
Validity Maintenance of Semantic Feature Models

Rafael Bidarra and Willem F. Bronsvoort

Faculty of Information Technology and Systems *
Delft University of Technology

Abstract

One of the most powerful characteristics of feature-based
modeling is the ability to associate functional and engi-
neering information to shape information in a product
model. Current feature modeling systems embody this
paradigm in their graphical user interfaces, providing
the user with “engineering rich” dialogs aimed at the
creation of feature instances. Most systems, however, fail
to consistently maintain the meaning of the features
throughout the modeling process. For example, a model-
ing operation on one feature may affect the semantics of
other features without the user being notified by the sys-
tem, let alone assisted in overcoming the situation.

Semantic feature modeling is a declarative modeling
approach that not only provides a well-defined specifica-
tion of feature semantics, but also effectively maintains
this semantics during the modeling process, for all fea-
ture instances in the model. This paper describes the
validity maintenance mechanisms of the semantic fea-
ture modeling approach. These include (i) detecting each
invalid situation, (ii) reporting it to the user, with appro-
priate explanation on its causes and effects, and (iii) pro-
viding the user with a convenient choice of reaction
hints, aimed at recovering validity in the model. An ex-
ample modeling session is also given, illustrating which
high-level user assistance is provided under this ap-
proach.

Keywords: feature modeling, feature semantics, validity
maintenance, validity recovery

1 INTRODUCTION

Current feature modeling systems provide the user with
“engineering rich” dialogs aimed at the creation and ma-
nipulation of feature instances. In some systems, “fea-

’ Zuidplantsoen 4, NL-2628 BZ Delhi, The Netherlands
Email: (BidarraiBronsvoort)cs.tudelft.nl

pemlission 10 riiakr: digital or hard topics 01. all or part of this w0rk Ii)1
personal or classroom USC is granted without fee provided that topics
ar6: tl<)t made or distributed for profit or commercial advantage :md that
cq$es hear this notice and the l’ull citation on the iirst page. To copy
()tller\visc, 10 rcpubllsh, to post on scrvcrs or to redistrihutc to lists.

requires prior specific permission andk a fw.
Fifth Symposium on Solid Modeling Ann Arbor MI
Copyright ACM 1999 l-581 13-080-5/99/06...$5.00

tures” occur solely at the user interface level, whereas in
the product model only the resulting geometry is stored.
Such systems are in essence only geometric modelers.
Most other feature modeling systems, see for example
1151, although they store information about features in
the product model, fail to adequately maintain the
meaning of features throughout the modeling process.
For example, a modeling operation on one feature may
affect the semantics of other features, without the user
even being notified by the system, let alone assisted in
overcoming the situation.

This is illustrated in the example of Figure 1 on the
next page. Assume that the two longer blind holes in the
part were positioned relative to the block right side face,
whereas the rounded pocket was positioned relative to
the step side face, as indicated in Figure 1.a. If the width
of the step is now increased, the rounded pocket overlaps
with the two blind holes, “suppressing” their circular
bottom faces from the model boundary, see Figure 1.b.
Consequently, the two blind holes have now the shape
imprint of through holes. Although geometrically this is
correct, it is incorrect in the sense that the meaning, or
semantics, of the blind holes has been changed. If the
shape now produced was indeed desired, it might have
been more appropriate not to use blind holes, but
through holes instead, attached to the bottom of the
rounded pocket and the bottom of the base block.

Reference 1161 provides a good insight into some high-
level feature validity issues, alerting for inconsistencies
that might arise from a ndive interpretation of usual
editing commands on feature models. Some more recent
research work has focused on validation of features, both
validity specification [7,101 and validity maintenance
issues [9, 131. One of the main conclusions of this re-
search is that a declarative scheme is preferable over the
conventional procedural modeling approaches. In a de-
clarative approach, the specification of each feature class
includes the validity criteria that determine the seman-
tics of all its feature instances. The feature modeler, in
turn, is responsible for the maintenance of all features in
the product model, in conformity with those criteria.

Research prototype systems that do have some form
of validity maintenance, see for example 118, 81, are lim-
ited to the detection of a number of predefined invalid
situations, for which the only solution offered by the
modeling system is the rejection of the concerning mod-
eling operation. This rigid scheme considerably hinders

85

(a) (b)

Figure 1 - Changing feature semantics with a modeling operation

the modeling process, yet permitting many unant.icipated
inconsistencies in the model.

Semantic feature modeling is a new declarative mod-
eling approach 111. It provides a well-defined constraint-
based framework for the specification of feature seman-
tics in each feature class. Furthermore, it effectively
maintains this sema.ntics for all features in the product
model, throughout thte modeling process.

This paper focuses on the validity maintenance as-
pects of the semantic feature modeling approach. In par-
ticular, it emphasizes how assistance can be offered to
the user of the modeling system, in order to keep the
design intent in a model in a large variety of situations.
First, the main aspects of validity specification in a fea-
ture class are presented (Section 2). Next, the main prin-
ciples of validity maintenance are discussed (Section 3).
These are further elaborated into validity checking (Sec-
tion 4) and validity recovery (Section 5). An example
modeling session is alsa given, illustrating the high-level
user assistance provided (Section 6). Finally, some con-
clusions are drawn on the present work (Section 7).

