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Abstract—Height fields have become an important element of realistic real-time image synthesis to represent surface details. In this

paper, we focus on the frequent case of static height-field data, for which we can precompute acceleration structures. While many

rendering algorithms exist that impose tradeoffs between speed and accuracy, we show that even accurate rendering can be

combined with high performance. A careful analysis of the surface defined by the height values, leads to an efficient and accurate

precomputation method. As a result, each texel stores a safety shape inside which a ray cannot cross the surface twice. This property

ensures that no intersections are missed during the efficient marching method. Our analysis is general and can even consider visibility

constraints that are robustly integrated into the precomputation. Further, we propose a particular instance of safety shapes with little

memory overhead, which results in a rendering algorithm that outperforms existing methods, both in terms of accuracy and

performance.

Index Terms—Computer graphics, 3D graphics, realism, raytracing, color, shading, shadowing, texture
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1 INTRODUCTION

SURFACES in the real world are often complex and show
many details at different scales. For real-time applica-

tions, it is currently infeasible to represent such small scale
variations with separate geometric primitives. On the other
hand, there are many possibilities to approximate such
appearance, the most common one being textures.

Standard textures only account for color, but the
increasing capacities of graphics hardware allow us to shift
increasing amounts of surface properties into such image-
based representations. Such techniques are usually more
efficient than using a geometric equivalent. One application
of textures is to add detail to the appearance of a surface, as
is achieved with bump mapping, normal mapping, and
other techniques now standard in real-time applications,
but texture-based methods can also be used to define
geometric modifications of the surface. One possibility is to
interpret texture values as a displacement. In other words,
the texture itself becomes a height field. This will be the
main aspect investigated in this paper.

There are many applications for fast height-field render-
ing, such as terrain rendering [1], impostors [2], or physical
simulations [3]. Some applications need to take dynamic
changes into account, for others the data are constant. We
will focus on the latter case, were a precomputation can be

used to derive information to accelerate the display. Such
performance improvements are important because despite
the simple definition of a height field, efficient, and accurate
rendering is not straightforward. Even standard texture
resolutions give rise to a dramatic number of virtual
primitives and it is of importance to be able to skip
unneeded elements. Today, height-field rendering on the
GPU is most effective with ray marching. It consists in
looking for intersections at successive positions along a
view ray. For accuracy, it is necessary to adapt the marching
distance to not miss an intersection.

We want to ensure the correctness of our output and
present an accurate, yet efficient ray-marching method for
height-field rendering. After a review of existing techniques
(Section 2), we present our motivations (Section 3) and
summarize our contributions (Section 4). We then give an
overview of our technique (Section 5) and the basic defini-
tions. Here, we define the general procedure and the principle
of our acceleration. We then detail how to accurately and
efficiently precompute the needed data (Section 6). Potential
constraints on viewpoints can be exploited to further
optimize the result. Section 7 justifies one specific definition,
namely the way we interpret the height-field data as a surface.
Here, we also propose alterations to the algorithm that lead to
higher performance if some minor quality sacrifice is
acceptable. As will be shown in Section 8, our approach
compares favorably in terms of precomputation times,
accuracy, and rendering performance.

2 RELATED WORKS

Height-field rendering is useful for many contexts. Oliveira
et al. [4] used a cube with height-field-augmented faces to
represent complex objects. Height-field-based rendering
was also used with a few layers [5], [6], [7], patch-based
representations [8] or view interpolations [9]. Such scenar-
ios particularly benefit of rendering precision addressed by
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our method, but are considered out of the scope of this
paper. Instead we will focus on the rendering process itself
and address most related work. More methods for height-
field rendering can be found in [10].

One possibility to render height fields is to tesselate a
surface and apply a per-vertex displacement [11]. The
complexity of this displacement mapping can be reduced with
hierarchical representations [12], controlled by the devia-
tion, general adaptive subdivisions [13], or predefined and
adaptively selected patterns [14].

Image-based methods avoid the geometric workload.
Oliveira et al. [4] use a prewarping, but need to transform
the entire texture, preventing the technique to be output
sensitive. Parallax mapping [15], [16] shifts texture coordi-
nates to simulate deformations and Kautz and Seidel [17]
rely on slicing in order to render the information. Such
approximations can result in confusing appearances for
deep or high-frequency structures.

On today’s hardware, it is possible to execute height-field
ray casting directly in the fragment shader [18]. Baboud and
Décoret [19] followed Amanatides and Woo [20] and present
an algorithm that leads to accurate results on dynamic
height fields. We will adapt this algorithm and present a
more efficient, but still naive solution in Section 5.2.1. At the
expense of accuracy, higher performance can be reached, as
shown by Policarpo et al. [21], possibly inspired by root
finding processes. The idea is to advance along the ray with
constant steps, until it falls below the height field. From
there, a binary interval search (the bisection method)
delivers an intersection point. Similar solutions were applied
to reflection and refraction approximations [22]. Even
though such methods are relatively fast, many initial steps
might be needed before arriving underneath the surface and
artifacts often appear for grazing views.

One simple way to increase the initial steps is an on-the-
fly computed structure, inspired by classical min-max
mipmaps (MM) [23], that hierarchically store lower/upper
elevation limits. It can be interesting for large dynamic
height fields, but not for static data because especially near-
silhouette rays become costly.

For static height fields, the key to a fast rendering with
maintained accuracy lies in the use of precomputed
acceleration data. It is common to encode space above the
relief’s surface in form of some safety shape. During
rendering this information allows for a safe ray marching
(i.e., without missing intersections) and ensures large steps
along the ray (Fig. 1).

The most general encoding consists in storing a distance
value for each possible viewing ray [24], [25]. This requires
a dense sampling of the 5D set of rays [26], related to the
plenoptic function [27], inducing large memory costs and
allowing only small relief textures, even after compression.

To reduce the dimensionality of the acceleration data,

Donnelly [28] approximates the distance function on a

regular 3D grid. Geometrically, this defines spheres that are

stored in a 3D texture (Fig. 1a). The solution is approximate

because the minimization only considers texel centers and

interpolating such distances is not necessarily meaningful.

