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Abstract
Motivation: High-dimensional mass cytometry (CyTOF) allows the simultaneous measurement of multiple cellular 
markers at single cell level, providing a comprehensive view of cell compositions. However, the power of CyTOF to 
explore the full heterogeneity of a biological sample at the single cell level is currently limited by the number of markers 
measured simultaneously on a single panel. 
Results: To extend the number of markers per cell, we propose an in silico method to integrate CyTOF datasets 
measured using multiple panels that share a set of markers. Additionally, we present an approach to select the most 
informative markers from an existing CyTOF dataset to be used as a shared marker set between panels. We 
demonstrate the feasibility of our methods by evaluating the quality of clustering and neighborhood preservation of the 
integrated dataset, on two public CyTOF datasets. We illustrate that by computationally extending the number of markers 
we can further untangle the heterogeneity of mass cytometry data, including rare cell population detection.

Availability: Implementation is available on GitHub (https://github.com/tabdelaal/CyTOFmerge).
Contact: a.mahfouz@lumc.nl
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
High-dimensional mass cytometry by time-of-flight (CyTOF) 

(Bandura et al., 2009) allows the simultaneous measurement of over 40 
protein cellular markers (Spitzer and Nolan, 2016). Several studies have 
illustrated the value of using such a large number of markers to provide 
an system-wide view of cellular phenotypes at the single-cell level. 
(Newell et al., 2012, 2013; Amir et al., 2014; Levine, Simonds, Bendall, 
Downing, et al., 2015; Wong et al., 2016; van Unen et al., 2016; Lavin 
et al., 2017; Chevrier et al., 2017).

Despite the three-fold extension in the set of markers profiled with 
CyTOF compared to flow cytometry (FC), technical challenges in 
designing CyTOF panels limit the number of markers profiled per panel 
currently to about 40 markers (Bendall et al., 2012). In many cases, the 
number of proteins required to describe the heterogeneity of cells far 
exceeds the number of markers that can be measured using a single 

CyTOF panel (Bendall et al., 2011; Chevrier et al., 2017). To overcome 
the limitation in the number of markers that can be measured 
simultaneously, a sample can be split into multiple tubes which are 
subsequently measured using different CyTOF marker panels (Pedreira 
et al., 2008; Lee et al., 2011; O’Neill et al., 2015). Including a shared 
marker set between all panels allows the combination of measurements 
from all panels to produce an extended marker vector for each cell. 
However, there are currently no computational methods available to 
integrate measurements from multiple CyTOF panels.
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An implicit combination approach, proposed by (Bendall et al., 
2011), allowed the visualization of 49 markers, measured using two 
CyTOF panels sharing 13 markers. After clustering cells from one panel 
based on the set of shared markers, they overlaid the unique markers of 
the second panel over the obtained clusters according to the similarity 
between cells based on the shared markers set. This approach, however, 
does not explicitly merge the measurements from both panels since the 
clustering step is performed only on cells from one panel using the 
shared markers. Therefore, this approach is prone to misidentify small 
subpopulations of cells (as we will show later in section 3.4). 

In the field of Flow Cytometry (FC), two approaches have been 
proposed to integrate measurements from multiple FC datasets. A nearest 
neighbor algorithm was used to integrate measurements from multiple 
FC panels assuming that each cell is almost identical to its nearest 
neighbor cell, measured with a different panel, based on the overlapping 
markers, which we denote as the first-nearest-neighbor imputation 
(Pedreira et al., 2008; Costa et al., 2010; van Dongen et al., 2012). 
However, the first-nearest-neighbor approach is noise-sensitive and can 
produce false combinations between cells from different panels resulting 
in artificial clusters (O’Neill et al., 2015). Lee et al., 2011 proposed to 
overcome this limitation by incorporating a clustering step based on the 
shared markers before merging the FC measured panels, followed by 
enforcing the imputation of the missing markers from the same cluster, 
which we refer to as cluster-based imputation. However, the larger 
number of unique markers per panel in the case of CyTOF, compared to 
FC, can result in a large number of undiscovered clusters if cells are 
clustered only using the set of shared markers (as we will show later in 
section 3.2). An alternative approach is to divide the space of shared 
markers in each panel by binning biaxial scatter plots of marker pairs, 
each having a pre-set number of cells. Bins are then matched across the 
measured panels, and the missing markers are imputed per bin (O’Neill 
et al., 2015). Although feasible for FC data, applying this method to 
CyTOF data, which has many more possible shared markers and many 
more cells, is computationally prohibitive. Moreover, the imputation 

strongly depends on the binning and matching step in a complex high-
dimensional space. 

We propose a method, CyTOFmerge, that does not depend on a 
priori clustering or partitioning and extends measurements per cell. Our 
CyTOF data merging approach is based on the k-nearest-neighbor 
algorithm which avoids the noise sensitivity problem by relying on a 
relatively large number of neighbors. In addition, we propose a method 
to select the most informative markers from one CyTOF panel, in order 
to be used as shared markers with other panels. This is particularly 
important given that the imputation strongly depends on the set of shared 
markers. By merging measurements from multiple CyTOF panels, we 
increase the number of markers per cell allowing for a deeper 
interrogation of cellular composition.

