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Figure 1: A complex scene with fine details and global illumination. Left: Images rendered with PBRT [PH10] using 32 samples
per pixel rendered in 2.5 minutes. Middle: Image reconstructed by our algorithm in 2.6 minutes including rendering and filtering.
Right: Equal error image with 200 samples per pixel rendered in 12.7 minutes.

Abstract

Adaptive filtering techniques have proven successful in handling non-uniform noise in Monte-Carlo rendering
approaches. A recent trend is to choose an optimal filter per pixel from a selection of non spatially-varying filters.
Nonetheless, the best filter choice is difficult to predict in the absence of a reference rendering. Our approach relies
on the observation that the reconstruction error is locally smooth for a given filter. Hence, we propose to construct
a dense error prediction from a small set of sparse but robust estimates. The filter selection is then formulated as a
non-local optimization problem, which we solve via graph cuts, to avoid visual artifacts due to inconsistent filter
choices. Our approach does not impose any restrictions on the used filters, outperforms previous state-of-the-art
techniques and provides an extensible framework for future reconstruction techniques.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

Monte Carlo (MC) techniques have become an industry stan-
dard for high-quality image rendering [Kaj86]. Their ro-
bustness and simplicity are attractive properties for simulat-
ing various rendering effects including global illumination,
depth of field, motion blur, participating media, and others.

(© 2015 The Author(s)
Computer Graphics Forum (©) 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Nonetheless, these procedures are computationally costly as
thousands of samples of the rendering equation need to be
evaluated for each pixel to reach a noise-free estimate of the
lighting integral (Fig. 1).

Over the last decades, much research aimed at reducing
the rendering cost by reconstructing (or filtering, used inter-
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changeably throughout the paper) an image from a smaller
number of samples. As the distribution of MC noise is usu-
ally spatially-varying (changes in geometry, lighting, or sec-
ondary effects), choosing an optimal reconstruction filter be-
comes a challenging per-pixel task. Recent approaches make
use of a filter bank, a set of reconstructions using filters
with different parameter settings [RKZ11, LWC12, KS13,
RMZ13], from which one result is chosen per pixel to em-
ulate spatially-varying and anisotropic kernels. Up to now,
this selection has relied on risk estimators which suffer if in-
put variance is high, or general image-noise classifications,
which cannot robustly distinguish between noise and high-
frequency image content.

Our contribution is a robust, low-variance selector for
choosing the best possible reconstruction per pixel from
an arbitrary set of general reconstruction techniques, based
on two key observations. First, noise distributions within
a small local window, although spatially-variant, change
rather gently in most parts of a natural image. Thus, the re-
construction error of a filter candidate is in general locally
smooth across the image and can be well approximated via
an interpolation of sparse precise error estimates at carefully
chosen locations within the image plane. Second, a suitable
reconstruction for a low sample count is more effective than
a mediocre reconstruction for a high sample count. Conse-
quently, an algorithm to choose the best input from a given
filter bank can be more important than spending computing
time on higher sampling rates. Actually, for many samples, a
suitable reconstruction is more important due to the conver-
gence rate of the MC estimator and potential bias introduced
in the reconstruction process.

We leverage these observations by reducing the number
of samples spent on the noisy MC image and redistribute the
remaining samples to create filter caches, which are highly
sampled sparse image locations with strongly reduced vari-
ance. These filter caches serve as a robust, sparse error esti-
mation for any reconstruction technique, and we can produce
a dense error estimation via interpolation. Related to cross-
validation techniques in statistics [Koh95] where samples
are removed to validate the model fitness, the filter cache
samples do not contribute to the filtering process. They are
solely used to validate the fitness of the filters in the filter
bank. Using fewer samples outside the filter caches leads to
more variance in the filter input but the variance reduction
due to the improved filter selection largely outweighs this
downside.

Nonetheless, selecting filters per pixel solely on their lo-
cal expected error will result in visible seams and outliers
in the final image. Ad-hoc solutions, such as smoothing the
filter-selection map, are only possible if the filter bank en-
tries are semantically related, e.g. if they represent different
parameter choices of the same filter. However, it becomes a
challenge to support arbitrary filters within the filter bank.

Our solution is to solve the filter choice via a graph-cut ap-
proach by formulating it as a compositing task.

Our method is completely generic regarding image con-
tent and filtering techniques, as long as our two key assump-
tions hold. Hence, in contrast to previous approaches, we
support arbitrary filter banks with no restrictions on differ-
entiability (even non-filter reconstruction techniques are ap-
plicable) and most state-of-the-art denoising techniques for
image and MC denoising can be utilized. The used filters
do not need to be semantically related in any way, e.g. that
neighboring indices in the filter bank have to refer to similar
filter sizes, etc. The only requirement is that all filters in the
filter bank operate on the same input, e. g., some filters may
only be applicable to low dynamic range images while others
operate on the original high dynamic range radiance values.
Our approach requires fewer samples for higher quality re-
construction of MC renderings than many competitors. It is
orthogonal to fundamental research on image and MC de-
noising and will support future reconstruction techniques as
well. Finally, any MC effect can be used and the reconstruc-
tion quality solely depends on the filter bank.