Furthermore, due to the still-high memory cost, only

smaller textures can be processed.
A better solution is to only use one value (or small set of

values) per height-map texel which constitutes the best

tradeoff between memory and efficiency. Further, the data

can then be stored as a simple 2D texture of the same size as

the height map.
Paglieroni [29] precomputes empty inverted cones

(Fig. 1b) which enable large marching steps when far

above, but only small steps when near the surface where

cones inevitably shrink near their apex (Fig. 2).
Baboud and Décoret [19] define a safety-volume property

(denoted PSV ) as follows: any possible ray starting above a

certain texel � intersects the surface at most once within the

safety volume at � . They observe that the precomputed

shape is actually allowed to grow past the relief surface, as

long as PSV is satisfied. With this broader definition, at

most one surface intersection can occur between two

stepping positions, which can be obtained accurately with

an efficient binary search (Fig. 3).
In [19], this principle is used to derive a safety radius

which defines an associated safety cylinder for each texel

(Fig. 1c). The method enables a faster ray marching than

previous methods, but has the drawback that the step sizes

do not depend on the ray’s height.
Policarpo and Oliveira [30] apply this idea to compute

relaxed cones (RC). These are wider than the classical (strict)

ones which results in a faster rendering. Their costly

precomputation algorithm results in a fast, but error-prone

rendering (see Section 3 for a more detailed analysis). We

will avoid inaccuracies in the precomputation and present a

hybrid solution that increases effectiveness and allows us to

produce accurate results.
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Fig. 1. Different empty space encodings; 3D grid. (a) Empty spheres; 2D

sampling of the surface. (b) Empty cones. (c) Safety cylinders. Arrows

depict possible rays concerned by the corresponding safety shape. They

span the maximum step length allowed by the safety volume.
Fig. 2. Limitations of cones. (a) Marching silhouette rays is slow. (b)

Concave zones cannot be reached in a finite number of steps (for clarity,

only half-cones are drawn).

Fig. 3. Safety distance. (a) Every ray originating above the texel �

intersects the surface at most once within the safety cylinder. (b) In this

example, one marching step using the safety radius is enough to cross

the surface: the bisection (blue) then finds the (unique) intersection.



3 MOTIVATION

To motivate our work and explain the importance of our

contributions, we will first analyze existing issues with

recent methods.

3.1 Ensuring Precomputation Correctness

The preprocess of most algorithms (e.g., [30], [19]) boils

down to the sampling of a set of rays. This always leads to a

slow and approximate computation. One of our contribu-

tions is to obtain an efficient and accurate result.
In particular, it is noteworthy that even the setup of such

a sampling process is difficult. In [30], it was suggested to

sample rays originating from the top of the relief’s

bounding box, above the considered texel � and find the

second intersection point along the ray. The slope stored in

� is then the largest cone not containing any of the second

intersection points.1 Figs. 4a and 4b show two examples.
The issue, however, is that no guarantee exists that cones

computed via such a process will satisfy the aforemen-

tioned safety-volume property. Fig. 4c shows a case where

computed cones are too large and intersections can be

missed during rendering.
The problem lies in the assumption that rays originate

from the top of the relief’s bounding box. This choice is

motivated by the idea that rays initially will be considered

to originate outside the bounding box (viewpoints inside

were excluded) which is a common assumption for meso-

scale relief rendering. However, during rendering, after one

marching step, the tested position will lie inside the

bounding box. Because this location was not considered

by the preprocess, the corresponding relaxed cone can be

too wide (texel p2 in Fig. 4b). This results in artifacts,

particularly affecting reliefs with sharp features (see Fig. 5

and accompanying video). Other authors reported this

problem and showed illustrations [23], but no explanation

was previously found for these issues.
In order to perform a correct preprocessing, the question

should be: which set of rays needs to be considered to enforce

PSV ? In fact, this strongly depends on the viewing context.

The most general assumption allows viewpoints any-

where above the surface (i.e., including locations inside the

relief’s bounding box). For example, this happens if the

relief represents a large-scale terrain with an observer

located on the ground. Interestingly, in that case, it can be

shown that relaxed cones satisfying PSV are equivalent to

strict cones because rays originating from the surface need

to be accounted for (see Fig. 6a).
If all viewpoints are located outside of the relief’s

bounding box, one can consider less rays, resulting in

larger relaxed cones. We call exterior any ray originating

outside the bounding box or exiting it without intersecting

the relief when traced backwards (nonexterior rays are

called interior). Exterior rays are those produced by exterior

viewpoints. As shown in Fig. 6b, exterior rays (e.g., �1; �3)

do not necessarily enter the bounding box above the

considered texel, an assumption exploited by the computa-

tion of relaxed cones. For a correct computation [19], one

needs to consider all rays originating from densely sampled

positions above the considered texel, along densely

sampled directions, and disregard interior ones. This

strategy allows us to compute accurate (up to sampling

issues) relaxed cones (Fig. 6c), but would require modifying

the preprocess and adding many sampling dimensions and

a backtracking for a potential intersection with the surface

before each ray.

3.2 Avoiding the Limitations of Sampling

Sampling the 5D ray space has two fundamental limitations.

1. Prohibitive computational cost for large maps.
Preprocessing a n2 height map by sampling nz
elevations and n�n� directions costs Oðn3nzn�n�Þ
(each ray needs to be marched backwards and
forward in OðnÞ). Even with insufficient sampling
[30], it takes over 8 hours for 1;0242 height maps and
gets impractical for larger ones [23].

2. No exactness guarantee because—even for smooth
surfaces—visibility exhibits high frequencies.

These shortcomings motivated us to develop a preprocess

that is both (provably) accurate and more efficient (exploit-

ing properties of limiting triangles, defined in Section 6). In
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1. There actually exist small inconsistencies between the preprocess
algorithm described in [30] and the accompanying preprocess shader code
(mainly the direction in which the sampled rays are traversed). Here, we
base our discussion and figures on the algorithm described in the text. With
minor adaptations, the same issues persist for the preprocess shader.

Fig. 4. A fail case example for relaxed cones [30]. (a) and (b) relaxed
cones slopes s1,s2 at positions p1,p2 are computed by considering
second intersections of rays leaving from q1,q2. (b) marching along a ray
using these cones leads to miss a big peak; the final bisection phase
(blue) on interval ½a1; a3� (containing three intersections) then converges
to the wrong intersection point (red dot).

Fig. 5. Typical hole artifacts obtained with RCS [30].