2 VALIDITY SF’ECIFICATION IN
FEATURE CLASSES

Feature class specification involves specification of its
shape, its validity conditions, and its interface to the fea-
ture model, according to the general structure depicted in
Figure 2. For all aspects, constraints are used. These fea-
ture constraints are members of the feature class, and are
therefore instantiated automatically with each new fea-
ture instance.

The basis of a feature class is a parameterized
shape. For a simple feature, this is a basic shape, e.g. a
cylinder for a hole. A basic shape encapsulates a set of
geometric constraints that relate its parameters to the
corresponding shape :faces. For a compound feature, the
shape is a combination of several, possibly overlapping,
basic shapes, e.g. two cylinders for a stepped hole.

The geometry of a feature, designated the feature’s
shape extent, accounts for the bounded region of space

comprised by its volumetric shape. Moreover, its bound-
ary is decomposed into functionally meaningful subsets,
the shape faces, each one labeled with its own generic
name, to be used in all modeling operations. For exampl.e,
a cylinder shape has a top, a bottom and a side face.

A feature class associates also to each feature shape
the notion of feature nature, indicating whether its fea-
ture instances represent material added to or removed
from the model (respectively additive and subtractive
natures).

-F -

Figure 2 - Feature class structure

86

The specification of validity conditions in a feature class
can be classified into three categories: geometric, topo-
logic and functional.

One way of constraining the geometry of a feature
class is by specifying the set of values allowed for a
shape parameter. We use dimension constraints applied
on shape parameters. For instance, the radius parameter
of a through hole class could be limited to values be-
tween 1 and 10. Feature shapes can also be geometrically
constrained by means of explicit relations among their
parameters. These relations can be simple equalities
between two parameters (e.g. between width and length
of a square section passage feature) or, in general, alge-
braic expressions involving two or more parameters and
constants. For this, we use algebraic constraints.

The specification of a feature shape yields a set of
shape faces providing full coverage of the boundary of a
volumetric feature. However, for most features, not all
these faces are meant to effectively contribute to the
boundary of the modeled part. Some faces, instead, have
a closure role, delimiting the feature volume without
contributing to the model boundary. The specification of
such properties is called topologic validity specification.

To specify topologic validity in a feature class, we use
semantic constraints on each shape face. Semantic con-
straints, first proposed in [51, specify which topological
variants of a feature instance are allowed, by stating the
extent to which its feature faces should be on the model
boundary. Semantic constraints are of two types: on-
Boundary, which means the shape face should be present
on the model boundary, and notOnBoundary, which
means the shape face should not be present on the model
boundary. Furthermore, both types of semantic con-
straints are parameterized, stating whether the presence
or absence on the model boundary is completely or only
partly required. An example of this is a blind hole class
for which the top face has a notOnBoundary(completely)
constraint, the side face has an onBoundary(partly) con-
straint, and the bottom face has an onBoundary(com-
pletely) constraint.

Geometric and topologic validity specifications alone,
as described above, are unable to fully describe several
other functional aspects that are inherent to a feature
class as well. These are better described in terms of the
feature volume or feature boundary as a whole, and
therefore require a higher-level specification, not directly
based on shape parameters or faces. An example of this
is the requirement that every feature instance of some
class should somehow contribute to the shape of the part
model.

Such functional requirements can be violated by fea-
ture interactions caused during incremental editing of
the model. Feature interactions are modifications of the
shape aspects represented by a feature that affect its
functional meaning. An example of this is the transmuta-
tion interaction of the blind hole into a through hole in
Figure 1. A classification of feature interactions can be
found in 111. For completeness, it is briefly summarized
here:

Splitting Interaction that splits the boundary of a
feature into two (or more) disconnected subsets.

Disconnection Interaction that causes the volume
of an additive feature (or part of it) to become
disconnected from the model.

Boundary clearance Interaction that causes (par-
tial) obstruction of a closure face of a subtractive
feature.

Volume clearance Interaction that causes partial
obstruction of the volume of a subtractive fea-
ture.

Closure Interaction that causes some subtractive
feature volume(s) to become a closed void inside
the model.

Absorption Interaction that causes a feature to
cease completely its contribution to the model
shape.

Geometric Interaction that causes a mismatch be-
tween a nominal parameter value and the actual
feature geometry.

Transmutation Interaction that causes a feature
instance to exhibit the shape imprint character-
istic of another feature class.

Topological Interaction that causes the violation
of a semantic constraint in a given feature.

We use interaction constraints in a feature class in
order to indicate that a particular interaction type is not
allowed for its instances 121.

Feature constraints and parameters may require exter-
nal data to be provided at feature instantiation stage -
the so-called user-supplied data. Those feature members
constitute the feature class interface. The specification of
the feature class interface determines how feature in-
stances will be presented to the user of the modeling sys-
tem and, thus, how the user will be able to interact with
them. Essential in the feature class interface is the posi-
tioning and orientation scheme, which is specified by
means of attach and geometric constraints, as depicted in
Figure 2.