2 Methods

2.1 Approach
Given that the maximum number of markers on a single CyTOF 

panel is N, the goal of our study is to integrate measurements from two 
CyTOF panels, panels A and B, given that both panels share at least m < 
N markers. The remaining slots (N-m) on each panel can be used to 
measure markers that are unique to each panel. Both panels A and B 
measure parts of the same sample. Relying on the similarities between 
cells in both panels based on the shared marker set m, we can impute 
markers that were not measured on panel A using the measurements 
from panel B, and vice versa. The resulting merged dataset extends the 
number of markers per cell to 2N-m, on which clustering and cell 
populations identification can be applied (Fig. 1). We defined a cell 
population as group of cells having similar protein marker expression, 
these cells can represent either cells with the same type and/or state, 
according to which protein markers are used (Wagner et al., 2016).

A major challenge in this approach is to determine the shared 
markers (m), i.e. which markers can preserve the heterogeneity of cell 
populations. To address this problem, we propose a data-driven approach 
(Supplementary Fig. S1). Briefly, for each value of m, we use a 
dimensionality reduction technique to select the best set of markers 

Fig. 1 CyTOFmerge pipeline: Split the sample, stain each partial sample with a different marker panel and apply CyTOF to obtain the panels’ measurements. Both panels A and B share 
a set of markers m (green). L1 (red) are unique markers of panel A, and L2 (blue) are unique markers of panel B. Both panel measurements are combined to obtain an extended markers 
measurements per cell, which is input to downstream computational analysis as, for example, clustering in a t-SNE mapped domain shown here.
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preserving the high dimensional structure  of the data. By simulating the 
scenario shown in Fig. 1, the quality of an imputation is evaluated using 
several quantitative scores capturing clustering and neighborhood 
preservation, from which the minimum number of shared markers can be 
deduced. Full details of the selection process are described in section 2.6.

2.2 CyTOF datasets
In this study, we applied our methods to the publicly available 

HMIS and Vortex data sets. The HMIS data set profiled the human 
mucosal immune system by measuring Peripheral Blood Mononuclear 
Cells (PBMCs) and intestine tissue samples from the duodenum, rectum 
and fistula (van Unen et al., 2016). Using a CyTOF panel with N = 28 
surface protein markers, a total of ~5.2 million cells positively 
expressing CD45 (immune cell marker) were analyzed (3.6 million 
PBMCs and 1.6 million intestine tissue cells), which they down sampled 
to ~1.1 million cells, randomly distributed over all PBMC and tissue 
cells. The marker panel included lineage markers used to differentiate 
between major types of immune cells, and non-lineage markers used to 
distinguish between different subgroups (states) of cells within each 
lineage. Cells were globally clustered into six main lineages: B cells (~ 
93,000), CD4+ T cells (~ 230,000), CD8+ T cells (~ 460,000), CD3-
CD7+ Innate lymphoid cells (ILCs) (~ 95,000), Myeloid cells (~ 
117,000) and TCRγδ cells (~ 88,000). Each lineage was subsequently 
clustered independently, resulting in 119 subgroups across all six 
lineages, including small clusters representing rare cell populations.

The Vortex dataset is a publicly available mass cytometry data for 
10 replicates of mice bone marrow cells (Samusik et al., 2016). A total 
of ~840,000 cells were measured using a CyTOF panel of N=39 markers. 
Three cytometry experts provided a consensus clustering of 24 clusters 
for only ~510,000 cells. Prior to any processing, measured marker 
expressions were transformed using hyperbolic arcsin with a cofactor of 
5 for both datasets.

2.3 Simulating two overlapping panels
We simulated the scenario of having two overlapping panels by 

splitting the original dataset (D) into two datasets, DA and DB, each 
measured using a different (simulated) CyTOF panel (Supplementary 
Fig. S1). Both panels share m markers, and the remaining N-m markers 
from the original panel were randomly divided between the two 
simulated panels. The first simulated panel (A) contains m+L1 markers, 
whereas the second panel (B) contains m+L2 markers, where L1+L2=N-
m. Each of the two panels measures half the number of cells in the 
original dataset (randomly chosen without replacement), i.e. the panels 
measure non-overlapping cells from the original dataset.

2.4 Data imputation
Data in both simulated CyTOF panels is imputed using the k-nearest 
neighbor algorithm. For each cell measured by panel A, we find the k-
most similar cells measured by panel B using the m shared markers. 
Then, for each cell measured by panel A, the values of the missing 
markers (L2) are imputed by taking the median values of those markers 
from the k-most similar cells measured by panel B, resulting in imputed 
dataset . The same procedure is used to impute the values of the 𝐷𝑖

𝐴

missing markers L1 from panel A to cells measured with panel B, 
resulting in imputed dataset . The original dataset is reconstructed ( ) 𝐷𝑖

𝐵 𝐷𝑖

by concatenating the two imputed datasets (  and ), and thus has the 𝐷𝑖
𝐴 𝐷𝑖

𝐵

same number of cells and the same number of markers N as the original 
dataset, albeit partly imputed (Fig. 1 and Supplementary Fig. S1).

2.5 Selection of m shared markers
Given a dataset with a panel of N markers, we follow three steps to 

choose the m shared markers that can be used to design follow up panels 
for a deeper interrogation of cells (Supplementary Fig. S1): 
Removing correlated makers. Pearson correlation over all cells in the 
original dataset between each pair of markers is calculated. If the 
absolute value of the correlation of two markers is larger than a specified 
cutoff (here we use 0.7 and 0.8 as cutoffs, for the HMIS and Vortex 
datasets, respectively), we remove the marker which has the lower 
variance across all cells.        
Dimensionality reduction. To reduce the number of markers we 
exploited three different dimension reduction techniques: 1) principal 
component analysis (PCA); 2) Auto Encoder (AE); and 3) Hierarchical 
Stochastic Neighboring Embedding (HSNE).