In summary, our contributions are:

e An adaptive filter-cache selection based on sample and fil-
ter bank variances;

e A robust and dense error estimation to best choose from a
filter bank;

e A global optimization removing visible seams between
different filter selections.

2. Related Work

Denoising Noise removal for MC renderings is often in-
spired by image denoising. An early approach spread out the
radiant energy in the image plane [McC99]. Later, bilateral
filtering [XP05], non-local means [RKZ12], wavelet shrink-
age [ODRO09], guided image filter [BEM11], and A-Trous
wavelets [DSHL10] have been successfully applied. Spe-
cialized rendering filters sometimes make use of additional
guides such as ray color distributions [DMB*14] or fea-
tures such as normals, texture, 3D positions [SD12]. While
these approaches show impressive noise-reduction capabili-
ties, they differ in their drawbacks, assumptions, number of
required initial samples, or other constraints. Some are ap-
plicable in general [SD12,KS13,MYRD14], others focus on
specific effects [BEM11,LAC*11]. Choosing the best tech-
nique for every situation is still an open problem, especially,
as the choice of an appropriate filter can vary within an im-
age. Also, no robust statistic exists to evaluate and compare
the reconstruction quality of arbitrary filters to make a good
choice without knowledge of a reference. Further, even with
such a classifier, severe visible artifacts can arise in form of
seams wherever filters are switched. In this work, we intro-
duce a general and robust approach to solve both of these
problems.

(© 2015 The Author(s)
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Filter Selection Spatially-varying filters result in a high-
quality reconstruction and are increasingly popular in
the scientific domain [CWW*11, RKZ11, LWC12, KS13,
RMZ13,MCY14]. They reformulate the MC noise reduction
problem into an error estimation and filter-selection prob-
lem. The Greedy Error Minimization [RKZ11] restricts the
filter bank to Gaussian filters and guides the selection via an
approximate bias term and the empirical sample variance. In
the work of Li et al. [LWC12] and Rousselle et al. [RMZ13],
Stein’s Unbiased Risk Estimator (SURE) [Ste81] is applied
to MC denoising by exploiting the fact that the MC estimator
itself resembles a normal distribution. SURE can estimate
the Mean Squared Error (MSE) of a filter for a signal pol-
luted by additive white Gaussian noise if the standard devia-
tion of the noise is known and the filter is (weakly) differen-
tiable. Unfortunately, computed locally for a single pixel, the
error estimate can potentially be highly variant. A wavelet-
based noise estimator for local filter parameter selection for a
single type and varying parameters was presented in [KS13].

A common drawback of all previously-mentioned ap-
proaches is that the variance/MSE estimator is variant in it-
self, which is why all of them require a subsequent smooth-
ing in a post-process. This heuristic can quickly lead to
suboptimal filtering results. In contrast, our error estima-
tion makes no assumption about the applied filter; even re-
construction techniques, which are not image-space filtering
techniques in the strict sense [LAC*11,LALD12,SD12] are
supported.

Image Compositing Our filter-selection approach sup-
ports arbitrary reconstruction techniques, but, in conse-
quence, color shifts (or seams) might appear between
two neighboring areas where different filters are applied.
Such problems are known from image-compositing tasks,
such as panorama stitching [Sze06], digital photomontage
[ADA*04] or image-based rendering [BZS*07]. Gradient-
domain compositing removes color shifts between input im-
ages [PGBO03] but come at the cost of a potentially different
bias. One very successful approach is to formulate composit-
ing as a labeling problem, which can be solved efficiently us-
ing graph cuts [BVZ01]. We adapt these approaches to our
context and fuse different filter results in the final output.

3. Motivation

Our algorithm is based on several insights, which we will
illustrate in this section. First, a good choice for a recon-
struction filter is often more beneficial than increasing the
number of samples. Second, it is possible to make coherent
filter choices in many regions of the image without introduc-
ing a large error. This property is key to interpolating filter
error estimates and will allow us to avoid seams due to filter
changes. Our approach, described in the next section, will
build upon these observations.

(© 2015 The Author(s)
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Opt. Opt. SURE

16spp 32spp 32spp

CONFERENCE 2.344 1.605 12.327
SIBENIK 0.258 0.157 0.758
TOASTERS 0.156 0.096 0.187
SANMIGUEL 9.831 6.419 16.880

Table 1: The table shows the MSE (10_3) for the Sibenik,
Conference, Toasters and Sanmiguel scene for 16 and 32 spp
and reconstructed from a set of filters using optimal selection
(Opt.) or SURE selection.