Fig. 6. Different cones definitions. (a) Classical strict cone. (b) Relaxed

cone as defined by [30] (exterior ray �1 intersects the relief twice within

the cone, contradicting PSV ). (c) Ideal relaxed cone, taking all exterior

rays into account (being interior, ray �4 does not contradict PSV ).



particular, we enable a fast preprocessing by showing that
2D visibility considerations are sufficient.

Another strength of our method is its ability to integrate
knowledge about viewing restrictions in form of polygonal
viewing regions (e.g., if the relief is integrated in a scene
with occlusion) and/or directional constraints. For exam-
ple, if it is known in advance that the relief cannot be
observed from directions above a certain angle (e.g.,
previous techniques often assume downward-directed
rays), less rays need to be considered during precomputa-
tion, leading to larger safety shapes that still guarantee
accurate rendering.

3.3 Improving Safety Shapes

Finally, even if computed correctly, one issue inevitably
remains with relaxed cones; cones are infinitely thin at their
apex, which can prevent the ray marching from converging
when approaching the surface. Remember that height-field
intersections are found by binary search once a point below
the surface is reached during the ray-marching phase. There
are situations, however, (e.g., concave parts) where relaxed
cones never allow us to reach the surface (see Fig. 2b).
Policarpo and Oliveira [30] try to deal with this issue by
fixing a maximum amount of marching steps. This decision
can result in wrongly located intersection points, leading to
(view-dependent) warping artifacts that are very visible
near silhouettes (see Fig. 7). This inaccuracy is also
problematic when rendering shadows (Fig. 8) because
marching along a shadow ray from the light source to the
surface point is likely to terminate early (shadow rays
cannot be traced in the other direction, as such upwards
directed rays are forbidden by the relaxed-cone technique).
This early ray termination leads to virtual occlusions
between the source and the surface point, that even
thresholding cannot address easily.

Cylinders [19] with their strictly positive radius do not
have this problem (Fig. 3). To keep the advantages of both
approaches, we propose a hybrid cylinder-cone (CC) shape.
It enables large steps far above the relief, while the surface
is reached very quickly when approaching it (Fig. 9). We
will further show that the marching position update for this
shape can still be done very efficiently, leading to high
performance. Nonetheless, our fast precomputation is not

restricted to a particular safety shape: any shape can be

tested for the PSV efficiently using our algorithm.

3.4 Improving Ray Traversal

More subtle, but also related, is the question of how to

interpolate safety shapes between neighboring texels. Many

approaches (e.g., [30]) compute their safety shapes on texel

centers only, while marching positions can fall anywhere

else inside a texel, where PSV is not ensured. The difficulty

comes from the fact that safety shapes for neighboring

texels can be bound by unrelated distant parts of the relief,

preventing exactness for any local interpolation scheme (see

Fig. 10). To address this point, we propose a careful yet

efficient ray-marching algorithm, that forces stepping

positions to fall on restricted locations inside texels, for

which we ensure PSV . This also requires a careful

consideration of how height-map samples define the

underlying relief surface and we will address this question

in detail (Fig. 11 shows a challenging relief with thin

features rendered accurately with our method, while

existing ones fail).

4 CONTRIBUTIONS

Our paper makes the following contributions:

. Accurate rendering. Our solution is fast and exact.

. Efficient and general precomputations. Our solu-
tion is practical. We accelerate and improve the
precomputation of previous state-of-the-art algo-
rithms [19], [30].
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Fig. 7. Warping-like artifacts produced by RCS [30].

Fig. 8. Artifacts obtained with RCS [30] on shadows.

Fig. 9. Advantage of a hybrid shape. (a) Cones are better suited for

elevated rays. (b) Cylinders perform well for low rays. (c) The hybrid

shape keeps both advantages.

Fig. 10. Interpolation of cones inside a texel. (a) Cones are bound by

pivot points, changing arbitrarily when the cone position moves between

two neighboring samples. (b) This results in a discontinuous derivative

for the cone’s angle.

Fig. 11. A 642 height field with 1-texel wide features.



. Improved acceleration structure. We present a
precomputation that accelerates ray marching sig-
nificantly while requiring little extra memory.

. Exploitation of visibility. We show how to exploit
prior knowledge concerning the set of viewpoints
observing the surface, leading to an acceleration at
no extra memory cost.

. Fast ray marching. We present a novel accurate and
efficient ray-marching algorithm.

. Surface definition. We show how to rely on a
special surface interpretation to enable faster, yet
accurate results.

5 METHOD OVERVIEW

This section presents an overview of our general rendering

algorithm. We will present a simple and accurate algorithm

before proceeding to our main contributions that involve

precomputations in Section 6.

5.1 Surface Definition

A height map is a 2D array of height values hi;j sampled on

a regular grid (for simplicity we assume an N �N-pixel

square). Such a point-wise definition can be interpreted in

various ways. Here, we will give a first surface definition

that we rely on for the rest of the paper before discussing

alternatives in Section 7.
We start with a few definitions that can be followed

along in Fig. 12. The positive height value hi;j defines a

surface point pi;j above the center ci;j of the texel located at

the integer coordinates ði; jÞ. We define two sets of lines: the

x-centerlines (y-centerlines) parallel to the y-axis (x-axis) and

passing through the texel centers. This network of lines

creates square cells that we refer to as intertexels. For the

sake of simplicity, we will use these expressions also for

their extension along the z-axis. Consequently, we say that a

ray intersects a centerline, if its projection in the x,y-plane

does. Similarly, a 3D point is said to be located in an

intertexel, if its projection is.
The surface S is a triangular mesh defined by the pi;j

vertices.2 Above each intertexel are exactly two triangles.

There are two options for the common diagonal edge: our

surface is defined by always taking the lower one (Fig. 12b).

The resulting surface S is the graph of a continuous height

function h, concave in each intertexel.

5.2 Accurate Rendering Algorithm

The rendering is performed entirely on the GPU using a
ray-casting fragment shader. A polygonal bounding volume
V is used to initialize view rays from the eye. The challenge
is to compute the first intersection of this ray with S
encoded in a 2D texture, the so-called height map.