Using PCA (Shlens, 2005), the importance of a marker is based on 
its contribution (i.e. loading factor) to the first m principal components, 
as follows: 

                                                                     (1)𝑖𝑝 =  ∑𝑚
𝑞 = 1𝛽2

𝑝𝑞 ∗  𝜆𝑞

where ip is the importance of marker p, is the loading of marker p to 𝛽𝑝𝑞 

the q-th Principle Component (PC), λq is the variance explained by the q-
th PC. All markers are sorted on their importance and the m most 
important markers are chosen. 

An auto encoder neural network (Hinton and Salakhutdinov, 2006) 
with one hidden layer containing m nodes is trained for a maximum of 
50 iterations (using the Matlab toolbox for Dimensionality Reduction, 
drtoolbox: https://lvdmaaten.github.io/drtoolbox/) until the output of the 
trained auto encoder is similar (mean squared error < 0.75 for all values 
of m) to the original input data. We then calculate the variance of all auto 
encoder output markers, sort them and select the m markers with the 
highest variance.

Using Hierarchical Stochastic Neighboring Embedding (HSNE) 
(Pezzotti et al., 2016; Van Unen et al., 2017), we project the cells using 
five hierarchical layers. We represent the dataset using only the 
landmark cells in the top layer. On these landmark cells we apply the 
PCA-based reduction scheme to select the m markers. 
Selecting m out of the original N markers. Using one of the dimension 
reduction schemes, we select the top-m markers to be used as shared 
markers. Based on the simulated datasets, we impute the missing 
markers in each dataset, which we compare to the original dataset using 
three quantitative scores introduced in the following section. By 
evaluating those scores over varying values for m, we make a choice for 
the most suitable value of m.

2.6 Comparing two data sets
To evaluate the quality of the imputed dataset ( ) compared to the 𝐷𝑖

original dataset ( ), we use three different scores: 1) how well the 𝐷𝑜

clustering is preserved (cluster score); 2) how close the same cells in the 
different data sets are to each other (distance score); and 3) how well the 
neighborhood of each cell is preserved (nearest neighbor score). These 
scores are defined as follows:
Cluster score. We used the adjusted Rand-index to express the 
correspondence between two clustering. Briefly, it calculates the fraction 
of pairs of cells that end up in the same (or different) cluster in both 
clusterings, corrected for the random chance to end up in the same 
cluster (which is different for differently size clusters). The final value is 
between 0 and 1. As clustering more than a million cells is too time 
consuming, we used an approximate cluster score for experiments where 
we varied either the number of shared markers (m) or neighbors used to 
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impute (k). For these experiments, we did not cluster the imputed data  𝐷𝑖

but determined the cluster label of the imputed cell by a majority vote of 
the k most-similar cells in the original data set . The approximate 𝐷𝑜

cluster score is then the fraction of cells where the estimated cluster label 
was the same as the cluster label of the original cell:  

                 (2)
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 
𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 =  

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑎𝑏𝑒𝑙𝑠
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑐𝑒𝑙𝑙𝑠

Distance score. To evaluate how similar the measurements of cells 
across two datasets are, we calculate the Euclidean distance, in the full 
marker space, between the measurements of a cell , the n-th cell in the 𝑐𝑖

𝑛

imputed dataset , and the corresponding cell , the same (n-th) cell in 𝐷𝑖 𝑐𝑜
𝑛

the original dataset . This is done for all cells, and from that the 𝐷𝑜

median distance (md) is taken. To make the score independent of the 
scale of the original data set , we compare this median distance (md) 𝐷𝑜

to the average distance (ad) between all pairs of cells within the original 
dataset , as follows:𝐷𝑜

                                                                (3)𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =  
(𝑎𝑑 ―  𝑚𝑑)

𝑎𝑑

Nearest Neighbor score. To evaluate the preservation of the 
neighborhood of cells across datasets, we measure, for each cell , the 𝑐𝑜

𝑛

Euclidean distance in the full marker space to the nearest neighboring 
cell (dn) in the original dataset , and the distance between both 𝐷𝑜

representations of that cell,  and , in the original  and imputed  𝑐𝑜
𝑛 𝑐𝑖

𝑛 𝐷𝑜 𝐷𝑖

datasets (dp). The local neighborhood is preserved when the imputed 
version of the cell  is closer to  than its nearest neighbor in the 𝑐𝑖

𝑛 𝑐𝑜
𝑛

original dataset , i.e. dp < dn. The nearest neighbor score is then the 𝐷𝑜

fraction of cells for which this holds.

