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Monte Carlo Rendering

• Today‘s industry standard

• General and unbiased

• Covers variety of natural phenomena

• Requires extensive sampling
• Pixel (2D integral)
• Camera lens (2D integral)
• Time (1D integral)
• Global illumination (2D integral per bounce)
• … and more …
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Noise
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Filtering

4

Noisy Reference

Uniform filter
(small)

Uniform filter
(large)

Adaptive 
filtering



Adaptive Reconstruction

• Filter bank
• Set of filters with different properties

• Select best filter on a per-pixel level
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Filter bank



Problem statement

How to choose the best filter
from the set for a pixel?
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Previous work
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Li et al. 2012Overbeck et al. 2009 Rousselle et al. 2011/2012/2013

Kalantari et al. 2013 Moon et al. 2014



Limitations of previous work

• Filter selection based on noisy image

• Often tailored for specific filters

• Switching filters may cause seams
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Local selection



Our method
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Insights

Our method is based on three key insights:

1. Filter selection is often more crucial than sampling rate

2. Filter error is locally smooth for most image regions

3. Often multiple filters are close-to-optimal choices
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1. Filter selection is often more crucial than sampling rate
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Filter bank of 4 Gaussian and
4 Joint Bilateral filters

32 spp
SURE

12.3 MSE-3

32 spp
Best choice

1.6 MSE-3     (x 7.7)

16 spp
Best choice

2.3 MSE-3     (x 5.3)

Recently employed
by [Li2012] and
[Rousselle2013]



1. Filter selection is often more crucial than sampling rate
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Scene SURE
32 spp

Best choice
32 spp

Best choice
16 spp

Conference 12.327 1.605 (x 7.7) 2.344 (x 5.3)

Sibenik 0.758 0.157 (x 4.8) 0.258 (x 2.9)

Toasters 0.187 0.096 (x 1.9) 0.156 (x 1.2)

San Miguel 16.880 6.419 (x 2.6) 9.831 (x 1.7)

Mean squared error (MSE) * 10-3 – Same filter bank



Insights

Our method is based on three key insights:

1. Filter selection is often more crucial than sampling rate

2. Filter error is locally smooth for most image regions

3. Often multiple filters are close-to-optimal choices
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2. Error smoothness – Gaussian filters
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Gaussian σ=7 Gaussian σ=11 Gaussian σ=13



2. Error smoothness – Guided Image Filtering [He2010]
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Guided radius=4 Guided radius=8 Guided radius=16



Insights

Our method is based on three key insights:

1. Filter selection is often more crucial than sampling rate

2. Filter error is locally smooth for most image regions

3. Often multiple filters are close-to-optimal choices

16



3. Often multiple filters are close-to-optimal choices
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Reference Filter A Filter B Filter C



3. Often multiple filters are close-to-optimal choices
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Optimal selection via ground truth

• MSE down to 8.0% from noisy image

Regularized selection

• MSE down to 8.4% from noisy image

• Variations in selection are penalized

Regularized selection

• MSE down to 9.1% from noisy image

• Variations in selection are penalized



What do we learn from the insights?

• Filter selection is crucial

• Filter error is piece-wise smooth

• Non-optimal filter selection does not imply large error
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Our Method
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Filter bank
generation

1

Sparse
reference pixels

2

Dense error
interpolation

4

Filter 
compositing

5

Sparse error
computation
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1. Filter bank generation
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16 spp

Sample 
Budget

Filter bank

Filter 1 Filter 2 Filter n…

… … …

32 spp16 spp



2. Sparse reference pixels
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16 spp

Sample 
Budget

Filter bank

Filter 1 Filter 2 Filter n…

… … …

16 spp

128 spp per reference pixel



3. Sparse error computation
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16 spp

Sample 
Budget

Filter bank

Filter 1 Filter 2 Filter n…

… … …

128 spp per filter cache

• Serves as reference

•Used to estimate filter error

• Low-variance estimator



4. Dense error interpolation

• Interpolation of sparse error estimate (per filter)

24

Sparse error
(zoom-in)

Interpolated error
(zoom-in)

Filter error using reference
(zoom-in)



4. Dense error interpolation
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• Best selection from interpolated error leads to seams

Optimal selection
(per-pixel)

Seams
(closeup)



5. Filter compositing

Globally optimize filter selection (seek labeling 𝐿)

argmin
𝐿

𝐸 𝐿

Globally optimize filter selection (seek labeling 𝐿)

argmin
𝐿

𝐸 𝐿 = 𝐸𝐷𝑎𝑡𝑎 𝐿
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Data term
Local errormaps