An attach constraint of a feature couples one of its
faces to a user-supplied feature face, to be chosen among
those of the features already present in the model. At-
tach constraints are a kind of coplanar geometric con-
straints that take into account the natures of the two
features involved in order to determine the appropriate
normal orientations, For example, the top and bottom
faces of a through hole are used to attach it to, say, the
top and bottom faces of a block, respectively.

Geometric constraints position and orient a feature
relative to (faces of) other features present in the model,
by fixing its remaining degrees of freedom. For this, a
geometric constraint couples one of the feature faces to a
user-supplied feature face in the model, possibly with
some extra numeric parameter(s). For instance, to posi-
tion a through slot, a distanceFaceFace constraint might

87

Feature
Model

Figure 3 - Architecture of the SPIFF modeling system

be used, which requires an external reference feature
face and a distance value.

Some shape parameters may be determined1 implic-
itly from the feature attachments, e.g. the depth of a
through hole or the length of a through slot. All other
shape parameters neecl a user-supplied value at feature
instantiation stage, and are therefore also included in
the feature class interface.

A detailed description of feature class specification
following the semantic feature modeling approach can be
found in 131.

3 VALIDITY MAINTENANCE

Embedding validity criteria in each feature class:, as de-
scribed in the previous section, can significantly enhance
the modeling proces s, as it guarantees that the seman-
tics of each feature instance created in the model effec-
tively matches the specific requirements of its feature
class. In fact, one of the basic ideas of feature modeling is
that functional information can be associated to shape
information in a feature model. However, this association
becomes useless if, for example, the modeling system
would allow a modeling operation to significantly modify
the shape imprint of a feature, once added to the model
with a specific intent. In other words, arbitrarily modi-
tying the semantics of a feature should be disallowed if
one wants to make feature modeling really more power-
ful than geometric modeling.

Feature model validity maintenance is the process of
monitoring each modleling operation in order to ensure
that all features conform to the semantics specified in
their respective classes. Maintaining feature model va-
lidity throughout the modeling process requires not only
managing all its constraints, but also assessing the con-

formity of each feature in the model with its validity cri-
teria. This guarantees that all aspects of the designer
intent captured in the model are permanently kept.

The two basic principles of validity maintenance can
be summarized as follows:

(i) A modeling operation, to be considered as valid,
should yield a feature model that conforms to all
constraints.
This ensures that every feature in the model
conforms to the designer intent explicitly speci-
fied up to that moment.

(ii) After an invaZid modeling operation, the user
should be assisted in overcoming the constraint
violations in order to recover model validity
again.

This can reduce the frequency of backtracking
by enlarging the choice of possible reactions to-
wards validity recovery. In particular, explana-
tions on what is causing a constraint violation,
and context-sensitive corrective hints, can sig-
nificantly improve the modeling process.

Together with the declarative validity specification
scheme presented in Section 2, feature model validity
maintenance forms the core of the semantic feature
modeling approach.

This approach has been implemented in the SPIFF
system, a prototype multiple-view feature-based modeler
developed at Delft University of Technology [61. Figure ,3
depicts the architecture of the system. Several system
modules have been described elsewhere 111, 9, 21, and
will be only briefly summarized here.

The Feature Model Manager receives command,s
from the user via a graphical user interface, and trans-

88

(a) part

4

1 - <block>
2 - <block, step>
3 - <block, blind slot l>
4 - <block, blind slot 2>
5 - <block, through slot>
6 - <block, through slot, rib>
7 - <block, through slot>
8 -crib>

1’ 3

(b) Cellular Model (c) cell owner lists

Figure 4 - Cell owner lists in the Cellular Model

lates them into elementary tasks, which are then dis-
patched to the other Managers. It is responsible for the
control of all modeling operations, and for maintaining
model validity Furthermore, the Feature Model Manager
maintains the Feature Dependency Graph, a high-level
representation of the structure of the product [ll.

The Feature Dependency Graph contains all feature
instances in the product model, each of them with its own
set of entities (e.g. shape elements, parameters and con-
straints), and all model constraint instances (i.e. con-
straints that are separately defined by the user, possibly
between different features in the model, with the goal of
further specifying design intent). These instances are
interrelated by the dependency relation, yielding a di-
rected acyclic graph structure, consisting of the set of all
model entities (features and model constraints), and the
set of dependency relations among these entities. A fea-
ture f, depends on a feature f, whenever f, is attached,
positioned, or in some other way constrained relative to f,
(i.e. some feature constraint off, has a reference to some
entity of feature 6).

The Feature Manager supervises the model process-
ing tasks of each modeling operation, which are actually
performed by the Constraint Manager and the Feature
Geometry Manager. The Constraint Manager is responsi-
ble for all constraint solving tasks, maintaining all con-
straints in the Feature Dependency Graph. The Feature
Geometry Manager maintains a geometric model of the
product in the so-called Cellular Model, and takes care of
updating it as required by each modeling operation.