                                            (4)𝑁𝑁 𝑆𝑐𝑜𝑟𝑒 =  
number  of cells where (𝑑𝑝 <  𝑑𝑛)

total number of cells

We used the base 2 logarithm of the Jensen-Shannon divergence 
(JSD) to quantify the similarity between the distributions of a marker in 
the original and imputed dataset, resulting in values between zero 
(identical distributions) to one (totally disjoint distributions). The JSD 
between two distributions  and  is:𝑃(𝑥) 𝑄(𝑥)

               (5)𝐽𝑆𝐷 =
1
2
∑

𝑥𝑃(𝑥) 𝑙𝑜𝑔2(𝑃(𝑥)
𝑀(𝑥)) +

1
2
∑

𝑥𝑄(𝑥) 𝑙𝑜𝑔2(𝑄(𝑥)
𝑀(𝑥))

                                                      (6)𝑀(𝑥) = 0.5 ∗ (𝑃(𝑥) +𝑄(𝑥))

2.7 Finding clusters
We clustered both datasets, HMIS and Vortex, with Phenograph, a 

neighborhood graph-based clustering tool designed for automated 
analysis of mass cytometry data (Levine, Simonds, Bendall, Davis, et al., 
2015). Phenograph is applied to the original and imputed datasets, using 
the R implementation with default settings (number of neighbors = 30).

More fine-grained cluster annotations for the HMIS datasets are 
acquired using Cytosplore (www.cytosplore.org), a tool specifically 
designed for the analysis of mass cytometry data (Höllt et al., 2016; Van 
Unen et al., 2017). Briefly, cells are embedded into a two-dimensional 
map using t-Distributed Stochastic Neighbor Embedding (t-SNE) (van 
der Maaten and Hinton, 2008; Pezzotti et al., 2017), and subsequently 
clustered using a density-based Gaussian Mean Shift (GMS) algorithm 
(Comaniciu and Meer, 2002) using a relatively small density kernel (σ = 
20-23), resulting in over-clustering of the data. Clusters are then 
manually merged when they have highly similar marker expression 
profiles (median value of each marker per cluster).

Fig. 2 Shared markers for the HMIS dataset. The selected markers that can best 
represent the dataset using (A) PCA, (B) Auto Encoder and (C) HSNE. (Marker ordering 
is based on the PCA selection profile, black is selected, white is not selected)

3 Results
3.1 Selecting the set of shared markers

To determine the shared markers that can be used to combine two 
CyTOF datasets, we simulated the scenario of having two overlapping 
panels with different sets of shared markers m, on which we applied our 
data imputation approach with different number of neighbors k 
(Supplementary Fig. S1). We investigated how the imputation of the two 
panels is influenced by: (1) the dimension reduction technique used to 
select the shared markers, (2) the data (lineages) used to select the 
markers, (3) the number of shared markers (m), and (4) the number of 
nearest neighbors used during imputation (k).

In the HMIS dataset, the method used to select the shared markers 
has limited influence on the results. Fig. 2 shows which markers are 
selected by the different marker selection schemes (PCA, AE and 
HSNE) when changing the number of selected shared markers (m) from 
4 to 25 and applied on the 5.2 million cells. In the pre-processing step, 
CD8b and CD11b were removed from the selection as they are highly 
correlated with CD8a and CD11c (correlation of 0.843 and 0.705, 
respectively), leaving 26 markers to choose from. There are small 
differences in the selection profiles between the three methods, with a 
maximum of two mismatches. For 14 < m < 17, the same set of shared 
markers is selected by all three methods. In terms of computation time, 
PCA outperforms the Auto Encoder and the HSNE (100x and 480x, 
faster on the same machine, respectively).

We checked whether the marker selection procedure is influenced 
by the type of cells. Therefore, we applied the PCA-based marker 
selection on PBMCs and tissue cells independently. Supplementary Fig. 
S2 shows that there is little difference in the selected set of markers 
when using the PBMC, tissue or PBMC+tissue samples.

Next, we assessed the quality of the subsequent imputed dataset for 
each lineage individually, as well as all six lineages together, for m = 4 
to 25 and k = 50. For all three evaluation scores, the performances 
improve when the number of shared markers increases (Supplementary 
Fig. S3A-C). All performance scores seem to saturate at m = 16 
(Supplementary Fig. S4 A-F), i.e. they exceed 80% of the maximal 
score. Table 1 shows the values of the three quality measures at m = 16, 
for each individual lineage and the six lineages together.

A common measure to assess the quality of imputation is to 
investigate the correlation between the original and imputed values. 
However, this approach turned out not to be appropriate for our data 
since many markers are being expressed only in a specific population of 
cells. As a result, the correlation is relatively high for markers that are 
high expressed over multiple cell populations (Supplementary Fig. S5 
and S6), but the correlation is low for cell-population specific markers 
(such as, for example, the CD123 marker which is high expressed only in 
the CD4+ T cells lineage). These cell-population specific markers are 
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imputed correctly (low values for most cells and higher values for the 
cell-population specific cells), but the noise on the abundant low values 
dominates, causing a low correlation. Consequently, we decided not to 
use the correlation as a quantitative score to evaluate how well an 
imputed dataset resembles an original dataset.

We further investigated the distribution of the non-shared (imputed) 
marker by comparing the distributions of the original values with those 
of the imputed values for each non-shared marker per cell population, 
and quantify the similarity using the JSD (Methods). Across all the 12 
non-shared markers, we obtained low JSD values (<0.2) showing a high 
similarity between the original and imputed values (Supplementary Fig. 
S19A). The imputation process does exclude the outlier values, as we 
use the median value from the 50 most similar cells, which results for 
some markers, in ‘compressed’ distributions as compared to the original 
ones (Supplementary Fig. S19B-C).