Optimal Filter Selection vs. Sampling Rate To show
that in many cases it is more beneficial to choose ap-
propriate filter settings instead of using a higher sam-
pling count with mediocre reconstruction, we compare two
different reconstruction techniques using the same filter
bank. The filter bank consists of four Gaussian filters with
Gdomain = [2,4,8,16] and four joint-bilateral filters with
Gdomain = [1,2,4,8]. Normals, world-space positions, and
texture albedo colors are used as joint guides with Gyorma) =
0.8, Oposition = 0.6, and Giexwre = 0.25. As a reference, we
employ the SURE estimator from [LWC12] with 32 samples
per pixel (spp), which is one of the current top-ranking se-
lection techniques. For comparison, we test a reconstruction
with 16 spp, for which we always chose the most optimal
filter (determined by comparing to a reference image with
20000 spp). Further, we also tested an optimal reconstruction
with 32 spp to determine an upper limit of the reconstruction
quality. Table 1 depicts the MSE for several test scenes.

The optimal filter selection with just 16 spp reduces the
error up to 81% (51% on average) compared to SURE using
twice the number of samples. With an equal number of sam-
ples the optimal filter selection reduces the error up to 87%
(69% on average). This finding illustrates the potential and
importance of a good filter selection procedure.

Coherent Filter Selection Fig. 2 shows color-coded visu-
alizations of the squared error for the Gaussian filter, the
joint-bilateral filter [PSA*04, ED04], non-local means fil-
tering [BCMO5], the BM3D filter [DFKEO06] and the BLS-
GSM filtering algorithm [PSWS03] for the SIBENIK scene
and 16 spp. Additionally, the squared error for Guided Image
Filtering [HST10] using varying radii is shown. We observe
that the error of a filter varies rather smoothly for most re-
gions of the image. An additional observation is that in many
regions the error for more than one filter is close to the op-
timum, which is interesting because it shows that the filter
selection is not always explicit. Instead, multiple candidates
can be considered near optimal.

We examine the impact of a coherent filter selection com-
pared to an optimal filter selection. Here, we deliberately
chose non-optimal filters from the filter bank to enforce
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e) BM3D

f) BLSGSM g) GIF4

h) GIF8 i) GIF16

Figure 2: Error visualization for the SIBENIK scene with 16 spp (a) for different types of MC denoising filters and parameters.
The first 5 insets show the squared errors for the (b) Gaussian (¢ = 8) filter, (c) the joint-bilateral filter (¢ = 8), (d) non-local
means filtering (window size=16), (¢) the BM3D filter (¢ = 0.8) and (f) the BLS-GSM filter (¢ = 0.06). The insets (g)—(i) show
the squared errors for the Guided Image Filter with varying radii (4, 8, 16).

Figure 3: Filter selection maps with increasing coherency
for the SANMIGUEL scene for a filter bank with 8 filters. The
MSE reduction of the coherent selections is only slightly less
compared to the optimal selection.

spatially-consistent filter choices but restricted the overall
solution to have a defined maximum error.

Fig. 3 shows three filter selection maps with varying co-
herency for the SANMIGUEL scene using a similar filter bank
as in Table 1. Each color represents one entry in the filter
bank used for reconstruction of the final image. The optimal
per-pixel selection (on the left) reduces the error to 8.0% of
the MSE of the noisy image. Coherent selections still result
in a low overall error of 8.4% (middle) and 9.1% (right).
Similar observations have been made with other test scenes
(see supplemental material for more details).

It shows that the optimal filter selection map is compa-
rably noisy, but in large regions, the filter selection can be
made coherent without introducing significant errors. How-
ever, for specific regions the filter selection is indeed crucial.
These findings imply, that a filter selection focusing only at
sparse, but carefully chosen pixel locations can be sufficient
for a good filter selection across the whole image.

4. Error estimation and Filter Selection

Based on the insights of the previous section, we introduce
a filter-selection process for a general filter bank in order to
benefit from a better reconstruction, which uses the follow-
ing input: A noisy MC rendering N computed from a user-
defined number of samples per pixel, a filter bank F con-
sisting of the results Fy,...,Fy of different reconstruction
techniques (filtered images) using N as input, and access to

the renderer itself to compute additional samples to produce
filter caches. We stress that any filter bank could be used and
refer the interested reader to the according publications for
more details. Still, we assume a set of reasonable filters and
settings, which means that for most pixels a choice exists,
which represents an improvement over the initial MC esti-
mate.