The Cellular Model is a non-manifold representation
of the feature model geometry, integrating the contribu-
tions from all features in the Feature Dependency Graph
141. The Cellular Model represents a part’s geometry as a
connected set of volumetric quasi-disjoint cells, in such a
way that each one either lies entirely inside a shape ex-
tent or entirely outside it. The cells represent the point
sets of the shape extents of all features in the model.
Each shape extent is, thus, represented in the Cellular
Model by a connected subset of cells. The cellular decom-
position is interaction-driven, i.e. for any two overlapping
shape extents, some of their cells lie in both shape ex-
tents (and are called interaction cells), whereas the re-

maining ones lie in either of them. In order to be able to
search and analyze features and their faces in the Cel-
lular Model, each cell has an attribute -called owner list-
indicating which shape extents it belongs to, see Figure
4. Similarly, each cell face has also an owner list, indi-
cating which shape faces it belongs to.

The Interaction Manager is responsible for the
analysis of the Cellular Model, in order to detect any
disallowed feature interactions possibly resulting from a
modeling operation.

In the remainder of the paper, we will concentrate on
the role of the Feature Model Manager. In particular, its
validity maintenance tasks will be described in detail.
These can be classified into two types of tasks:

(i) validity checking, performed at key stages of
each modeling operation;

(ii) validity recovery, performed when a validity
checking task detected a violation of some va-
lidity criterion.

These are now separately discussed in the next two sec-
tions.

4 VALIDITY CHECKING

As mentioned in Section 3, the first basic principle of
model validity maintenance is that a valid modeling op-
eration should entirely preserve the designer intent
specified so far with each feature, as well as with all
model constraints. In other words, after a valid modeling
operation, the feature model conforms to all its con-
straints.

Modeling operations can be grouped into two major
categories: feature operations and model constraint opera-
tions (or simply constraint operations). Feature opera-
tions include the following:

Adding a new feature instance to the
model This operation creates a new feature in-
stance of the chosen feature class, and requests
from the user a full set of initialization parame-
ter values for the new feature. Together with
this, all constraint members specified in its class
are also instantiated, and initialized with the

89

Interaction scope
determination

Geometric/algebraic
solving process

Dimension constraints
checking

Cellular Model

I Interaction

I
-&me tm?L¶ctton

F
detection -

b

I I

R

e

A

C

t

I

0

N

L

0

0

P

Figure 5 - Generic scheme of a modeling oper.ation

correspondi:ng user-supplied values for interface
parameters (e.g. distance parameters and exter-
nal feature :faces for attach constraints).

Editing a feature instance in the mod,el This
operation permits modifying any feature inter-
face parameter value provided earlier to that
feature instance.

Removing a feature instance from the
model This operation removes from the model
the feature and all feature constraints instanti-
ated at its creation stage.

Consbraint operations are similar to feature opera-
tions: model constraints can be added, modified and re-
moved. They are, however, most often specified and exe-
cuted in “batch form” for user convenience: several new
model constraints can be added to the model in o.ne step,
and existing model constraints modified or removed,
while at the same time some feature constraints can be
selected to be switched off, in order to avoid geometri-
cally overconstrained situations.

The generic scheme of the execution of a modeling opera-
tion is presented in Figure 5, showing its main internal
steps. Also shown in the diagram are the various points
at which the operation can turn out to be invalid. When-
ever this occurs, the operation branches into the reaction

loop, instead of following the normal flow, and we say the
model has entered an invalid state. We now concentrate
on the description of the main steps in the diagram, and
on the circumstances under which specific invalid sit-ua-
tions may arise in each of these steps. An important goal
here is to enter the reaction loop, if required, with suffi-
cient knowledge of the current status of the model, so
that it can be appropriately handled, reported to the user
and, ultimately, overcome. The reaction loop itself will be
dealt with in the next section.

4.1 Dependency Analysis
This step is only required by the removal of a feature
from the model. The removal of a feature f is only al-
lowed if f has no dependent entities (features or model
constraints) in the Feature Dependency Graph (oth’er-
wise, such dependent entities would be left referring to a
non-existing graph node). In case there are entities de-
pendent on f, they are collected and the operation enters
the reaction loop.

4.2 Interaction Scope Determination
The feature interaction scope (FIS) of a feature operation
is the set of all feature instances in the model that may
potentially be affected by the operation.

For the determination of the FIS, two important no-
tions with regard to a feature f are:

. the set of features that overlap with f, either
volumetrically or with their boundaries; these
features make up the overlapping set of f, d.e-
noted OS (f) , and they are identified by query-
ing the Feature Geometry Manager, which
keeps track of all feature shapes and their inter-
sections in the Cellular Model (see Figure 4);

. the set of features that depend on fi these fea-
tures make up the dependency set off, denoted
DS (f) , and they are identified by querying the
Constraint Manager, which recursively traces :in
the Feature Dependency Graph the dependency
relations on f.

