Model 
processing algorithms can be found in [4l. According to 
the particular feature operation, these can be summa- 
rized as follows: 

Adding a new feature instance to the 
model The shape extent of the new feature is 
added to the current Cellular Model. For this, 
the nonregular cellular union operation is used, 
which computes the cellular decomposition de- 
scribed in Section 3, and propagates the owner 
list attributes among the relevant cells and cell 
faces in the Cellular Model. 

Removing a feature instance from the 
model This is carried out in three steps: (i) all 
references to that feature are removed from the 
owner lists of Cellular Model entities; (ii) cells 
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Figure 6 - Undo mechanism using the operations stack 

with an em.pt;y owner list are removed from the 
Cellular Mlodel; and (iii) adjacent cells and cell 
faces with the same owner list are merged. 

Editing a feature instance in the model In this 
case, only the edited feature, and all its depend- 
ent features in DS ( f ) that are also modified by 
the operation, need to be taken into account. 
These are removed from the Cellular Model and 
then re-added with their new parameters, using 
the add and remove operations just described. 

4.6 Interaction Detection 

Once the Cellular Model has been updated, detection of 
disallowed interactions takes place. At this stage, a mod- 
eling operation is considered invalid if any sem.antic or 
interaction constraint -is violated for some feature in the 
FIS, previously determined. Each constraint violation is 
recorded by the Interaction Manager. The other manag- 
ers are queried, in order to obtain the specific data re- 
quired by each interaction detection algorithm. Details 
on the interaction detection methods and algoritlhms can 
be found in [21. Eventually, the set of constraint viola- 
tions, if any, is analyzed, and their causes are identified 
and passed to the reaction loop. 

5 VALIDITY RIECOVERY 

When a modeling operation is invalid, for any reason 
pointed out in the previous section, a valid model should 
be achieved again. Thi,s is straightforward if the model- 
ing operation is cancelled: all that is needed is to back- 
track to the valid model state just before executing it, by 
“reversing” the inval:id operation. According to their type, 
invalid operations are reversed as follows: 

Adding a new feature instance to the 
model The added feature is removed from the 
model, using the feature removal operation. 

Removing a feature instance from the 
model The removed feature is added back to 
the model, using the feature adding operation 
with the original parameter values. 

Editing a feature instance in the model The 
original parameter values of the edited feature 
are restored, using another feature editing op- 
eration, in all regards similar to the first opera- 
tion. 

Constraint operations Each of them is reversed 
similarly to the feature operations (i.e. added 
constraints are removed, modified constraints 
are restored, etc.). 

Reversing a modeling operation can be done very effi- 
ciently under our approach. The parameter values pos,si- 
bly required for undoing each modeling operation are 
kept in a log, the so-called operations stock. Every mod- 
eling operation is registered in this stack, as well as the 
information whether it led the model to a valid state or 
not. Undoing is therefore always possible, at any moment 
in a modeling session, by popping operations from tlhe 
stack and executing their reverse operation until a “valid 
state” marker is found. This is depicted in Figure 6: as- 
suming the insertion of the stiffener is invalid, that op- 
eration (the last on the operations stack) is popped from 
the stack and undone to restore the original situation. 

However, to always have to recover from an invalid op- 
eration by undoing it is too rigid. It is often much more 
effective to constructively assist the user in overcoming 
the constraint violations, after an invalid modeling o.p- 
eration, in order to recover model validity again. In most 
cases, if the user receives appropriate feedback on the 
causes of an invalid situation, it is likely that corrective 
actions other than undoing, which restore model validity 
as well, might preferably be chosen. 

We call this process validity recovery, and it empha- 
sizes the importance of a user dialog in terms of features 
and their semantics. Validity recovery includes reporting 
to the user constraint violations, documenting their scope 
and causes, and, whenever possible, providing context- 
sensitive corrective hints. 

