

Eurographics 2015

The 36th Annual Conference of the European Association for Computer Graphics

General and Robust Error Estimation and Reconstruction for Monte Carlo Rendering

Pablo Bauszat¹, Martin Eisemann^{1,2}, Elmar Eisemann², Marcus Magnor¹

¹ Computer Graphics Lab, TU Braunschweig, Germany ² Delft University of Technology, Netherlands

Monte Carlo Rendering

- Today's industry standard
- General and unbiased
- Covers variety of natural phenomena
- Requires extensive sampling
 - Pixel (2D integral)
 - Camera lens (2D integral)
 - Time (1D integral)
 - Global illumination (2D integral per bounce)
 - ... and more ...

Noise

Noisy

Uniform filter (small)

Uniform filter (large)

Reference

Adaptive filtering

Adaptive Reconstruction

• Filter bank

- Set of filters with different properties
- Select best filter on a per-pixel level

Problem statement How to choose the best filter from the set for a pixel?

Previous work

Overbeck et al. 2009

Li et al. 2012

Rousselle et al. 2011/2012/2013

Moon et al. 2014

Limitations of previous work

- Filter selection based on noisy image
- Often tailored for specific filters
- Switching filters may cause seams

Local selection

Our method

Our method is based on three key insights:

- 1. Filter selection is often more crucial than sampling rate
- 2. Filter error is locally smooth for most image regions
- 3. Often multiple filters are close-to-optimal choices

1. Filter selection is often more crucial than sampling rate

4 Joint Bilateral filters

1. Filter selection is often more crucial than sampling rate

Our method is based on three key insights:

- 1. Filter selection is often more crucial than sampling rate
- 2. Filter error is locally smooth for most image regions
- 3. Often multiple filters are close-to-optimal choices

2. Error smoothness – Gaussian filters

2. Error smoothness – Guided Image Filtering [He2010]

Our method is based on three key insights:

- 1. Filter selection is often more crucial than sampling rate
- 2. Filter error is locally smooth for most image regions
- 3. Often multiple filters are close-to-optimal choices

3. Often multiple filters are close-to-optimal choices

3. Often multiple filters are close-to-optimal choices

Beginharizedeselections ground truth

- M§E down to 8:0% from noisy image
- Variations in selection are penalized

What do we learn from the insights?

32 spp 12.3 MSE⁻³ 32 spp 1.6 MSE⁻³ (x 7.7) 16 spp 2.3 MSE⁻³ (x 5.3) Best choice

• Filter selection is crucial

• Filter error is piece-wise smooth

• Non-optimal filter selection does not imply large error

1. Filter bank generation

2. Sparse reference pixels

3. Sparse error computation

4. Dense error interpolation

• Interpolation of sparse error estimate (per filter)

Filter error using reference (zoom-in)

4. Dense error interpolation

• Best selection from interpolated error leads to seams

Seams (closeup)

5. Filter compositing

Globally optimize filter selection (seek labeling L)

$$\underset{L}{\operatorname{argmin}} E(L) = E_{Data}(L) + \lambda \cdot E_{regularizer}(L)$$

5. Filter compositing

• Solve by graph-cuts

"Fast approximate energy minimization via graph cuts", Boykov et al. 2001

5. Filter compositing

• Solve by graph-cuts

Local selection

"Fast approximate energy minimization via graph cuts", Boykov et al. 2001

Global selection

Bells & Whistles

- Choice of regularization in filter compositing
- Integration of high-quality radiance values (not included the filter bank)
- Select "best" pixels for sparse error estimate

Adaptive placement of sparse estimates

- Required for highly variant error regions
- Reduces residual variance in radiance estimate

Results

Results – San Miguel

MC 4096 spp **15,449 sec**

MC 32 spp 146 sec Our result 32 spp 146 + 13 sec

Global illumination

Results - Chess

Depth-of-field

Results - Poolball

Results - Teapot

Results - Dragon

Participating media

Results - Timings

Intel Core i7-2600, 3.40 GHz, 16 GB RAM, NVIDIA GeForce 780 GTX, Windows 7 64-bit Rendered with PBRT 2 path tracing.

Error analysis

Results – GID

("Removing the Noise in Monte Carlo Rendering with General Image Denoising Algorithms", Kalantari et al. 2013)

MSE=2.6491 MSE=1.38179 MSE=2.4006 MSE=**0.8962 Chess scene** SSIM=0.9516 SSIM=**0.9874** SSIM=0.9558 SSIM=0.9948

Results – RD

("Robust Denoising using Feature and Color Information", Rousselle et al. 2013)

 Dragon scene
 MSE=13.6693
 MSE=10.1914
 MSE=9.3887
 MSE=7.8838

 SSIM=0.9654
 SSIM=0.9599
 SSIM=0.9781
 SSIM=0.9768

Error sparsity

- Sparsity of error maps in transform domain (CDF 9/7 wavelets)
- Redundant information

Gaussian σ=7	Gaussian σ=11	Gaussian σ=13
86.46%	88.58%	89.86%
Guided radius=4	Guided radius=8	Guided radius=16
81.34%	87.07%	89.43%
NLM	BM3D	BLS-GSM
60.06%	67.35%	73.62%

Results – SURE [Stein1981]

Sibenik scene

MSE=6.0644 SSIM=0.9066

MSE=**0.3556** SSIM=**0.9829**

Conclusion

- Summary
 - Redistributing samples can improve filter selection
 - Global filter selection removes image seams
- Benefits
 - Works with arbitrary filters
 - No assumptions regarding scene and image content
 - Easy integration into existing rendering frameworks

- Investigate other interpolation schemes
- Adaptive sampling feedback loop
- Temporal coherence

Thank you for your attention!

Pablo Bauszat

Martin Eisemann

Elmar Eisemann

Marcus Magnor

graphics.tu-bs.de

graphics.tudelft.nl

Delft University of Technology