Depending on the modeling operation, the FIS will con-
sist of different combinations of overlapping and depend-
ency sets, as follows:

Adding a new feature instance to the
model By definition, after adding feature f,
there are no dependencies of other features on f
yet, i.e. DS (f) =0. The FIS of the operation is
thus limited to

FIS t (f} u OS(f)

Editing a feature instance in the model In this
case, the FIS has to be determined in two steps.
First, it is initialized as

FIS t {f) U DS(f) U OS(f) UUOS(fi)
fiEDS(fl

90

in order to include those features whose overlap
with feature f or with its dependent features will
possibly cease after the operation.

Later on, i.e. after the Cellular Model has been
evaluated, the FIS is updated, so that all fea-
tures that only then overlap with feature f or
with its dependent features are also taken into
account

FIS C FIS U OS(f) UuOS(fi)
fiEDS(fI

With this scheme, interactions caused or suf-
fered indirectly by any dependent feature are
also detected.

Removing a feature instance from the
model As pointed out above, this operation re-
quires that the feature to be removed has no de-
pendent features, i.e. DS (f) =0. The FIS is
therefore determined as

FIS t OS(f)

The determination of the FIS has as purpose to avoid
checking for feature interactions in vain later: features
that are known in advance to be left unaffected by the
operation are simply not analyzed in the interaction de-
tection procedure (last step in Figure 5). This strategy
pays because:

(i)

(ii)

Mostly, feature operations have a localized
scope, affecting only a small subset of all fea-
tures in a model. This is particularly apparent
in large models.

The information required to determine the FIS
is explicitly stored in the feature model, either
in the Feature Dependency Graph or in the
owner lists of the Cellular Model, and its re-
trieval has, thus, a low computational cost. All
that is needed is to query the Constraint Man-
ager or the Feature Geometry Manager, respec-
tively (see architecture description, in Section 3).

(iii)Many feature classes specify several interaction
constraints for its instances. Checking all of
them always, i.e. even when these instances
would fall outside the FIS of an operation, has a
higher computational cost than that of FIS de-
termination.

In other words, for moderately complex, realistic fea-
ture models, situations for which the above strategy is
not optimal occur very seldom, namely only: (i) when the
FIS determined would include (almost) all features, be-
cause the scope pruning achieved would then be mini-
mal, yet time consuming; or (ii) when most features in
the model would have few (or no) interaction constraints,
because no real detection computations would then be
pruned out with the FIS.

4.3 Geometric and Algebraic Solving
Process

This step is required by all modeling operations, except
feature removal. Its goal is to determine or update the
dimensions, position and orientation of all features in the
model. This task is performed by the Constraint Man-
ager, which deploys two dedicated constraint solvers: a
geometric constraint solver based on extended 3D de-
grees of freedom analysis [12], and a SkyBlue algebraic
constraint solver [1’7]. The iterative cooperation of these
solvers, under the control of the Constraint Manager, is
described in 181.

At this stage, modeling operations are considered in-
valid if this solving process detects:

(i) an ouerconstruinecl situation, i.e. some feature(s)
has (have) conflicting geometric and/or algebraic
constraints, or

(ii) an underconstrained situation, i.e. the features
and/or model constraints specified, with the in-
terface parameter values provided by the user,
are not sufficient to uniquely determine and fix
the degrees of freedom of all features in the
model [141.

In both cases, the operation enters the reaction loop.

4.4 Dimension Constraints Checking
When the solving process is successfully concluded, all
feature shape dimensions have their values assigned,
and checking of all dimension constraints takes place.
The modeling operation is considered invalid if some
feature dimension parameter is out of the range specified
by the respective constraint.

4.5 Cellular Model Re-evaluation
When this step is reached, each feature in the Feature
Dependency Graph has all its parameters successfully
updated. In particular, all feature shape extents have
their dimensions, position and orientation fully deter-
mined. The Cellular Model may thus be updated, so that
the effects of the operation are also reflected in the
evaluated geometric model. Detailed Cellular Model
processing algorithms can be found in [4l. According to
the particular feature operation, these can be summa-
rized as follows:

Adding a new feature instance to the
model The shape extent of the new feature is
added to the current Cellular Model. For this,
the nonregular cellular union operation is used,
which computes the cellular decomposition de-
scribed in Section 3, and propagates the owner
list attributes among the relevant cells and cell
faces in the Cellular Model.

Removing a feature instance from the
model This is carried out in three steps: (i) all
references to that feature are removed from the
owner lists of Cellular Model entities; (ii) cells

91

Figure 6 - Undo mechanism using the operations stack

with an em.pt;y owner list are removed from the
Cellular Mlodel; and (iii) adjacent cells and cell
faces with the same owner list are merged.

Editing a feature instance in the model In this
case, only the edited feature, and all its depend-
ent features in DS (f) that are also modified by
the operation, need to be taken into account.
These are removed from the Cellular Model and
then re-added with their new parameters, using
the add and remove operations just described.