5.2.1 Naı̈ve Algorithm

The simplest way to find the first intersection consists in
traversing successive intertexels (as illustrated in Fig. 13).
More precisely, a testing point p is shifted along the ray,
stopping at each x- or y-centerline. Here, its corresponding
height pz is compared to the surface elevation hðpxyÞ. The
marching stops when p passes below the surface, i.e., when
pz � hðpxyÞ, which indicates that an intersection occured.
Because our defined height function is concave in each
intertexel, the intersection point has to lie inside the last
traversed intertexel, i.e., between the two last test positions.
Finding the intersection amounts to testing against the
intertexel’s two triangles.

The grid traversal algorithm by Amanatides and Woo
[20] provides an efficient way to update the test positions.
Along a given ray, there exists a constant translation vector
�u (�v) to jump from one x-centerline (y-centerline) to the
next one (Fig. 13 top right). To determine successive test
positions in the correct order, these two separated sets of
centerline intersections need to be considered in an
interleaved fashion.

Concretely the algorithm works as follows: a first
initialization stage places p on the first intersected center-
line. From here, we keep track of two step points u; v which
represent the intersection with the next x-, y-centerline,
respectively. During the marching stage the test position p

is shifted to the closest among u and v. The chosen step
point is updated using its corresponding translation vector
and the process is reiterated.

An interesting property of our surface definition is that
above centerlines, the triangulated surface matches a
bilinear interpolation (and usually only there): as p is
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2. We discuss other surface definitions in Section 7.

Fig. 12. Surface definition from a sampled height map. (a) Height-map

samples and centerlines. (b) Triangulation for an intertexel. (c) Complete

surface.

Fig. 13. Successive steps of the naive marching algorithm.



always located on a centerline, the surface elevation hðpxyÞ
can be determined via a bilinear texture lookup in the
height map.

This algorithm requires 2N iterations in the worst case,
which can become costly for very large height maps.

5.2.2 Improved Algorithm

To reduce the number of steps in the algorithm, we are
inspired by approximate solutions that rely on fast root
finding and precomputed data (whose computation is
detailed in Section 6). The latter will enable bigger steps
during the marching phase, but ensures that only one
surface intersection occurs between two successive test
positions. Under such conditions, the bisection method
delivers the accurate intersection point.

We start by associating the ray to one of four sets (IRxþ,
IRx�, IRyþ, IRy�) depending on its direction. These four sets
indicate the axis in the x; y-plane that the ray’s direction
mainly follows: e.g., let rðtÞ :¼ oþ td be a ray, then r 2 IRxþ

iff dx � jdyj.
In a preprocess, we derive a 2D texture for each of the

four ray sets, defining for each texel of the height map an
integer value called safety distance (SD) that we use to
accelerate the marching phase.

In the marching phase, test positions will always be
located on one type of centerline (x-centerlines for
IRxþ [ IRx�, y-centerlines for IRyþ [ IRy�). In the following,
we will assume that the ray we trace is in IRxþ [ IRx�.

The algorithm is illustrated in Fig. 14. Initially, from the
ray’s origin, we advance exactly as for the naive algorithm
(NA), until we reach the first x-centerline (Pos. 1 in Fig. 14).
Here, we will start the real marching process, we fetch the
safety distance value i corresponding to the current test
position p from the precomputed data, then advance by i x-
centerlines. The new position pþ i�u is located again on an
x-centerline and we reiterate the process.

In the special case that i is zero, we proceed as for the
naive algorithm and advance to the next x-centerline: if a
y-centerline is crossed between p and pþ �u (it can happen
at most once because the ray is in IRxþ [ IRx�), an extra
test is performed.

The marching stops when the test position is below S.
We then use the bisection method between the two last test
positions to determine the precise intersection. Here again,

the bisection is restricted to x-centerlines, which is
achieved by dividing the search interval at integer
positions only. The bisection stops when the two last test
positions are exactly one x-centerline apart. Again, because
the ray is in IRxþ [ IRx�, the interval spans at most two
intertexels, leaving at most four separate triangles to test
(Fig. 14, insets).

6 PRECOMPUTATION

The previous section presented an efficient ray marching,
but relied on a precomputed safety distance whose accurate
and efficient computation will be investigated in this
section. We then show how we can improve these
precomputed values while maintaining rendering accuracy
if we have prior knowledge about the viewpoints from
which S will be observed. Finally, we generalize this
acceleration data and describe a hybrid cone-cylinder safety
shape to achieve further speedups.

6.1 Simple Safety Distance

We will focus on the class IRxþ, but by rotation of the height
field, the description applies to the other ray classes too.

Let’s focus on a specific texel � of the height map. Please
remember that for rays in IRxþ, the marching algorithm only
stops on x-centerlines. We call s� the segment that is the
intersection of the x-centerline through � with � itself. The
curve on S whose footprint is s� will be referred to as hðs�Þ.
We need to consider all rays in IRxþ passing through a point
p above hðs�Þ (i.e., pxy 2 s and pz > hðpxyÞ). Let i be the
safety distance that we want to compute, then the bisection
method is exact only if the ray cannot pierce S twice
between p and q :¼ pþ i�u. In other words i should be less
than the distance to the second intersection of the ray with S.
Hence, i can be defined as the largest integer value such
that this condition holds for all rays in IRxþ passing above
hðs�Þ (we denote this set Rxþ

� ).
A simple solution is to sample this 4D set of rays, but this

is costly and inaccurate. Instead, we consider all discrete
triangles of S and compute i accurately. Some observations
will help us solve this problem.

Our main observation is that the safety distance is bound
by special triangles of S that we call limiting triangles. A
triangle T is said to be limiting iff there exists a ray r 2 Rxþ

�

hitting its back face (Fig. 15).
It can be shown that the safety distance i is given by the

closest limiting triangle. More precisely, we show that if k is
the smallest integer such that there exists a limiting triangle
T between x-centerlines at distance k and kþ 1, then i ¼ k.
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Fig. 14. The improved algorithm: the three first steps fetch a value i from

the precomputed safety distances map to jump on x-centerlines, the

fourth step falls below the surface, which switches to the bisection phase.

Fig. 15. Limiting triangle. (a) A ray hitting the back face of T is found,

making it a limiting triangle. (b) T is not limiting as any ray leaving above

hðsÞ sees his front face.



Indeed, let r 2 Rxþ
� be a ray hitting the back face of T at a

point p. Because S is continuous, p is at least the second
intersection of r with S. Thus, i � k (Fig. 16).