To reach our goal, we estimate the reconstruction error of
each entry in F at a small number of pixels (Sec. 4.1) and
show how to optimize their locations (Sec. 4.2). The sparse
estimates are interpolated based on a smoothness assump-
tion (Sec. 4.3) to derive per-pixel error estimations. These
will then be used as input to a labeling process to choose
the optimal entry in F per pixel. The latter is solved via a
graph-cut approach (Sec. 4.4) to avoid visual artifacts due to
inconsistent or inappropriate filter choices. An overview of
our algorithm is given in Fig. 4.

E@ E Filter caches |
Filter ban

and placement reconstruction Filtercomp-osite Refined image
Figure 4: Algorithm overview

SN -’

4.1. Filter Caches

Our approach is inspired by ir/-radiance caching algorithms
where the incident indirect lighting is computed for a small
subset of pixels (the caches) and later interpolated. In this
spirit, we compute a high-quality radiance estimate for a
small subset of pixels. To obtain these so-called filter caches,
more samples are computed and because the MC error ini-
tially decreases quickly [PH10], even a slightly elevated
number of samples leads to a significant improvement of the
incoming radiance estimate. In consequence, it is possible to
obtain a good error estimate Err at a pixel cache location p
with value C(p) forany F; € F

Err(p,Fi) = [[Fi(p) = C(p)|-

To roughly maintain the overall rendering cost, we cre-
ate two sample sets out of the sample budget based on user-
defined parameters, one part used for uniformly sampling

(© 2015 The Author(s)
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the image plane to create the filter input N and the rest to
compute the cache entries. Given the initial per-pixel sample
budget b, a cache sparsity s € [0,1] (a value of 0 places a
cache at each pixel and a value of 1 results in no caches at
all), and the number of samples per pixel n used to compute
N, the additional samples per cache c are given by bffs”. To
acquire a robust radiance estimate close to the reference, as
we treat C(p) as ground truth, the sparsity has to be high;
we used between 0.85 and 0.98 of sparsity in our test scenes.

4.2. Filter Cache Placement

As our intermediate goal is to interpolate the error values be-
tween the caches for each filter, a good placement is crucial.
For an even spread, we can distribute their location accord-
ing to a blue-noise power spectrum [DW85]. Nonetheless, to
better capture error variations, more caches should be placed
in regions with varying error, which are unknown.

Instead, we base our adaptive cache placement strategy on
three insights. First, the variance within [ for a pixel p indi-
cates how crucial a good filter selection is. If the variance is
high, a wrong filter choice will introduce a large error. Vice
versa, if all F; are the same, the choice is unimportant. Sec-
ond, pixels with already low variance in the MC estimator
for N are likely to provide a more robust radiance estimate
with less residual noise for the cache’s sampling rate. Third,
the overall image domain  should be roughly covered with
a maximum distance between the caches.

Following the first two insights, we compute a joint prob-
ability distribution function (PDF) Ppn to drive the cache
positioning:

Pr(p) -Pn(p)

PN ) = o Pep) Pa(p) ™
where Prp and Py are the PDFs for importance sampling
based on the filter bank variance and the MC variance of N.
We use the per-pixel filter bank variance directly as PDF and
set Pr(p) :=Fo(p) = & L1 (Fun(p) — Fu(p))*, where F,
is the per-pixel mean of the filter bank. For Py, we use a
Gaussian probability model and define

N2 (p)
252

1 —
e
GrV2T

where N2 is the variance of the MC estimator. Although
Ng2 is unknown, it can be approximated by the empiri-
cal sample variance for each pixel using n samples (cf.
[RKZ11,LWC12]). Here, G, is a global, user-defined param-
eter, which we set to 0.15 for all our scenes.

Pn(p) =

Directly sampling the total number of caches my, via
PpN leads to cluttered cache locations and potentially larger
image regions without caches, which leads us to the third
insight. We use our previous importance sampling strategy
to produce Mimportance = K - Myoral Caches and mpoisson =
Myotal — Mimportance Caches using standard Poisson sampling.

(© 2015 The Author(s)
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(@) Variance of F (b) Variance of MC (c) Sampling mask

(e) Poisson sampling (f) Poisson + Importance

Figure 5: Adaptive cache placement. (a) Magnitude of the
variance of the filter bank (b) Magnitude of the variance
of the MC estimator (c) Binary mask of the representative
pixels using our importance sampling approach and (d) the
representative radiance values. (e) Close-up with standard
Poisson sampling and (f) with our proposed combination of

Poisson and importance sampling.

(d) Representative pixels

Here, k € [0, 1] is a user-defined number, which balances be-
tween both strategies.

To avoid duplicate caches, we first draw mpoisson Samples
from the Poisson distribution and remove the sampled pix-
els from the PDF computation of the importance sampling
given by Eq. (1). Afterwards, we draw the mjmportance Sam-
ples from the resulting PDF using 2D importance sampling
[PH10]. As the parameter K is set only once, the Poisson dis-
tribution can be precomputed. A similar sampling could be
achieved with a pure variable density-based Poisson Distri-
bution, e.g. [KS11], but these are often costly to compute.
Our approach is cheap as the uniform Poisson samples can
be precomputed.