4.6 Interaction Detection

Once the Cellular Model has been updated, detection of
disallowed interactions takes place. At this stage, a mod-
eling operation is considered invalid if any sem.antic or
interaction constraint -is violated for some feature in the
FIS, previously determined. Each constraint violation is
recorded by the Interaction Manager. The other manag-
ers are queried, in order to obtain the specific data re-
quired by each interaction detection algorithm. Details
on the interaction detection methods and algoritlhms can
be found in [21. Eventually, the set of constraint viola-
tions, if any, is analyzed, and their causes are identified
and passed to the reaction loop.

5 VALIDITY RIECOVERY

When a modeling operation is invalid, for any reason
pointed out in the previous section, a valid model should
be achieved again. Thi,s is straightforward if the model-
ing operation is cancelled: all that is needed is to back-
track to the valid model state just before executing it, by
“reversing” the inval:id operation. According to their type,
invalid operations are reversed as follows:

Adding a new feature instance to the
model The added feature is removed from the
model, using the feature removal operation.

Removing a feature instance from the
model The removed feature is added back to
the model, using the feature adding operation
with the original parameter values.

Editing a feature instance in the model The
original parameter values of the edited feature
are restored, using another feature editing op-
eration, in all regards similar to the first opera-
tion.

Constraint operations Each of them is reversed
similarly to the feature operations (i.e. added
constraints are removed, modified constraints
are restored, etc.).

Reversing a modeling operation can be done very effi-
ciently under our approach. The parameter values pos,si-
bly required for undoing each modeling operation are
kept in a log, the so-called operations stock. Every mod-
eling operation is registered in this stack, as well as the
information whether it led the model to a valid state or
not. Undoing is therefore always possible, at any moment
in a modeling session, by popping operations from tlhe
stack and executing their reverse operation until a “valid
state” marker is found. This is depicted in Figure 6: as-
suming the insertion of the stiffener is invalid, that op-
eration (the last on the operations stack) is popped from
the stack and undone to restore the original situation.

However, to always have to recover from an invalid op-
eration by undoing it is too rigid. It is often much more
effective to constructively assist the user in overcoming
the constraint violations, after an invalid modeling o.p-
eration, in order to recover model validity again. In most
cases, if the user receives appropriate feedback on the
causes of an invalid situation, it is likely that corrective
actions other than undoing, which restore model validity
as well, might preferably be chosen.

We call this process validity recovery, and it empha-
sizes the importance of a user dialog in terms of features
and their semantics. Validity recovery includes reporting
to the user constraint violations, documenting their scope
and causes, and, whenever possible, providing context-
sensitive corrective hints.

To achieve this, a corrective mechanism was devised
-the reaction loop, represented in Figure 5- which is ac-
tivated whenever an operation turns out to be invalid.
The user can then specify several modeling operations in
a batch (typically editing features and/or model con-

92

straints), and execute them, in order to overcome the
invalid model situation. Execution of these reaction op-
erations follows the same scheme of Figure 5, which
means that their outcome is analyzed, checking for va-
lidity at each stage, just as for “direct” modeling opera-
tions. The reaction loop is only exited when, as a result of
the specified reactions, all constraints are satisfied
again. At any stage when the model is invalid, the user
may give up attempting to fix it by specifying more reac-
tions, and backtrack to the last valid stage (i.e. right be-
fore the operation that entered the reaction loop). Again,
undo is here possible because all reaction operations exe-
cuted are also pushed onto the operations stack, and can
thus be reversed.

The specification of reaction operations is assisted by
automatically generated hints, which document each
constraint violation detected, and support the validity
recovery process. Documentation of constraint violations
varies with the operation step at which the reaction loop
is entered, and with the type of constraint involved. Re-
ferring to the scheme of Figure 5, we have:

Dependency analysis The user is presented a list
of all entities that depend on the feature f to be
removed, in order to decide how to handle each
of them. For example, the user might choose to
remove with f some of its dependent entities, but
to modify others, by making them dependent on
another feature.

Geometric and algebraic solving process For
both over- and underconstrained situations, the
reaction loop notifies the user of where the con-
flict was found, highlighting the features in-
volved in a viewing camera. The user can then
make the appropriate corrections (typically,
modifying some of the features or constraints
involved).

Dimension constraints checking The user is no-
tified about the particular feature and parame-
ter where the conflict was found, as well as
about the admissible range for that parameter.

Interaction detection For each interaction de-
tected, the user is notified of its causes (mostly
the features creating the interaction), and of its
concrete effects (e.g. a feature face or parameter
affected). According to the particular interaction
type (see Section 2), specific reaction choices are
given. Examples of these are:

l transmutation interaction: replace the
transmutated feature by another feature in-
stance of the identified feature class (for ex-
ample, after adding the stiffener to the
model in Figure 6, the user might replace
the through hole feature instance by a blind
hole feature instance);

. geometric interaction: re-attach the fea-
ture affected, by replacing its attach refer-
ence face with a parallel face of the feature

causing the interaction (an example of this
is given in the next section);

. absorption interaction: remove from the
model the absorbed feature;

. splitting interaction: replace the split fea-
ture by two (or more) instances of the ap-
propriate feature class(es).