Next, we investigated the effect of the choice of the number of 
neighbors (k) used when applying the k-nearest neighbor imputation. 
Supplementary Fig. S4 (A-F) shows the approximate cluster score for  k 
= {1, 10, 50, 100, 200, 250, 300, 500, 1000}, with k = 50 clearly 
showing the highest performance across all lineages, even over different 
numbers of shared markers. 

We observed similar results when applying all these analyses to the 
Vortex dataset: 1) small differences between PCA, AE and HSNE when 
m is ranging from 4 to 38 (Supplementary Fig. S7), 2) improving and 
saturating performance scores with increasing number of shared markers 
(Supplementary Fig. S3D), and 3) highest performance when k=50 is 
used during imputation (Supplementary Fig. S4G). The saturation for the 
number of shared markers occurs at m = 11, with the approximate cluster 
score, distance score and nearest neighbor score being 95.3%, 84.0% 
and 82.1%, respectively. 

Table 1. Evaluation scores for the 16 selected shared markers for the 1.1 
million cells HMIS dataset.

Approximate 
Cluster Score

Distance 
Score

Nearest Neighbor
Score

CD4+ T Cells 92.3 % 84.3 % 94.5 %
CD8+ T Cells 91.9 % 83.9 % 93.1 %
B Cells 91.8 % 82.0 % 92.8 %
CD3-CD7+ Cells 89.3 % 83.4 % 92.6 %
TCRγδ Cells 86.2 % 84.1 % 94.7 %
Myeloid Cells 86.2 % 80.4 % 82.5 %
All Cells 89.4 % 87.4 % 91.9 %

3.2 CyTOFmerge reproduces original cell populations and 
outperforms FC imputation methods
To demonstrate the feasibility of our computational method to 

combine data measured from multiple CyTOF panels, we investigated 
the quality of the clustering of the imputed dataset. First, the original 1.1 
million cells HMIS dataset was clustered on the full marker space using 
Phenograph, resulting in 52 clusters of cells divided into: 6 B cell 
populations, 8 CD4+ T cell populations, 15 CD8+ T cell populations, 6 
CD3-CD7+ ILC populations, 7 Myeloid populations, 5 TCRγδ cell 
populations and 5 unknown populations donated as Others 
(Supplementary Fig. S8). These 52 clusters are used as a baseline for 
comparison with the imputed datasets.

Fig. 3 Clustering of the original and the imputed datasets. (A-C) t-SNE maps showing 
the different identified populations in the CD4+ T Cells lineage. (A) shows the 
populations of the original data. (B) The populations of the imputed data (for m=16, L1=6 
and L2=6). (C) The mapping of the original clusters labels on the t-SNE map of the 
imputed data. (D) Heatmap of markers expression for the 121 characterized immune cells 
populations of the original dataset for m = 16. Black-to-yellow scale shows the median 
arcsinh-5 transformed values for the markers expression. Markers colors indicate whether 
a marker is shared between panels or unique to a single panel, during panels combination 
(red is shared, green is unique to panel A, blue is unique to panel B).

We applied the panel combination and imputation method using k = 
50 and m = 16, thus imputing 12 markers (6 unique markers for panel A, 
and 6 unique markers for panel B). The imputed dataset was clustered on 
the full marker space using Phenograph, resulting (coincidentally) in 52 
clusters with slight variation in the number of clusters per cell lineage 
(Supplementary Fig. S9A). To evaluate the imputation, we matched the 
imputed clusters to the original clusters using the maximum pairwise 
Jaccard index. The cluster matching shows that all imputed clusters 
match to original clusters within the same lineage (Supplementary Fig. 
S9B). Next, we calculated the adjusted Rand-index representing how 
similar both clusterings are (Table 2).

To compare with the first-nearest-neighbor approach proposed by 
(Pedreira et al., 2008), we applied the imputation method using k = 1, 
using the same set of 16 shared markers. Phenograph clustering of that 
imputed dataset on the full marker space resulted into 53 clusters 
(Supplementary Fig. S10) with a lower performance compared to 
CyTOFmerge using k = 50 (Table 2).

Next, we compared the performance of CyTOFmerge to that of the 
cluster-based imputation method proposed by (Lee et al., 2011). In this 
approach, clusters are first determined using the shared markers followed 
by imputation of the unique markers in each panel within the same 
cluster. We clustered the cells using the 16 shared markers for the entire 
dataset using Phenograph and obtained 42 cell clusters, 10 clusters less 
than the original dataset clustering (Supplementary Fig. S11). When 
comparing with the original clustering (Table 2), we observed a 
relatively large drop in the adjusted Rand-index. Hence, clustering based 
on the shared markers only could not identify a large part of the original 
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clustering using all markers. However, when we performed the 
combination of the two panels using the cluster-based imputation, we 
obtained comparable performance with CyTOFmerge (Supplementary 
Fig. S12).

We also tested CyTOFmerge on the Vortex dataset, using m = 11 
shared markers and k = 50, now imputing 28 markers (14 unique per 
panel). Phenograph clustering of the original dataset gave 31 clusters 
(Supplementary Fig. S13), while clustering the imputed dataset resulted 
in 28 clusters (Supplementary Fig. S14). The adjusted Rand-index was 
relatively high, i.e. 0.90 (Table 2). Next, we applied first-nearest-
neighbor approach, and we clustered the resulting imputed dataset 
resulting in 29 clusters. The first-nearest-neighbor has slightly higher 
adjusted Rand-index compared to CyTOFmerge, however, we observed 
a large drop in the distance and the nearest-neighbor scores (Table 2). 
Moreover, confirming our previous observation, the clustering of the 
shared markers only produces 23 clusters, 8 clusters less than the original 
dataset clusters, with a relatively large drop in the adjusted Rand-index 
when compared to the original clustering. Finally, the cluster-based 
imputation method produces 29 clusters. Compared to CyTOFmerge, the 
cluster-based imputation method shows comparable distance and 
nearest-neighbor scores, but lower adjusted Rand-index (Table 2).