An example of our approach is given in Fig. 5; the samples
of our importance sampling approach visibly gather around
object boundaries and high frequency edges, as these are of-
ten difficult to reconstruct for many filters.

4.3. Dense error reconstruction

Given the error estimation at the cache locations for each
F; € F, we want to estimate a dense error for all remain-
ing pixels, which will be the input to our filter selection
approach. We compared several reconstruction techniques
of sparsely sampled images, including PDE-based inpaint-
ing [BSCBO0], Total-Variation inpainting [CS02], and ACT
[FGS95]. An excellent comparison study for several image-
based sparse-reconstruction techniques has been presented
in [SD11]. The study shows that Compressed Sensing and
Delaunay triangulation are the best choices for sparsely-
distributed samples with a high degree of sparsity. As we
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(a) Sparse squared error (b) Inpainted squared error (C) Reference squared error
Figure 6: From a sparse estimation of the squared error,
we use an inpainting based on Delaunay triangulation to
compute a dense estimation, which resembles the reference
squared error. Note the uniform areas are sampled with fewer
caches by our adaptive cache placement.

have to perform multiple interpolations for each F;, we chose
Delaunay triangulation because it provides a good tradeoff
between quality and performance. Further, once computed,
it can be re-used for each filter in the bank.

We use the square of the L2-norm as error distance met-
ric (Fig. 6) and interpolate the error of each reconstruction
technique F; between the caches to create a dense error map
D; for each filter.

4.4. Filter Composite

Given the dense error estimate D;, a straightforward solution
to minimize the MSE of the final result would be to select
the filter F; with the lowest estimated error per pixel, but this
may lead to visual artifacts in form of seams. Instead, we
write the problem of selecting the optimal filter per-pixel as
a multi-labeling optimization problem. An optimal labeling
L:Q — 1...m can be found by minimizing the energy

E(L) ‘= EData (L) + A+ ESmoothness (L): 2

A allows us to balance between data and smoothness terms,
which are defined as follows;

Epaa(L) := Y Dy, (p) 3)
PEQ

ESmoothness (L) 1= Z V(p,q,L(p),L(q)), )
{pateN

where N is the set of interacting pairs of pixels and
V(p,q,L(p),L(q)) is a label cost function. We follow Agar-
wala et al. [ADA*04] and define this cost function to match
color and gradients of neighboring pixels:

V(p,q,L(p),L(q)) =X +Y
with

X= HFLO’) (P) = Fr(g)(P) H + HFL(p) (9) = Frg)(q) H

Y= HVFL(p) (p) = VFL ) (P) H + HVFL(,;) (9) = VFL)(9) H

where VF;(p) is the (horizontal and vertical) gradient of the
filtered image F; at p. Eq. (2) can be solved efficiently within
a known factor of the global minimum using a graph-cut op-
timization [BVZ01].

Figure 7: Noisy image with 32 spp (left inset), the result us-
ing only an interpolated local error estimation (middle inset)
and the graph-cut version (right inset) of the SCIFI scene.

Fig. 7 shows the effect of the global filter optimiza-
tion. Local per-pixel filter selection leads to small erro-
neous patches where neighboring labels differ and creates
visually-disturbing artifacts, which are robustly removed by
our graph-cut approach.

Gradient-Domain Fusion In image-stitching applications
[Sze06, ADA*04], it has become common practice to add
a final Poisson integration step to adjust colors along the
seams of neighboring regions. For very low sampling rates,
it also smoothes out juxtaposed filter regions. We use two
Jacobi iterations of the Poisson solver to smooth the most
visible seams without affecting the overall MSE.

Additionally, the Poisson formulation can be used to en-
force the filter-cache radiance as a constraint for the image
reconstruction. In practice, for the low sample count that we
target, the remaining variance in the caches is usually similar
to the reconstruction. Consequently, integrating the caches
proved counterproductive.

5. Results

We implemented larger parts of our method in MATLAB
R2014b without multi-threading. For the multi-label graph-
cut solver, we use the algorithm proposed in [BVZ01] and
implemented it in NVIDIA’s CUDA 6.5 on top of the bi-
nary graph-cut implementation provided by the CUDA NPP
library. We also implemented the joint-bilateral filter with
the modified distance function from [LWC12] using CUDA.
For the BM3D filter [DFKEO06] and the modified non-local
means filter by Rousselle et al. [RMZ13], we used the orig-
inal implementations. All statistics were measured on an In-

(© 2015 The Author(s)
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Figure 8: Parameter evaluation. While the overall sampling
budget is fixed the sampling rate for the noisy input image
and the number of filter caches is varied.

tel Core 17-2600, 3.40 GHz and 16 GB RAM PC with an
NVIDIA GeForce 780 GTX running on Windows 7, 64-bit.