Conversely, there exists a ray r 2 Rxþ
� whose second

intersection p is located strictly between the x-centerlines at
distances i and iþ 1 (otherwise the safety distance would
be at least iþ 1). As p is a second intersection, it necessarily
belongs to a triangle T 0, back facing for r. By definition, T 0 is
a limiting triangle, located between x-centerlines at distance
i and iþ 1. It follows that i � k.

Following this observation, we compute the safety
distance by traversing S’s triangles in increasing distance
from � and stopping at the first limiting triangle. Only the
subset of triangles reachable from hðs�Þ by a ray in Rxþ

�

needs to be considered (Fig. 17a).
Remains the question of evaluating wether a given

triangle is limiting or not. This can be done very simply
using the following equivalent definition: a triangle T is
limiting iff there exists a ray r 2 Rxþ

� crossing it and lying in
its plane PT (such a ray will be called a limit ray).
Equivalence of the two definitions follows from the
observation that a limit ray can always be tilted into a ray
intersecting the back-face of T , and vice versa.

Consequently, testing whether a given triangle T is
limiting can be done by comparing hðs� Þ with PT . Let’s call
��;T the segment in PT above s� from which rays in IRxþ

cross T (usually the vertical projection of s� onto PT , but not
always, see Fig. 17b). Then, T is a limiting triangle iff ��;T
contains a point strictly above S.

Because s� is on a centerline, hðs� Þ consists of two
meeting segments. Consequently, three points at most of
��;T need to be tested: its two extremities and the point
above the center of s� (Fig. 17c).

The simplicity and parallelizability of the resulting
algorithm (one value per texel, all computations being
independent) allow us to implement it on the GPU, leading
to small precomputation times (Section 8).

6.2 Restriction to Exterior Rays

The previous computation did not impose any restrictions
on the rays, i.e., we considered arbitrary rays emanating
from above the surface. However, in many situations this
set of rays can be narrowed down, implying larger safety
distances (Fig. 18), hence, faster rendering.

As already discussed (Section 3), the most common
assumption is that the viewpoint remains outside the height
field’s bounding volume, i.e., view rays are exterior rays
(such as those to test for shadows by an exterior light source).

To make use of such restrictions, we will no longer
consider all rays in Rxþ

� , but restrict ourselves to those that
are exterior. This operation usually requires visibility
computations involving high dimensionality and complex
constructs [31]. For our specific context, we propose a
simple and accurate solution.

We keep the basic algorithm unmodified: we process the
triangles by increasing distance until a limiting triangle is
found. Only, this time the definition of limiting will take the
reduced ray set into account.

Denoting the limit rays of a triangle T as L�;T , we will
reduce this set to Lext�;T . The latter will only contain
exterior rays in L�;T that do not intersect the surface S
before reaching s� . Only if Lext�;T is not empty, the triangle
is limiting.

6.2.1 Testing for Limiting Triangles

The difficulty of properly handling Lext�;T resides in its 5D
nature. However, to evaluate limiting triangles, only a 2D
subset needs to be dealt with.

First, we consider oriented lines instead of rays because
exterior rays cannot have intersections before their origin
(i.e., they can be arbitrarily translated backward), which
eliminates one dimension. In the following we will, hence,
use the terms line and ray interchangeably.

Second, all limit rays of triangle T lie in PT , which
eliminates two more dimensions. Therefore, we only need
to deal with the 2D set of oriented lines contained in PT .

Practically, continuous sets of 2D lines can be manipu-
lated algebraically using a 2D parametrization. Each 2D line
is, thus, represented by a point in this 2D dual space, where
two helpful properties hold.

1. The set �ðbÞ of lines intersecting a segment b covers a
2D polygonal area.

2. The set �xþ of lines corresponding to rays from IRxþ

also covers a 2D polygonal area.

These properties reduce the computation of Lext�;T to a
sequence of 2D polygonal CSG operations.

Before detailing the dual space, we can already describe
how our visibility algorithm determines if a triangle T is
limiting: in PT , we consider only the rays in IRxþ. Further,
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Fig. 16. Limiting triangles bound the safety distance. (a) A ray hitting the

back face of a limiting triangle necessarily crosses the surface earlier, so

that the safety distance is less than or equal to k. (b) Safety planes for

each of the four ray classes (limiting triangles are shown in red).

Fig. 17. Limiting triangles. (a) The �45� quadrant leaving from s� defines

possible locations of limiting triangles. (b) Definition of ��;T in a case

where it does not entirely cover s� . (c) Here, a point of ��;T above S
exists, thus T is limiting (a limit ray leaves this point).

Fig. 18. Advantage of visibility restriction. (a) The safety distance defined

for any ray is smaller than (b) the one for exterior rays only.



we restrict the ray set to those above3 s� . This amounts to an
intersection: �ðs� Þ \ �xþ. Out of these rays, we want those
that intersect T , i.e., passing through one of T ’s edges
ðtiÞi¼1;2;3. The set of rays passing through the edges is the
union �ðT Þ :¼

S
i �ðtiÞ (for a 2D triangle, two out of the

three edges are sufficient to define �ðT Þ). Our ray set is then
initialized as R :¼ �ðT Þ \ �ðs�Þ \ �xþ. All these sets are
polygonal areas in dual space, the intersections can, thus, be
handled geometrically.

To obtain Lext�;T from R, we must exclude interior rays, i.e.,
those stopped by S before reaching T . Potential blockers are
the segments ðbkÞ, found at the intersection PT \ S and
strictly before s� . Removing blocked rays requires a
subtraction for each blocker bk: R R n �ðbkÞ. At the end
of this process, R is a representation of Lext�;T : T is a limiting
triangle iff R 6¼ �. In the case where R is not empty, a limit
ray, i.e., an exterior ray contained in PT , can be disclosed by
simply picking a point from R.

Next, we will detail use of the dual space which makes
the solution practical. Finally, we explain how to avoid
numerical issues and enable efficient computations in dual
space, how to integrate other visibility constraints, and how
to accelerate the entire precomputation.

6.2.2 2D Line Duality

Let ‘ be a line in PT , nonorthogonal to the x-axis. It can be
represented in a unique way by a 2D point ðu; vÞ in dual
space where ð0; uÞ and ð1; vÞ are its respective intersections
with the planes of equations x ¼ 0 and x ¼ 1. This is a 2D
equivalent of the parallel slabs parametrization commonly
used for light fields [32], whose interesting properties have
been studied and exploited to address 2D visibility
problems [33], [34].