To obtain a baseline evaluation for the imputed data clustering 
performance, we permutated the non-shared markers across all cells, 
while keeping the shared markers values the same. Next, we clustered 
this permuted dataset in the full marker space using Phenograph and 
compared the clustering result with the original dataset clustering. The 
permuted dataset clustering had an adjusted Rand-index of 0.56 ± 0.02 
and 0.50 ± 0.01 (across 10 different random permutation), for the HMIS 
and Vortex datasets, respectively. These results show that random 
estimation of the non-shared markers decreases the clustering 
performance compared to clustering using the shared markers only, i.e. 
adding more dimensions does not improve the clustering performance. 
This also implies that CyTOFmerge adds real structure by providing 
good estimation for the non-shared markers, leading to an improved 
clustering.

Table 2. Comparison between CyTOFmerge and FC merging methods 
on the 1.1 million cells HMIS dataset.

Adjusted
Rand-index

Distance
Score

Nearest
Neighbor Score

CyTOFmerge
HMIS, m = 16, k = 50
Vortex, m = 11, k = 50

0.81
0.90

87.4 %
84.0 %

91.9 %
82.1 %

First-nearest-neighbor
HMIS, m = 16, k = 1
Vortex, m = 11, k = 1

0.77
0.93

83.5 %
77.9 %

75.6 %
51.6 %

Shared markers clusters
HMIS, m = 16
Vortex, m = 11

0.68
0.79

n.a
n.a

n.a
n.a

Cluster-based imputation
HMIS, m = 16, k = 50
Vortex, m = 11, k = 50

0.80
0.84

87.4 %
84.0 %

91.8 %
82.1 %

n.a = not applicable

3.3 Reproducible cell populations at a deeper annotation 
level using CyTOFmerge
We proceeded by evaluating the quality of CyTOFmerge when 

using a fine-grained clustering to investigate whether rare (small) cell 

populations could be identified from the imputed data. As a baseline for 
comparison, we clustered the six immune lineages from the original 1.1 
million cells HMIS dataset individually, on the full marker space using 
Cytosplore, resulting in 121 clusters in total, including: 17 CD4+T cell 
populations, 21 CD8+ T cell populations, 16 B cell populations, 34 
TCRγδ cell populations, 24 CD3-CD7+ ILC populations and 9 Myeloid 
cell populations (Fig. 3A, Supplementary Fig. S15A). The imputed 
dataset (with m = 16) was similarly clustered using Cytosplore into the 
same number of populations (121) for the six immune lineages (Fig. 3B, 
Supplementary Fig. S15B). 

The clusters from the imputed dataset were correctly matched to the 
baseline clusters for all 121 cell populations across the six lineages, 
including large clusters as well as small rare clusters, such as: population 
16 and 17 in the CD4+ T Cells (Fig. 3A-B), population 21 in the CD8+T 
Cells, population 16 in the B Cells, populations 3 and 34 in the TCRγδ 
Cells, and populations 23 and 24 in the CD3-CD7+ Cells 
(Supplementary Fig. S15A-B). The imputed expression profiles of the 
121 populations are remarkably similar (average correlation of 0.998) to 
the expression profiles of the corresponding baseline clusters 
(Supplementary Fig. S16A and Fig. 3D, respectively).  Also, the Jaccard 
index showed a clear diagonal between the original and the imputed 
clusters (Supplementary Fig. S17).

To gain more insight into the distribution of the original cluster 
labels in the imputed space, we colored each cell in the imputed data 
according to baseline cluster they belonged to. Fig. 3C and 
Supplementary Fig. S15C show that the imputed measurements for each 
cell are indeed faithfully reconstructed, i.e. after mapping them they are 
distributed similarly as in the original data. 

More quantitatively, the imputation had an overall adjusted Rand-
index of 0.81 for all the 121 cell populations. Per individual lineage, the 
adjusted Rand-index varied between 0.77 and 0.83 for the different 
lineages (Table 3). Since we rely on GMS clustering in the t-SNE space, 
part of the error in clustering the imputed data is caused by the stochastic 
nature of the t-SNE algorithm (due to random initializations). The 
clustering reproducibility between two t-SNE mappings of the original 
data (Table 3, Supplementary Fig. S18) varied between 0.82 and 0.96, 
with variance estimates (when repeating the procedure 10 times) in the 
order of 8e-5 (Table 3, for Myeloid and TCRγδ cells). Hence, the quality 
of the imputed clustering is close to the quality of repeated t-SNE 
mappings, with a difference of 0.06 in the adjusted Rand-index for all 
cells.

To further evaluate the effects of imputation on downstream 
analysis, we compared the population frequencies of the 121 cell 
populations, estimated using both the original and the imputed datasets. 
The result shows that population frequencies are accurately estimated 
from the imputed data as compared to the original data, with an overall 
correlation of 0.985 (Supplementary Fig. S16B). 