To achieve this, a corrective mechanism was devised 
-the reaction loop, represented in Figure 5- which is ac- 
tivated whenever an operation turns out to be invalid. 
The user can then specify several modeling operations in 
a batch (typically editing features and/or model con- 
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straints), and execute them, in order to overcome the 
invalid model situation. Execution of these reaction op- 
erations follows the same scheme of Figure 5, which 
means that their outcome is analyzed, checking for va- 
lidity at each stage, just as for “direct” modeling opera- 
tions. The reaction loop is only exited when, as a result of 
the specified reactions, all constraints are satisfied 
again. At any stage when the model is invalid, the user 
may give up attempting to fix it by specifying more reac- 
tions, and backtrack to the last valid stage (i.e. right be- 
fore the operation that entered the reaction loop). Again, 
undo is here possible because all reaction operations exe- 
cuted are also pushed onto the operations stack, and can 
thus be reversed. 

The specification of reaction operations is assisted by 
automatically generated hints, which document each 
constraint violation detected, and support the validity 
recovery process. Documentation of constraint violations 
varies with the operation step at which the reaction loop 
is entered, and with the type of constraint involved. Re- 
ferring to the scheme of Figure 5, we have: 

Dependency analysis The user is presented a list 
of all entities that depend on the feature f to be 
removed, in order to decide how to handle each 
of them. For example, the user might choose to 
remove with f some of its dependent entities, but 
to modify others, by making them dependent on 
another feature. 

Geometric and algebraic solving process For 
both over- and underconstrained situations, the 
reaction loop notifies the user of where the con- 
flict was found, highlighting the features in- 
volved in a viewing camera. The user can then 
make the appropriate corrections (typically, 
modifying some of the features or constraints 
involved). 

Dimension constraints checking The user is no- 
tified about the particular feature and parame- 
ter where the conflict was found, as well as 
about the admissible range for that parameter. 

Interaction detection For each interaction de- 
tected, the user is notified of its causes (mostly 
the features creating the interaction), and of its 
concrete effects (e.g. a feature face or parameter 
affected). According to the particular interaction 
type (see Section 2), specific reaction choices are 
given. Examples of these are: 

l transmutation interaction: replace the 
transmutated feature by another feature in- 
stance of the identified feature class (for ex- 
ample, after adding the stiffener to the 
model in Figure 6, the user might replace 
the through hole feature instance by a blind 
hole feature instance); 

. geometric interaction: re-attach the fea- 
ture affected, by replacing its attach refer- 
ence face with a parallel face of the feature 

causing the interaction (an example of this 
is given in the next section); 

. absorption interaction: remove from the 
model the absorbed feature; 

. splitting interaction: replace the split fea- 
ture by two (or more) instances of the ap- 
propriate feature class(es). 

In all cases above, the scope of the reaction choices made 
available to the user is restricted to those features and 
model constraints that are somehow involved in the in- 
valid situation (i.e. features that overlap or have a de- 
pendency relation with the affected feature). This helps 
the user in concentrating validity recovery efforts on ef- 
fective and meaningful reactions. 

6 EXAMPLE MODELING SESSION 

The usefulness of the validity checking and recovery 
mechanisms is illustrated in this section with examples 
taken from a modeling session with the SPIFF system. 

The user starts the modeling session with opening 
an existing model, see Figure 7.a. For each subsequent 
modeling step, the invalid situation reported occurs be- 
cause the underlying feature classes do specify the va- 
lidity criteria violated at that stage. 

Step 1 (Figure 7) The user attaches a rib feature to the 
bottom of the through slot. The rib feature class, how- 
ever, prescribes a minimum width value, not obeyed by 
this instance, thus the system reports a dimension con- 
straint violation. The user corrects this by adjusting the 
rib width to the minimum value allowed, as shown in the 
model of Figure 8.a. 

Step 2 (Figure 8) Subsequently, the user attempts an 
alternative design for the part, re-attaching the through 
slot from the top of the block to the bottom of the step, 
see Figure 8.b. Consequently, the rib feature, which is 
dependent on the through slot, is also displaced with it. 
However, the upper region of the rib intrudes into the 
subtractive volume of the step. This is disallowed by the 
validity criteria of the step (by means of a volumetric 
clearance interaction constraint), thus the operation is 
notified as invalid, and the situation is reported to the 
user. 