In all cases above, the scope of the reaction choices made
available to the user is restricted to those features and
model constraints that are somehow involved in the in-
valid situation (i.e. features that overlap or have a de-
pendency relation with the affected feature). This helps
the user in concentrating validity recovery efforts on ef-
fective and meaningful reactions.

6 EXAMPLE MODELING SESSION

The usefulness of the validity checking and recovery
mechanisms is illustrated in this section with examples
taken from a modeling session with the SPIFF system.

The user starts the modeling session with opening
an existing model, see Figure 7.a. For each subsequent
modeling step, the invalid situation reported occurs be-
cause the underlying feature classes do specify the va-
lidity criteria violated at that stage.

Step 1 (Figure 7) The user attaches a rib feature to the
bottom of the through slot. The rib feature class, how-
ever, prescribes a minimum width value, not obeyed by
this instance, thus the system reports a dimension con-
straint violation. The user corrects this by adjusting the
rib width to the minimum value allowed, as shown in the
model of Figure 8.a.

Step 2 (Figure 8) Subsequently, the user attempts an
alternative design for the part, re-attaching the through
slot from the top of the block to the bottom of the step,
see Figure 8.b. Consequently, the rib feature, which is
dependent on the through slot, is also displaced with it.
However, the upper region of the rib intrudes into the
subtractive volume of the step. This is disallowed by the
validity criteria of the step (by means of a volumetric
clearance interaction constraint), thus the operation is
notified as invalid, and the situation is reported to the
user.

To recover from this interaction, the system suggests
modifying the rib and/or the through slot. In this case,
the user opts for increasing the slot depth.

Step 3 (Figure 9) By mistake, the user supplies too high
a value for the slot depth, causing the model to become
disconnected. Although the previous clearance interac-
tion on the step is indeed overcome, now a new invalid
situation -the model disconnection- occurs and is re-
ported. As a reaction to this, the user may readjust the
slot depth, specify a larger height for the block, or de-
crease the step depth (or a combination of these reac-
tions). In this case, he chooses to decrease the slot depth,
see Figure 9.b.

93

(b)

Figure 7 - Step 1: reporting a
dimension constraint violation

(a)

+

(b)

Figure 8 - Step 2: reporting a volume
clearance interaction

As remarked in the previous section, features that
are irrelevant to overcome the invalid situation, for ex-
ample the two blind slots, are not editable at this stage of
the reaction loop.

Step 4 (Figure 10) At this stage, the user chooses for a
variant of the part without the step feature, and issues
its removal from the model. Because the through slot is
dependent on the step, and thus indirectly also the rib,

(a)

(b)

Figure 9 - Step 3: reporting a
disconnection interaction

the system requires these dependencies to be eliminated
prior to removing the step. Removal of the dependent
features from the model and modification of their at-
tachments are among the possible reactions suggested by
the system. The user chooses to re-attach the through.
slot to the top face of the block, by which its dependent.
rib is also automatically displaced, as shown in Figure
1l.a.

94

(a)

4

(b)

Figure 10 - Step 4: reporting
dependencies before a feature removal

(b)

Figure 11 - Step 5: reporting an
underconstrained situation

Step 5 (Figure 11) The user proceeds with the design by
attaching a through hole between the top and bottom
faces of the block. By mistake, however, the two model
faces chosen for positioning the through hole are parallel
(the front and back faces of the block), and thus insuffi-
cient to determine its position. The underconstrained
situation is reported to the user, who is asked to specify
appropriate faces for positioning the through hole, after
which a valid model is achieved again, see Figure 1l.b.

(a)

Q

(b)

Figure 12 - Step 6: reporting a
geometric interaction

Step 6 (Figure 12) Finally, the user creates a pocket at
the bottom face of the block, such that the through hole
attached to it in the previous step becomes shorter. This
geometric interaction is detected and reported by the
system. The user reacts by re-attaching the through hole
to the bottom face of the pocket, and takes the opportu-
nity to slightly increase the depth of the pocket. The final
model is shown in Figure 12.b.

95

7 CONCLUSIONS

Maintaining the mfeaning, or semantics, of features in a
feature model -so-called validity maintenance- has been
addressed in this paper. Validity maintenance is an es-
sential aspect in feature modeling. Without it, feature
modeling is nothing more than advanced geometric mod-
eling, only offering parametric and constraint-based
modeling facilities in addition to the normal geometric
modeling facilities.

The approach to validity maintenance presented
here has been developed within the semantic feature
modeling approach, w:hich provides a powerful and well-
defined scheme for constraint-based specification of va-
lidity conditions in feature classes.

The most salie:nt characteristic of semantic feature
modeling is that the semantics of all features, once speci-
fied, is maintained during the whole modeling process.
This is done by maintaining all constraints throughout
model editing. A validity recovery mechanism analyzes
any invalid situation that results from some modeling
operation, and gives the user explanations and hints to
overcome this. The user gets thus valuable assistance in
creating valid modells only, containing features with well-
defined semantics only

Application of ,this approach has been exemplified
with typical modeling situations, showing that mainte-
nance of feature m,odel validity using a consistent fea-
ture vocabulary is not only possible, but indeed effec-
tively provides user assistance at a much higher level
than current feature modeling systems do.