Table 3. Adjusted Rand-index of the imputed data at m = 16 and for 
repeated t-SNE mappings of the original data.

Imputed data t-SNE rerun
CD4+ T Cells 0.78 0.86
CD8+ T Cells 0.79 0.84
B Cells 0.83 0.85
CD3-CD7+ Cells 0.78 0.82
TCRγδ Cells 0.77 ± 8e-5  0.89 ± 1e-4 
Myeloid Cells 0.82 ± 7e-5 0.96 ± 6e-5 
All Cells 0.81 0.87
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Fig. 4 Marker panel extension impact on the identification of distinct populations in 
the TCRγδ immune lineage – Panel A. (A) The Reduced t-SNE map using only 22 
markers. (B) The original t-SNE map using the original 28 markers. (C) The imputed t-
SNE map  using 28 markers of which 6 are imputed from Panel B). All three maps are 
colored with the original population labels. (D) Shared and missing markers expression 
profiles are shown on the original t-SNE map. The map border color indicate whether a 
marker is shared between panels or unique to a single panel (red is shared, green is unique 
to panel A, blue is unique to panel B and thus missing markers for panel A).The color bar 
shows the arcsinh-5 transformed values for the markers expression.

3.4 Imputation improves the differentiation of cell 
populations
We have shown that from the imputed data similar clusters of cells 

can be found as when using the original data. But, can we find clusters 
from the imputed data that we cannot find in the two separate panels? 
Hereto, we overlaid the original cluster labels of the HMIS TCRγδ 
lineage populations onto t-SNE maps constructed using: 1) only the 22 
measured markers of a panel (16 shared + 6 unique markers), 2) the 
original 28 measured markers, and 3) the imputed dataset (16 shared + 6 
unique + 6 imputed). This was done for both panels A and B separately 
(Fig. 4 and Fig. 5, respectively). 

For panel A, populations 6 and 8 are merged in one cluster when we 
map the data using only the 22 panel markers (Fig. 4A), whereas the 
original and imputed data separate those two clusters (Fig. 4B and C, 
respectively). To better understand this behavior, we overlaid the 
expression of the markers across the t-SNE map (Fig. 4D). CD8b has 
higher expression (mean±std = 3.205±0.797) for cells in cluster 6 as 
compared to cluster 8 (0.584±0.663) and is missing in panel A, hence 
resulting in not being able to separate clusters 6 and 8. For the imputed 
data, the missing marker for panel A is imputed by its measurements on 
panel B, with which both clusters can indeed be separated (Fig. 4C). 

Likewise, for the data from panel B, cluster 12 and 31 are merged in 
one cluster (Fig. 5A), because NKp46 is missing on panel B (Fig. 5D) 
with cells having a higher expression in cluster 31 (2.728±0.712) 
compared to 12 (0.505±0.586). Also, clusters 7 and 14 are merged due to 
the lack of the TCRγδ marker (Fig. 5D). For both situations, the clusters 
are separated when the data from panel B is imputed with data from 
panel A (Fig. 5C). 

Fig. 5 Marker panel extension impact on the identification of distinct populations in 
the TCRγδ immune lineage – Panel B. (A) The Reduced t-SNE map using only 22 
markers. (B) The original t-SNE map using the original 28 markers values. (C) The 
imputed t-SNE map using 28 markers of which 6 are imputed from panel A. All three 
maps are colored with the original populations labels. (D) Shared and missing markers 
expression profiles are shown on the original t-SNE map. The map border color indicate 
whether a marker is shared between panels or unique to a single panel (red is shared, 
green is unique to panel A and thus missing markers for panel B, blue is unique to panel 
B).The color bar shows the arcsinh-5 transformed values for the markers expression.

Similar observations can be made for the other lineages 
(Supplementary Fig. S20 – S24). For example, for both the CD8+ T 
(Supplementary Fig. S20) and Myeloid (Supplementary Fig. S21) 
lineages, the CRTH2 marker makes a difference between clusters based 
on one panel-only data compared to data from combined panels. For 
some lineages, the clustering based on individual panels does, however, 
closely match the clustering on the original data. Either the missing 
markers are not important (e.g. CD11b in panel A of the CD8+ T cells, 
Supplementary Fig. S20), or they are important but highly correlated 
with one of the shared markers (e.g. CD14 in panel B of the Myeloid 
cells, Supplementary Fig. S21, has a similar expression to CD38). 

To quantitatively assess the ability to differentiate between cell 
populations based on different sets of markers, we tested the ability of a 
two-class Linear Discriminant Analysis (LDA) classifier (Abdelaal et al., 
2018), to differentiate between populations 6 and 8 in the TCRγδ cells. 
We evaluated LDA’s performance using only the 16 shared markers, all 
28 markers from the TCRγδ imputed data, and all 28 markers from the 
TCRγδ original data. We obtained the highest performance using all 
markers from the original data, with an accuracy of 95.74 ± 0.70%. The 
lowest performance was obtained when using only the 16 shared markers 
(accuracy = 70.37 ± 1.07%). Using all markers from the imputed data 
resulted in an accuracy of 83.46 ± 1.13%, which is less than the original 
data, as expected, but showing a strong improvement over the shared 
markers. This confirms our previous conclusion that the imputation 
improves over the shared markers, despite the fact that the imputation 
relies on the shared markers. We obtained similar results for populations 
12 and 31, and populations 7 and 14 (Supplementary Fig. S25).
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4 Discussion
We demonstrated the feasibility of combining data from different 

CyTOF panels with a set of shared markers in common. We showed that 
by imputing data, the heterogeneity of the data can be better captured 
than with the individual panels separately. Also, we presented a data-
driven approach to select the set of shared markers that are most 
informative to be used to align panels.