The benefit of using this parametrization comes from the
underlying duality between lines and points. By definition, a
line ‘ in primal space is represented by a point �ð‘Þ in dual space.

Our rays in IRxþ map to points ðu; vÞ in dual space such
that jv� uj < 1, covering a polygonal area �xþ in the form of
an unbounded slanted stripe (Fig. 19).

As indicated before, we are further interested in sets of
lines intersecting segments. Let s be a segment in primal
space, and let p be a point on s. The pencil of concurrent
lines meeting at p corresponds to the set of dual points
�ðpÞ :¼ f�ð‘Þ = ‘ 3 pg. It is a line in dual space. Conse-
quently, the dual set of all lines passing through s is
�ðsÞ ¼

S
p2s �ðpÞ. It can be shown that these lines all meet in

a point q ¼ �ð‘Þ, where ‘ is the line containing s. In the
special case where s is orthogonal to the x-axis, the
corresponding dual lines are parallel (q is at infinity).

Now, it can be seen that our algorithm does not need to
handle unbounded polygons: the set of rays in PT crossing
s� and belonging to IRxþ, i.e., �ðs� Þ \ �xþ, covers a
parallelogram in dual space (Fig. 19).

6.2.3 Blocker Traversal

To test for a limiting triangle, we treat its segments
independently. For each, the initial rayset R is represented
by one or two convex polygons. Whenever we subtract a
blocker from a convex polygon, it results in one, two convex
polygons, or an empty set. This follows from the particular
shape of �ðbÞ, the dual of a blocker segment b (Fig. 19).
Operations on convex polygons are very simple, which
makes the whole process efficient.

To achieve further acceleration, we scan the triangles of S
for blockers by decreasing x-coordinate and only consider
those in the shaft of rays going from s� to T . (Fig. 20).

6.2.4 Basic Computations

Although our algorithm conceptually works in dual space,
an explicit conversion is actually not needed because a
convex polygon can be equally represented by a list of
points or a list of half-planes. By duality, representing a
dual half-plane can be done using a single primal point:
given a point p and a line ‘ in primal space, determining the
side of the line �ðpÞ that the point �ð‘Þ is located on, is
equivalent to determining this relationship for ‘ and p.

Thus, a convex dual polygon can be represented by an
ordered list of primal points. The advantage is that now
intersection operations become simple list-splitting opera-
tions (Fig. 21). Another advantage is that we can avoid
numerical issues that can usually arise from duality trans-
forms because the rayset R is now represented by a subset of
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Fig. 19. Dual parametrization of 2D lines.

Fig. 20. Potential blockers (orange) for rays going from s to T are found

in the shaft-like shape (green).

Fig. 21. Accurate rayset computation in the dual parametrization.
(1) Initialization with rays hitting ½ab�, directed between 	 ¼ ð1;�1Þ and

 ¼ ð1; 1Þ: R0  �ð½ab�Þ \ �xþ ¼ ða; 	; b; 
Þ. (2) Removal of rays blocked
by ½cd�: R1  R0 n �ð½cd�Þ ¼ ðða; c; d; 
Þ; ða; 	; b; c; dÞÞ. (3) Further with
½ef�: R2  R1 n �ð½ef�Þ ¼ ðða; c; d; 
Þ; ðd; f; b; cÞ; ða; 	; b; e; dÞÞ. (4) A point
(red) in the residual dual area discloses a ray from IRxþ hitting ½ab�
wihout hitting ½cd� and ½ef�.

3. To simplify notations, we will use �ðs� Þ in place of �ðs0� Þ, where s0� is
the vertical projection of s� onto PT .



the original vertices of the blockers and those of T . Only the
two half-planes forming �xþ map to points at infinity in
primal space (i.e., directions ð1;�1Þ and ð1; 1Þ). Homoge-
neous coordinates spare a specific treatment of this case.

6.2.5 Other Visibility Restrictions

For now we showed how to take self-occlusions of S into
account to optimize safety distances. Other cases exist
where visibility restrictions are known a priori.

The first case consists in occlusions due to other objects of
the scene. As our algorithm handles any kind of polygonal
blocker, it can be used unmodified to benefit from occlusion
by static polygonal objects surrounding the height field.

The second case concerns restrictions on the viewing
angle. For example, if a height field is used to represent
details of a floor, the viewpoint will usually stay above
some known altitude, so that an angle �max bounds the
slope of viewing rays. Such a constraint is also easily
handled by our visibility algorithm, as shown next.

Remember that we only consider rays included in PT . If
n is a normal vector for PT pointing upward, then the
minimum slope is found along direction nxy (Fig. 22a) and
the general slope along direction � is

sð�Þ ¼ �	 cosð�� �0Þ with n ¼
	 cos �0

	 sin �0

1

0
@

1
A:

Let t :¼ tan�max and d� :¼ arccos� t
	, then the bounded

slope constraint can be expressed as

sð�Þ < t() t > 	 or
�	 < t < 	;
�0 � d� < � < �0 þ d�:

�

Thus, restricting rays included in the plane to those whose
vertical angle is lower than �max (i.e., whose slope is lower
than t) amounts to at most two additional half-plane
intersections in dual space (Fig. 22c).

6.2.6 Global Visibility Precomputation

To accelerate the precomputation, one can avoid redundant
computations. First note that for a given triangle T , the
rayset Lext�;T needs to be computed for each texel � that “sees”
it with a direction in IRxþ. For two such texels �1 and �2, the
only difference between computations of Lext�1;T

and Lext�2;T
is

the intersection with their respective x-centerline segments
s1 and s2. Thus, for each triangle T , we can precompute

RT ¼ �xþ \ �ðT Þ \
\
k

�ðbkÞ;

thereby performing the costly blocker traversal only once.
Then, Lext�1;T

and Lext�2;T
are efficiently obtained by intersecting

RT with �ðs1Þ and �ðs2Þ, respectively. This solution requires
the storage ofRT for each triangle of S. Its size is bounded by
the number of blockers bk, i.e., the number of triangles of S
intersecting PT . Because only visibility events (silhouettes)
remain inRT , only a very small number of vertices are left on
average (typically less than five vertices per triangle), making
this solution feasible even for very large height fields.