The test scenes and the input and reference data were
created using the PBRT2 system [PH10]. We used nine
test scenes for our evaluations and comparisons (resolution
in pixels is given in brackets) - SANMIGUEL(1024x1024),
SIBENIK (1024x768), TEAPOT (800x800), TOASTERS
(512x512), CHESS (750x1000), POOLBALL (1024x1024),
DRAGON (1024x1024), CONFERENCE (1024x1024) and
SciFr (1024x768). The scenes cover a variety of MC ef-
fects including global illumination, depth of field, motion
blur, glossy materials and participating media. All reference
solutions have been computed with 20000 spp.

5.1. Parameter and Error Evaluation

In the following, we evaluate the influence of the different
parameters of our approach to derive an optimal setting used
in all the following results. Additionally, we investigate the
error of our method compared to the optimal filter selection.
For all experiments, we set a total sample budget of 32 sam-
ples times the number of pixels. The samples used for N are
uniformly distributed among the image in our approach.

Sampling and Sparsity We start by evaluating the influ-
ence of the number and quality of filter caches. To find the
optimal sample distribution, we vary the number of samples
used for N, as well as the number of filter caches. The results
for the SIBENIK scene are shown in Fig. 8. The trade-off be-
tween sparsity s and cache sampling rate ¢ has in general
a lower impact on the MSE in comparison to varying the
number of samples for N. This shows that the reduction of
the interpolation error from lower sparsity is outweighed by
the increase in the variance of the cache radiance estimates.
Optimal parameters are achieved between three-fourths and
seven-eighth samples assigned to N and a sparsity of approx-
imately 95%, which results in a mean distance of roughly
four pixels between the caches.

Approximation Error & Adaptive Cache Placement We
evaluate the influence of adaptive cache placement vs. a

(© 2015 The Author(s)
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Figure 10: Influence of the A parameter for the graph-cut
filter selection (using the parameters from Fig. 9). Choosing
the optimal A reduces the overall MSE for SIBENIK (73%),
TOASTERS (87%), SANMIGUEL (91%), TEAPOT (94%) and

DRAGON (83 %) in comparison to un-regularized selection.

blue-noise distribution for several test scenes. To this extent,
we vary the parameter K to interpolate between the two ex-
tremes as described in Sec. 4.2. In addition, we are inter-
ested in the significance of the two possible error sources of
our approach; interpolation errors and errors introduced by
residual variance in the cache radiance values. To gain fur-
ther insights into each of them, we also measure the MSE
when using ground truth radiance at the caches instead of
the variant estimates C (p).

Adaptive placement consistently outperforms uniform
placement and our mixed importance sampling decreases
the overall MSE down to 90% for the SIBENIK scene, 84%
for the TOASTERS scene, 63% for SANMIGUEL, 86% for
the TEAPOT scene and even down to 43% for the DRAGON
scene. We used values of 0.5 — 0.7 for x in our scenes.

As expected, interpolation from sparse caches is our main
source of error in most scenes (72% on average) when com-
pared to an optimal filter selection (Fig. 9), while error from
residual noise in the caches is comparably small (28% on
average). An exception is the DRAGON scene where inter-
polation works exceedingly well due to large homogeneous
image regions and residual cache variance contributes more
strongly to the overall error (80% on average).

Regularization We varied the smoothness parameter 2,
controlling the influence of the smoothness term in the
graph-cut labeling, Eq. (2), and evaluated the MSE. The reg-
ularized version decreases the overall error compared to the
non-regularized version (A = 0) for all scenes up to 27%
(Fig. 10). Hereby, small filter patches in the resulting im-
ages are removed, which otherwise could appear as visible
artifacts (Fig. 7). The graph cut operates on the color values
of FF, hence, the optimal choice of A depends on the dynamic
range of the scene radiance. When A is chosen too large, the
error is increased again due to over-smoothing of the final
labeling.
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Figure 9: Influence of k parameter for the adaptive cache sampling strategy with 16 spp used for N, 95% sparsity, resulting in
176 spp for each cache entry, and the filter bank from Sec. 3. The error from an optimal filter selection (dark green) is compared
to the error due to interpolation (using ground truth radiance at the caches, shown in green) and the overall error (including
interpolation and residual noise in the caches, shown in yellow). The mixed importance sampling decreases the overall MSE

for all test scenes: SIBENIK (90%), SANMIGUEL (63%), TEAPOT (86%), DRAGON (43%).
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Figure 11: Timings for rendering (with 32 spp), filter bank
creation (A uses 8 joint-bilateral filters, B uses 4 BM3D fil-
ters), error estimation (EE) including cache location sam-
pling and dense interpolation, and compositing (CP) includ-
ing graph cut and Poisson integration. All timings are in sec-
onds.