The selected set of shared markers can capture the underlying 
structure of the data. For example, from the HMIS dataset we saw that 
for small values of m, the selected shared markers include CD3, CD4 and 
CD8a which separate the main CD4+ and CD8+ T cells immune lineages 
from the rest of the cell  populations. As m increases, the selection 
algorithm starts to include markers that differentiate the different 
populations within a single lineage. Our selection approach relies on the 
variation in expression across cells. As a result, CD45, an essential 
marker which is positively expressed across all immune cells, is never 
selected due to its low variance.

To assess the quality of imputation, we relied on three scores that 
capture the cluster and neighborhood concordance between the imputed 
and original data. For the HMIS dataset, we observed prominent 
discordance when a low number of shared markers is used (m < 12), 
mainly due to exclusion of key lineage specific markers within the set of 
shared markers resulting in imputation failures. The number of shared 
markers to properly align panels does depend heavily on the complexity 
and heterogeneity of the data. For the HMIS dataset, studying PBMCs 
and tissue samples from patients with three different inflammatory bowel 
diseases as well as controls, 16 shared markers were needed. Whereas 
for the Vortex dataset, that replicated mouse bone marrow samples, 11 
markers were sufficient. On the other hand, we saw that for both datasets 
we can capture and reconstruct all cell clusters, despite their number and 
sizes, suggesting that the imputation is not biased towards the clustering. 
Although the performances do differ for different settings of the number 
of shared markers (m) and number of neighbors used during imputation 
(k), they are not sensitive to the exact setting, illustrating the robustness 
of CyTOFmerge.

Note that during the shared maker selection procedure we 
represented highly correlated markers by only one representative marker. 
We made this choice because highly correlated markers will get the same 
importance by the PCA selection scheme, and thus might be selected 
together. Selecting a highly correlated marker as an additional shared 
marker will, however, not add any information to the shared makers, 
while, at the same time, occupying a marker slot in the panel. To reduce 
this redundancy and free as many slots as possible on the panel we made 
the choice to represent highly correlate makers with only one marker. 
Clearly, the choice for the threshold plays an important role as when the 
correlation is lower the markers will also add more distinct information.

We have shown that by imputing more markers, it is possible to 
better differentiate between cell populations, but on the other hand, the 
imputation of markers does affect the quality of the downstream analysis 
when compared to non-imputed data. We saw that clustering of the 
imputed data is not perfectly similar to the original data (adjusted Rand-
index < 1). Indeed, this is affected by the homogeneity of the dataset, as 
we saw higher performance for the Vortex datasets compared to HMIS 
(Vortex being more homogenous). Generally, the number of shared 
markers will affect the downstream analysis, i.e. increasing the number 
of shared markers will increase the quality of the imputation, and the 
downstream analysis will more faithfully resemble analyses done on 
non-imputed data. But that will also restrict the number of unique marker 
slots available on each panel. Using less shared markers will increase the 
number of unique markers, which in turn will increase the capacity to 

capture more heterogeneity, but at the expense of imputation quality. 
This trade-off is being influenced by the local structure (homogeneity) in 
the data, which is, unfortunately, hard (or even impossible) to predict 
beforehand, in general.

 Compared to FC methods, CyTOFmerge outperformed the first-
nearest-neighbor method, and achieved comparable performance with 
the cluster-based imputation. The later shows that the pre-clustering step 
of the shared markers is unnecessary, as the imputation through the 
entire data using CyTOFmerge produces similar results. Further, we 
demonstrated that by imputing more markers, we obtained better 
differentiation between different cell populations. However, the 
imputation depends on how similar cells are in the shared markers space, 
indicating that the variation between populations that can only be 
differentiated based on imputed (non-shared) markers is to some extent 
retained in the shared markers.

To practically apply CyTOFmerge, we recommend the following 
steps: (1) Collect the samples and divide them in two parts. (2) Design 
the first marker panel according to the biological question one wants to 
be answered. The marker panel would probably contain lineage markers, 
to differentiate between the major cell types, and cell state markers, for 
more detailed subtyping, and intracellular markers of interest (Bendall et 
al., 2011) . (3) Stain the first part of the samples with the designed 
marker panel and measure the samples with CyTOF. (4) Apply the 
marker selection pipeline on the measured dataset using the first panel 
and obtain the most informative markers (i.e. shared markers). (5) 
Include those shared markers while designing the second panel of 
marker. (6) Add extra state or intracellular markers of interest to the 
second panel. (7) Stain the second part of the samples with the second 
marker panel and measure the samples with CyTOF. (8) Apply the 
imputation algorithm to all samples, combining both datasets from both 
panels, and create the imputed dataset in which each cell is represented 
by the unique markers from each panel (one of which is imputed), as 
well as the shared markers.

Importantly, we have shown that by combining panels a richer 
protein profile of cells can be acquired with which it becomes possible to 
find both abundant as well as rare cell populations. This opens 
possibilities to merge even more panels based on a common shared 
marker set as there is no fundamental limit to restrict to the combination 
of two panels. 
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