Acknowledgments

Rafael Bidarra’s work has been supported by the Praxis
XXI Program of the Portuguese Foundation for Scientific
and Technological Research (FCT).
We thank Alex Noort for valuable comments on earlier
versions of the manuscript.

References

Ll1

Dl

131

141

[51

Bidarra, R. (1999) Validity maintenance in semantic fea-
ture modeling. PhD Thesis, Delft University of Technology,
The Netherlands

Bidarra, R., Dohmen, M. and Bronsvoort, W.F. (1997)
Automatic detection of interactions in feature models. In:
CD-ROM Proceedings of the 1997 ASME Design Engineer-
ing Technical Conferences, 14-l 7 September, Sacramento,
CA, USA, ASME, New York

Bidarra, R., Idri, A., Noort, A. and Bronsvoort, WI? (1998a)
Declarative user-defined feature classes. In: CD-ROM Pro-
ceedings of the 1998 ASME Design Engineering Technical
Conferences, 13-16 September, Atlanta, GA, USA., ASME,
New York

Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F: (1998b)
Representation and management of feature infomnation in
a cellular model. Computer-Aided Design 30(4): 301-313

Bidarra, R. and Teixeira, J.C. (1994) A semantic framework
for flexible feature validity specification and assessment.
In: Proceedings of the 1994 ASME Computers in Engineer-

El

[71

@I

L91

1101

[llI

Ll21

1131

u41

Ll51

I161

1171

I181

ing Conference, September, Minneapolis, MN, USA, Ishii,
K., Bannister, K. and Crawford, R. (Eds.), ASME, New
York, Vol. 1, pp. 151-158

Bronsvoort, W.F., Bidarra, R., Dohmen, M., van Holland,
W. and de Kraker, K.J. (1997) Multiple-view feature mod-
eling and conversion. In: Geometric Modeling: Theory and
Practice - The State of the Art, Strasser, W., Klein, R. and
Rau, R. (Eds.), Springer, Berlin, pp. 159-174

Brunetti, G., Gvtcharova, J. and Vieira, A.S. (1996) A pro-
posal for a feature description language. In: Proceedings of
the 29th International Symposium on Automotive Technol-
ogy and Automation; Dedicated Conference on Mechatron-
its - Advanced Development Methods and Systems for
Automotive Products, 3-6 June, Florence, Italy, Roller, D.
(Ed.), Automotive Automation, Croydon, England, pp. 13.7-
124

Dohmen, M. (1997) Constraint-based feature validation.
PhD Thesis, DelR University of Technology, The Nether-
lands

Dohmen, M., de Kraker, K.J. and Bronsvoort, W.E (19!36)
Feature validation in a multiple-view modeling system. In:
CD-ROM Proceedings of the 1996 ASME Design Engineer-
ing Technical Conferences and Computers in Engineering
Conference, 19-22 August, Irvine, USA, McCarthy, J.M.
(Ed.), ASME, New York
Hoffmann, CM. and Joan-Arinyo, R. (1998) On user-
defined features. Computer-Aided Design 30(5): 321-332

de Kraker, K.J., Dohmen, M. and Bronsvoort, WI? (19!35)
Multiple-way feature conversion to support concurrent en-
gineering. In: Proceedings of Solid Modeling ‘95 - Third
Symposium on Solid Modeling and Applications, 17-19
May, Salt Lake City, UT USA, Hoffmann, C. and Ros-
signac, J. (Eds.), ACM Press, New York, pp. 105-114

Kramer, G.A. (1992) Solving geometric constraint systems:
a case study in kinematics. The MIT Press, Cambrid,ge,
MA

Mandorli, F., Cugini, U., Otto, H.E. and Kimura, I? (1997)
Modeling with self-validating features. In: Proceedings of
Solid Modeling ‘97 - Fourth Symposium on Solid Modeling
and Applications, 14-16 May, Atlanta, GA, USA, Hoff-
mann, C. and Bronsvoort, W. (Eds.), ACM Press, New York,
pp. 88-96

Noort, A., Dohmen, M. and Bronsvoort, W.F. (1998) Solving
over- and underconstrained geometric models. In: Geom(et-
ric Constraint Solving and Applications, Briiderlin, B. and
Roller, D. (Eds.), Springer, Berlin, pp. 107-127

Parametric (1998) P~OIENGINEER Modeli?g User’s Guide,
Version 19. Parametric Technology Corporation, Walthsm,
MA

Rossignac, J.R. (1990) Issues on feature-based editing and
interrogation of solid models. Computers & Graphics 14C2):
149-172

Sannella, M. (1992) The SkyBlue constraint solver. Techni-
cal Report 92-07-02, University of Washington, Seattle,
WA

Vieira, A.S. (1995) Consistency management in feature-
based parametric design. In: Proceedings of the 19!15
ASME Design Engineering Technical Conferences, 17-21
September, Boston, MA, USA, Gadh, R. (Ed.), ASME, New
York, Vol. 2, pp. 977-987

96