5.2. Timings

We evaluate the runtime of our method in Fig. 11 using 32
spp and 90% sparsity. It can be seen that our method ac-
counts for only a small portion of the total time, 3% - 6% for
the SIBENIK scene, 6% - 9% for CONFERENCE, 3% - 6%
for SANMIGUEL, 8% - 12% for TEAPOT and 4% - 7% for
the DRAGON scene. Most time is consumed by the render-
ing process and the filter-bank creation. Our method’s most
costly aspect is the graph-cut solver, which can be seen in
the increase of the compositing time between 4 and 8 filters,
due to the quadratic complexity in terms of labels.

5.3. Comparisons

We compared our technique to a variety of state-of-the-art
MC denoising techniques. For all comparisons, we used the
original source codes kindly provided by the respective au-
thors. All parameters of these techniques were set to values
proposed in the respective publications and the same overall
sample budget was used for a fair comparison.

SURE To evaluate the quality of our filter selection, we
compare our technique to SURE-based filter selection which
was proposed first for MC denoising in [LWC12]. Because
SURE only works for differentiable filters, we use a filter
set consisting of four joint-bilateral filters (using similar pa-
rameters settings as [LWC12]) for both SURE and our ap-
proach for a fair comparison. We use 32 spp for the SURE
method to create the filter bank, while our method uses only
28 spp for the noisy estimate N, from which the filter bank
is constructed. Both noisy images are created with uniform
sampling. We distribute the rest of the samples to the cache
pixels, which we create with 95% sparsity, i.e. each cache is
computed from 108 samples. Results for the SIBENIK and
CONFERENCE scenes are shown in Fig. 12.

For both scenes our technique has fewer visible artifacts
and an overall MSE reduction of up to 54% for the SIBENIK
scene and 64% for CONFERENCE compared to the SURE-
based selection. Even when choosing the best filter only lo-
cally without the graph-cut and Poisson-integration step, we
still achieve an improvement in MSE by 43% (SIBENIK) and
47% (CONFERENCE). Potentially, our results could be im-
proved even further by using higher quality filters, including
non-differentiable ones, in F.

GID We compare our method to the General Image Denois-
ing (GID) framework [KS13], a framework for adaptive fil-
tering and variance estimation (Fig. 13). GID uses a wavelet-
based noise metric to estimate the standard deviation of the
noise per pixel and then selects an optimal filter from a series
of high-quality filters (BM3D or BLS-GSM). The BM3D
and BLS-GSM are only applicable to low dynamic range
images, which is why images have been tone mapped be-
forehand using a gamma correction. The test sequences are
the TOASTERS, CHESS and POOLBALL scene using BM3D
filters and the parameters suggested by the authors. For our
method, we create a filter set consisting of four BM3D fil-
ters with uniformly distributed parameters, while GID even
optimized the filter parameters for each scene. Additionally,
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MSE=0.7681
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MSE=0.4371
$5IM=0.9794

 MSE=0.3556
$5IM=0.9829
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CONFERENCE - Ours (32 spp)
SSIM=0.6303

MSE=12.0773
SSIM=0.8196

=
e
o

MSE=6.4502
SSIM=0.8920

MSE=4.1014
SSIM=0.9247

Figure 12: Comparison with SURE [LWC12]. Top: Reconstructed result and associated filter selection map. All reconstruction
results, except for the reference solution, use the same sample budget. MSE is scaled by 10°.

GID performs adaptive sampling. We tested configurations
with 8, 16 and 32 spp on average. For all 3 scenes, we used
a sparsity of 95%.

We achieve an MSE reduction of 13% - 64% (51% on av-
erage). The GID approach has problems distinguishing be-
tween noise and high frequencies in the image signal and
smoothes over them. This shortcoming is visible in areas
with high-frequency textures (e.g. in the chess scene, second
row).

Similar to previous approaches, the GID estimator suffers
from variance for low sampling rates which forces the ap-
proach to heuristically smooth the noise map before filter se-
lection. The framework supports arbitrary image-denoising
filters, however, they only estimate the variance of the noise
and not the MSE itself. Therefore, only results for one fam-
ily of filters at a time have been shown. The GID algorithm
has no means to compare the reconstruction quality of differ-
ent filters directly. Our approach differs in this sense, as we
estimate the MSE directly per filter and are able to compare
arbitrary reconstruction results.