To recover from this interaction, the system suggests 
modifying the rib and/or the through slot. In this case, 
the user opts for increasing the slot depth. 

Step 3 (Figure 9) By mistake, the user supplies too high 
a value for the slot depth, causing the model to become 
disconnected. Although the previous clearance interac- 
tion on the step is indeed overcome, now a new invalid 
situation -the model disconnection- occurs and is re- 
ported. As a reaction to this, the user may readjust the 
slot depth, specify a larger height for the block, or de- 
crease the step depth (or a combination of these reac- 
tions). In this case, he chooses to decrease the slot depth, 
see Figure 9.b. 
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(b) 

Figure 7 - Step 1: reporting a 
dimension constraint violation 

(a) 

+ 

(b) 

Figure 8 - Step 2: reporting a volume 
clearance interaction 

As remarked in the previous section, features that 
are irrelevant to overcome the invalid situation, for ex- 
ample the two blind slots, are not editable at this stage of 
the reaction loop. 

Step 4 (Figure 10) At this stage, the user chooses for a 
variant of the part without the step feature, and issues 
its removal from the model. Because the through slot is 
dependent on the step, and thus indirectly also the rib, 

(a) 

(b) 

Figure 9 - Step 3: reporting a 
disconnection interaction 

the system requires these dependencies to be eliminated 
prior to removing the step. Removal of the dependent 
features from the model and modification of their at- 
tachments are among the possible reactions suggested by 
the system. The user chooses to re-attach the through. 
slot to the top face of the block, by which its dependent. 
rib is also automatically displaced, as shown in Figure 
1l.a. 
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(a) 

4 

(b) 

Figure 10 - Step 4: reporting 
dependencies before a feature removal 

(b) 

Figure 11 - Step 5: reporting an 
underconstrained situation 

Step 5 (Figure 11) The user proceeds with the design by 
attaching a through hole between the top and bottom 
faces of the block. By mistake, however, the two model 
faces chosen for positioning the through hole are parallel 
(the front and back faces of the block), and thus insuffi- 
cient to determine its position. The underconstrained 
situation is reported to the user, who is asked to specify 
appropriate faces for positioning the through hole, after 
which a valid model is achieved again, see Figure 1l.b. 

(a) 

Q 

(b) 

Figure 12 - Step 6: reporting a 
geometric interaction 

Step 6 (Figure 12) Finally, the user creates a pocket at 
the bottom face of the block, such that the through hole 
attached to it in the previous step becomes shorter. This 
geometric interaction is detected and reported by the 
system. The user reacts by re-attaching the through hole 
to the bottom face of the pocket, and takes the opportu- 
nity to slightly increase the depth of the pocket. The final 
model is shown in Figure 12.b. 
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7 CONCLUSIONS 

Maintaining the mfeaning, or semantics, of features in a 
feature model -so-called validity maintenance- has been 
addressed in this paper. Validity maintenance is an es- 
sential aspect in feature modeling. Without it, feature 
modeling is nothing more than advanced geometric mod- 
eling, only offering parametric and constraint-based 
modeling facilities in addition to the normal geometric 
modeling facilities. 

The approach to validity maintenance presented 
here has been developed within the semantic feature 
modeling approach, w:hich provides a powerful and well- 
defined scheme for constraint-based specification of va- 
lidity conditions in feature classes. 

The most salie:nt characteristic of semantic feature 
modeling is that the semantics of all features, once speci- 
fied, is maintained during the whole modeling process. 
This is done by maintaining all constraints throughout 
model editing. A validity recovery mechanism analyzes 
any invalid situation that results from some modeling 
operation, and gives the user explanations and hints to 
overcome this. The user gets thus valuable assistance in 
creating valid modells only, containing features with well- 
defined semantics only 

Application of ,this approach has been exemplified 
with typical modeling situations, showing that mainte- 
nance of feature m,odel validity using a consistent fea- 
ture vocabulary is not only possible, but indeed effec- 
tively provides user assistance at a much higher level 
than current feature modeling systems do. 
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