6.3 Improved Safety Volume

In the previous section, we showed how to compute a safety
distance in order to accelerate the ray marching. More
generally such a distance can be understood geometrically:
for each ray set, it defines a bounding plane orthogonal to the
corresponding axis. If we assume the same distance for all ray
classes, we obtain a (square) cylinder. Alternatively, any
other delimiting shape could be used, as long as it demarcates
a volume empty of any limiting triangle (inside such a shape,
a ray cannot cross S twice, Fig. 23). Nevertheless, there is a
tradeoff: a complex shape might give better safety distances,
but marching and even storage can become issues. Here, we
will introduce a new shape (Fig. 24) that increases the
complexity of the intersection test insignificantly, while
leading to a drastic performance increase.

The strongest limitation of the safety distance is that it
gives the same bound for all rays, regardless of their position
above a given texel. So at a location where S has a tiny but
sharp bump, the safety distance will be small, forcing rays,
even high above the surface, to slow down (Fig. 23b).

Previous work [29], [30] suggest the use of cones, as they
provide larger distances for rays far off the surface (Fig. 23).
However, as already mentioned (Section 3), these have an
important drawback: the safety distance for rays approaching
the surface converges to zero, which slows down the
marching process and even prevents to eventually reach a
point below the surface. For cylinders, a ray close to the
surface quickly passes underneath, thus ending the marching
process. Our idea is to combine the best of the two solutions.

6.3.1 Hybrid Cylinder-Cone Shapes

To take advantage of cones, while still maintaining the
accuracy and advantages of cylinders, we propose a hybrid
shape, parametrized by three values: a radius r, a base
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Fig. 22. Viewing angle restriction. (a) Intersection of PT (with normal n)

with a cone of slope t ¼ tan�max defines a restricted angular sector. (b)

2D projection of this angular sector: �0 is the direction of the projection of

n. (c) This corresponds to two half-planes in dual space.

Fig. 23. Safety shapes from limiting triangles. (a) Limiting triangles (red)

for texel � and associated limit rays (orange). (b) Safety distance

(cylinder). (c) General safety shape empty of limiting triangles.

Fig. 24. Hybrid cylinder-cone safety shape. (a) The three parameters.

(b) Example in 3D.



height zc, and a slope sc (Fig. 24b) for each ray direction
class. The shape is defined by a perpendicular (cylinder)
and a slanted (cone) plane.

The memory cost increases slightly (three instead of one
value per texel). Nevertheless, the gain due to the large step
reduction makes this solution favorable (Section 8). Espe-
cially, as we can derive an efficient expression to compute
the safety distance for our hybrid shape at position p

i ¼ max r;
max pz � z0; 0ð Þ

sc � sd

� �� �
with

z0 ¼ zc � r � sc;
sd ¼ �uz j �vz:

�

6.3.2 Computation

To compute the hybrid shape parameters (as illustrated in
Fig. 24b) ) for a specific texel � and the ray set IRxþ, we start by
determining the safety distance r as described in Section 6.
The second step is to compute the parameters for the slanted
plane zc and sc. This plane has to stay above all limiting
triangles for � that are further than r.

Given the safety distance r, we chose zc as the maximum
height of the triangles at distance r to � . This leaves us with
a single degree of freedom: the slope sc. For such a slanted
plane, we find the smallest value of sc such that all limiting
triangles stay below the slanted plane. Experiments with
other heuristics showed that this choice (i.e., fix zc and then
minimize sc) usually yields the best results in terms of
rendering speed.

Unlike the computation of the safety radius, the first
limiting triangle does not necessarily define the minimum
slope. Testing all relevant triangles can be costly.

Accelerating computations. If precomputation time is an
issue, the slope of the slanted plane can be conservatively
approximated. Instead of individually testing each triangle,
we neglect visibility and assume that all triangles beyond
the safety distance r are limiting. For cones, this makes little
difference in terms of rendering efficiency (Section 8), and
allows us to accelerate the computation drastically.

To this end, we scan increasing integer abscissas x
starting from r, and determine the maximal height �hðxÞ of
vertices on S located at abscissa x and reachable by rays in
IRxþ leaving above s� . The values of �hðxÞ are used to
compute the slopes sðxÞ ¼ ð �hðxÞ � zcÞ=ðx� rÞ whose max-
imum is kept as sc.

Reading all height values for a given abscissa x can be
avoided using a modified version of N-Buffers [35]. This
structure is derived once in a GPU preprocess. We compute
logðNÞ textures T l (l 2 f1:: logðNÞg), each with a resolution
of N2. Each texel ði; jÞ of the lth texture contains the
maximum of a 2l � 1 window along the y-axis

T lði; jÞ :¼ max
k2f0::2l�1g

fhði; jþ kÞg:

The construction of these textures is done recursively.

Each texture is constructed with only two lookups from its

predecessor. With these textures, �hðxÞ can be obtained with

only two lookups, chosen such that their corresponding

windows cover the values that need to be tested. This

makes the algorithm well suited for the GPU.

7 ADDITIONAL ACCELERATIONS

7.1 Surface Definition

The previous sections presented a new rendering algorithm

and an efficient precomputation. One decision we made in

the beginning concerned the surface definition and we will

discuss this aspect here.
The choice of how to interpret the height-field samples

was based on two interesting properties: the function

remains concave in an intertexel, allowing us to restrict

test positions on centerlines. At centerlines, we can further

rely on hardware-supported bilinear interpolation.
One could object that the “natural” (smoother) surface

definition is an actual bilinear interpolation, which is often

(more or less accurately) used in previous techniques. In

fact, this definition gives a G1 quadric surface inside each

intertexel (whereas two triangles only have G0 continuity),

but only G0 on centerlines, which prevents its use to

represent smooth surfaces with a few texels. Higher order

interpolation (e.g., bicubic interpolation) would be needed,

implying a costly ray-intersection test [36]. As shown in

Fig. 25, bilinearly interpolated height fields require high

resolution to produce sharp smooth ridges for which the

triangular mesh definition can be similarly faithful.
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Fig. 25. Possible reconstructions for a 252 height field.



It is also important to note that the smooth appearance is

comes actually from shading based on the normals. Here

again, bilinear interpolation yields discontinuous surface

normals (hence, discontinuous shading) at centerlines. For a

smooth surface, normals need to be defined separately (e.g.,

in a precomputed normal map, whose resolution can differ

from the height map), but then, only silhouettes matter.