RD InFig. 14, we compare our method with the Robust De-
noising (RD) framework [RMZ13], which is the currently
best-performing reconstruction technique of all tested ap-
proaches. RD uses three specialized non-local means filters
with different sensitivity to the image colors. Additionally,
it uses a tailor-made filter selection algorithm for these three

(© 2015 The Author(s)
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filters based on SURE. We use the same three filters for our
filter bank.

The results shown in Fig. 14 for both approaches are quite
similar. For 16 spp (32 spp), our technique shows a MSE re-
duction of up to 25% (16%) for the DRAGON scene com-
pared to RD. On the TEAPOT scene, our approach performs
slightly worse and the MSE increases by 14% (13%). For
the CONFERENCE scene, both approaches yield similar re-
sults, with an MSE decrease by 9% (7%) using our method.
A possible explanation could be that a sparse cache sam-
pling potentially misses peaks in the highly glossy material
of the teapot, resulting in worse error estimates in the dense
error maps. However, it should be noted that our approach is
a general framework for arbitrary reconstruction techniques,
whereas RD is a specifically customized approach. Our im-
ages show slightly more noise compared to the results pre-
sented in [RMZ13] as we omit their final filtering step for a
more direct comparison.

Though not tested yet, we could potentially use the final
results from the SURE, GID and RD frameworks for our
input and locally choose an optimal one, which illustrates
the flexibility of our approach.

6. Discussion

Based on our experiments from Sec. 5, using filter caches
appears to be a fruitful research direction to develop more
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SSIM=0.9497 SSIM=0.9844 SSIM=0.9473 $SIM=0.9918
GID (8 spp) Ours (8 spp) GID (32 spp) Ours (32 spp) Reference

MSE=2.6491
$SIM=0.9516

MSE=1.38179
$SIM=0.9874

MSE=2.4006
S$SIM=0.9558

MSE=0.8962
$SIM=0.9948

MSE=0.4012
SSIM=0.9896

POOLBALL - Ours (32 spp)

MSE=0.1459
SSIM=0.9939

MSE=0.3428
SSIM=0.9938

MSE=0.1382
SSIM=0.9946

Figure 13: Comparison with the General Image Denoising (GID) framework [KS13] for 8, 16 and 32 spp on average. Our
approach uses four different BM3D filters. The MSE is scaled by 10°.

robust error estimators as our solution outperforms many
competitors. It also shows that sample count alone can be
much less crucial than appropriate settings for the recon-
struction method. This finding indicates that solutions like
ours, which opt at making better filter choices, have great
potential to improve image reconstruction in the future.

A limiting factor can be residual noise in the filter caches,
or an inferior error interpolation, which can both affect the
quality of our filter selection. Both problems could poten-
tially be tackled by compressed-sensing [SD11] in combina-
tion with cross-validation [BDBO07], but we currently opted
for a more computationally efficient solution.

Adaptive MC sampling is often based on intermediate re-
construction results to steer the distribution of samples. Our
approach offers many degrees of freedom, as samples can be

added to the caches, be integrated in our noisy estimate N,
or can even be used to create new caches. The gain could be
high, but such measures make the problem also substantially
more complex.

In the current state, our adaptive placement of caches
tends to avoid selecting outliers stemming from the MC ren-
dering process as caches, which are, unfortunately, even pre-
served by some filters (e.g., BM3D or BLS-GSM). This sit-
uation violates our assumption of local error smoothness, al-
though it is more a filter limitation. Further, preprocessing
the individually-filtered images with a spike-noise reduction
should alleviate these problems.

So far, we did not focus on temporal data, and no co-
herence is guaranteed. The reason is mostly that the eval-
uated reconstruction techniques do not explicitly tackle an-
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SSIM=0.9588

CONFERENCE - Ours (32 spp)

MSE=4.4113
$SIM=0.9510

MSE=2.7694
$SIM=0.9725

MSE=2.5635
SSIM=0.9717

Figure 14: Comparison to the Robust Denoising (RD) technique [RMZ13] for 16 and 32 spp on average. For all scenes three
customized non-local means filters are used. MSE is scaled by 10°.

imations. An interesting step in this direction might be to
extend our graph-cut technique to the time dimension.

It would also be promising to use filter combinations in-
stead of a single filter per pixel. Such an extension would
broaden the solution space and could improve reconstruc-
tion.

7. Conclusion

‘We have presented a way to estimate the error of arbitrary fil-
tering and reconstruction techniques for MC renderings and
how to exploit this estimate to select a close-to-optimal filter
per pixel. We introduced filter caches, sparse high sample lo-
cations within the image plane, to robustly estimate the error.
Our adaptive cache placement based on the variances within
the filter bank and MC estimator conservatively reduces the
threat of choosing wrong filters at crucial image positions.

(© 2015 The Author(s)
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The freedom to basically use any reconstruction techniques,
in combination with our robust error estimator, significantly
improves the reconstruction results over state-of-the-art ap-
proaches.
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