Regularization term
Solution image gradients

Minimize MSE Avoid seams

Globally optimize filter selection (seek labeling 𝐿)

argmin
𝐿

𝐸 𝐿 = 𝐸𝐷𝑎𝑡𝑎 𝐿 + 𝜆 ∙ 𝐸𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟 𝐿



5. Filter compositing
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• Solve by graph-cuts
„Fast approximate energy minimization via graph cuts”, Boykov et al. 2001

Globally optimized label map

Filter 1 Filter 2 Filter n…

… … …

Cut



5. Filter compositing
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• Solve by graph-cuts
„Fast approximate energy minimization via graph cuts”, Boykov et al. 2001

Local selection Global selection



Our Method
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Filter bank
generation

1

Sparse
reference pixels

2

Dense error
interpolation

4

Filter 
compositing

5

Sparse error
computation

3



Bells & Whistles

• Choice of regularization in filter compositing

• Integration of high-quality radiance values (not included the filter bank)

• Select „best“ pixels for sparse error estimate
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Adaptive placement of sparse estimates

• Required for highly variant error regions

• Reduces residual variance in radiance estimate
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Filter bank
variance

Monte Carlo
variance

Poisson
sampling

Importance
sampling



Results
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Results – San Miguel

Global illumination
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MC 4096 spp
15,449 sec

Our result 32 spp
146 + 13 sec

MC 32 spp
146 sec



Results - Chess

Depth-of-field
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MC 4096 spp
1,492 sec

Our result 8 spp
9 + 29 sec

MC 8 spp
9 sec



Results - Poolball

Motion blur
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MC 4096 spp
10,989 sec

Our result 8 spp
25 + 25 sec

MC 8 spp
25 sec



Results - Teapot

Glossy materials
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MC 4096 spp
3,619 sec

Our result 16 spp
14 + 8 secMC 16 spp

14 sec



Results - Dragon

Participating media
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MC 4096 spp
12,464 sec

Our result 32 spp
95 + 12 sec

MC 32 spp
95 sec



Results - Timings
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Intel Core i7-2600, 3.40 GHz, 16 GB RAM, NVIDIA GeForce 780 GTX, Windows 7 64-bit
Rendered with PBRT 2 path tracing.

8 filter 4 filter 8 filter 4 filter 8 filter 4 filter 8 filter 4 filter 8 filter 4 filter

Rendering Filtering Error estimation Filter composite



Error analysis
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Two error sources

Residual variance in radianceInterpolation error



Results – GID 
(„Removing the Noise in Monte Carlo Rendering with General Image Denoising Algorithms”, Kalantari et al. 2013)
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GID (8 spp) Ours (8 spp) GID (32 spp) Ours (32 spp) Reference

Chess scene MSE=2.6491
SSIM=0.9516

MSE=1.38179
SSIM=0.9874

MSE=2.4006
SSIM=0.9558

MSE=0.8962
SSIM=0.9948



Results – RD
(„Robust Denoising using Feature and Color Information”, Rousselle et al. 2013)
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RD (16 spp) Ours (16 spp) RD (32 spp) Ours (32 spp) Reference

Dragon scene MSE=13.6693
SSIM=0.9654

MSE=10.1914
SSIM=0.9599

MSE=9.3887
SSIM=0.9781

MSE=7.8838
SSIM=0.9768



Error sparsity

• Sparsity of error maps in transform domain (CDF 9/7 wavelets)

• Redundant information
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Gaussian σ=7 Gaussian σ=11 Gaussian σ=13

86.46% 88.58% 89.86%

Guided radius=4 Guided radius=8 Guided radius=16

81.34% 87.07% 89.43%

NLM BM3D BLS-GSM

60.06% 67.35% 73.62%



Results – SURE [Stein1981]
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Noisy SURE Our approach Reference

Sibenik scene MSE=6.0644
SSIM=0.9066

MSE=0.7681
SSIM=0.9643

MSE=0.3556
SSIM=0.9829



Conclusion

• Summary
• Redistributing samples can improve filter selection

• Global filter selection removes image seams

• Benefits
• Works with arbitrary filters

• No assumptions regarding scene and image content 

• Easy integration into existing rendering frameworks
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Outlook

• Investigate other interpolation schemes

• Adaptive sampling feedback loop

• Temporal coherence
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Thank you for your attention!
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