These are usually similar because differences appear only if

a ray intersects the quadric without being below the surface

when traversing the centerlines.
Here, we propose an alternative surface interpretation

which exploits these findings and delivers a view-depen-

dent definition that simplifies the intersection test.
The new surface is defined as follows: on centerlines, the

height still matches bilinear interpolation. But between

successive centerlines we assume a linear variation along the

view ray. Hence, the surface itself is view dependent. As

shown in Fig. 26, it implies that each intertexel is decom-

posed into three continuously connected surface pieces: two

triangles and one quadric patch. The defined surface is

continuous both spatially and with respect to the viewpoint

position (or the light-source position for shadow rays). This

surface has the same silhouettes as our triangle definition

and shares its properties needed for our precomputations.

The advantage is that the final intersection test with two

triangles can be replaced by a simple linear-segment

intersection, which is significantly faster (Section 8).
Although view dependence might seem like a potential

source of visual artifacts, only in rare pathological cases it

becomes visible. Typically, such cases lead to even stronger

artifacts with competing methods. The accompanying video

illustrates these points. The gain of this approximation is

roughly 6 percent.

7.2 Strictly Positive Safety Distance

If small artifacts are acceptable, an acceleration maintain-

ing high visual quality is possible. The most costly

element of our algorithm is the treatment of zero safety

distances because they result in local intersection tests that

imply branching in the marching loop, impairing paralle-

lism. Forbidding zero values (i.e., clamping safety dis-

tances to one) avoids this behavior while the quality loss is

minimal. Only silhouettes at sharp height field disconti-

nuities (Fig. 27) are slightly affected. The performance gain

makes it a useful choice in practice.

8 RESULTS AND DISCUSSION

In this section, we analyze the performance and quality of
our approach. We explained how a distinct safety distance
(SD) or hybrid cylinder-cone (CC) shape is computed for
each of the four ray classes. A conservative approximation
consists in keeping only the minimum of the four direc-
tional shapes (Fig. 28). The required storage is divided by
four (i.e., one value for SD, three values for CC), but using
four directional shapes instead of a single isotropic one
increases performance by 20 percent, hence, this option
provides an interesting trade-off between storage and
rendering speed. Applying the just-mentioned surface
definition results in an average speedup of 6 percent. For
a fair comparison, the following results use only isotropic
shapes and the triangle-surface interpretation.

Fig. 29 summarizes the performance of several variants
of our algorithm against competing methods, measured on
a 5122 height field (Fig. 30) covering all pixels of a 1;280�
1;024 screen using a GeForce GTX 285. Approaches without
precomputation are either very error prone (linear search
(LS) [21], or much slower (min-max mipmaps [23]) and can
result in less performance than our accurate naive algo-
rithm (Section 5.2.1). In particular, min-max mipmaps
proved less efficient even for textures of a resolution
beyond 4;0962.

Higher performance is obtained with methods using
precomputation. The only competing method (relaxed
cones [30]) requires tuning the fixed number of marching
steps to a small value to achieve performance similar to
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Fig. 26. View-dependent linear approximation of the height map along

the viewing direction: in each texel, this corresponds to a continuous

view-dependent surface, made of two triangles and one quadric patch.

Fig. 27. Handling of null safety distances. (a) A zero safety distance is
affected to the shown texel, requiring at most two simple iterations to
escape from it without missing intersections; rendering (b) without and
(c) with clamping of safety distances to value one (notice the small
artifacts on sharp edges in the latter case).

Fig. 28. The four variants of safety shapes. (a) Isotropic safety distance.

(b) Isotropic cylinder-cone. (c) Directional SD. (d) Directional CC.



ours, thereby increasing rendering artifacts, while our
technique remains accurate in all situations (only the
additional no-zero-radius strategy approximates some
silhouettes). The accompanying video shows that even with
35 iterations the RC method has too many artifacts for close-
ups which makes it problematic to use for high-resolution
height fields (see Section 3).

Table 1 shows computation times and rendering
performance obtained for several variants of our precom-
putation. Exact computations involving visibility run on
the CPU while conservative approximations are imple-
mentable on the GPU, leading to significantly smaller
computation times. We first notice that addition of
visibility has a higher influence on safety cylinders than
on the hybrid cone-cylinder shape. For both shapes, an
additional angular viewing constraint of �max ¼ �45�

improves rendering efficiency significantly, in which case

the influence of visibility becomes negligible. It must be
noted that even if not theoretically guaranteed, even below
�max, artifacts remain very limited and less noticeable than
for most competitors.

The most costly precomputation involves exact visibility.
As it gave results in reasonable time we did not try to
optimize it further, though it could probably be much faster
using appropriate geometrical structures (notably for the
blocker search). However, if precomputation time is an
issue, our conservative approximation using n-buffers,
coupled with a safety distance ignoring visibility (but still
possibly assuming a �max bound) can be fully implemented
on GPU, and computes results which are close to reference,
in less than one second. It must be also noted that our exact
visibility algorithm is already faster than a sampling
solution [19] for ordinary height fields (and height fields
can be designed for which sampling always fails, whatever
the density used). As an indicator: a sampling with eight
positions on s� and 256 angular directions for a 5122 texture,
leads to the same rendering performance, but results in
artifacts. The sampling-based precomputation was roughly
10 times slower than our solution, even for a fairly
optimized implementation.

One final interesting comparison is the use of a standard
mesh to render a height field. At a height-map resolution of
1;0242 and full screen (1;280� 1;024) ray casting, our CC
approach reaches 395 fps, compared to 170 fps for a
standard rendering (i.e., using vertex buffer objects, with
two triangles per texel of the height map).

Note that the bisection could be replaced by any
dichotomous search (e.g., regula falsi [22], [37]), but the
intersection test intervals produced by our marching phase
are small, making performance gains difficult.

9 CONCLUSION

This paper presented a novel height-field-rendering solu-
tion. We achieve high performance, while remaining
accurate. The approach gives further insight into height-
field rendering. We presented a method to efficiently
integrate visibility into the preprocess. The precomputation
is comparably fast and in many situations we outperform
previous suggestions by several orders of magnitude. This
makes the approach practical and height-field surfaces a
very attractive rendering primitive.
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