
Flexible GPU-Based Multi-Volume Ray-Casting

Ralph Brecheisen, Anna Vilanova i Bartroli, Bram Platel, Bart ter Haar Romeny

Technical University of Eindhoven
Email: {r.brecheisen,a.vilanova,b.platel,b.m.terhaarromeny}@tue.nl

Abstract

Using combinations of different volumetric datasets
is becoming more common in scientific applica-
tions, especially medical environments such as neu-
rosurgery where multiple imaging modalities are re-
quired to provide insight to both anatomical and
functional structures in the brain. Such data sets
are usually in different orientations and have differ-
ent resolutions. Furthermore, it is often interesting,
e.g. for surgical planning or intraoperative appli-
cations to add the visualization of foreign objects
(e.g., surgical tools, reference grids, 3D measure-
ment widgets). We propose a flexible framework
based on GPU-accelerated ray-casting and depth
peeling, that allows volume rendering of multi-
ple, arbitrarily positioned volumes intersected with
opaque or translucent geometric objects. These ob-
jects can also be used as convex or concave clipping
shapes. We consider the main contribution of our
work to be the flexible combination of the above-
mentioned features in a single framework. As such,
it can serve as a basis for neurosurgery applications
but also for other fields where multi-volume render-
ing is important.

1 Introduction

The acquisition of multiple volumetric datasets
based on data measurements or simulations is
becoming more common in modern scientific
applications. This is especially apparent in medical
environments. Modern hospitals nowadays have
a wide range of 3D imaging modalities at their
disposal. For example, in neurosurgery of the
brain, it is not possible to visualize all structures
of interest using only a single imaging modality.
Multiple modalities have to be combined to view
both anatomical structures and functional areas.
Relevant modalities in this case are Computed
Tomography (CT), Magnetic Resonance Imaging

(MRI), functional Magnetic Resonance Imaging
(fMRI) and Diffusion Tensor Imaging (DTI). It
is also interesting to combine the volume data
with foreign objects that can only be represented
with geometric primitives. For neurosurgery
applications one can think of virtual surgical
tools, reference grids, 3D measurement widgets
or streamlines to visualize Diffusion Tensor Imag-
ing data. To avoid cluttering and occlusion of
underlying volume data it is useful to be able to
render these geometric objects semi-transparently.
Furthermore, to explore hidden structures in the
volumetric data both semi-transparency, using
opacity transfer functions, and surface-based clip-
ping should be available. For example, a complex
and possibly concave clipping shape could be used
for virtual resection or an extracted surface model
of the brain could be used as a clipping shape.
Different datasets acquired for the same patient
often have different resolutions. Also their coordi-
nate systems are not always exactly aligned which
requires them to be registered. To visualize all
datasets simultaneously a common approach is to
resample them onto a common grid such that they
all share the same coordinate frame. This allows
easier sampling but also reduces the image quality
due to double interpolations. Low-resolution
datasets may need to be inflated thereby increasing
memory consumption. This can become an issue
in intraoperative navigation where the difference in
resolution between preoperative and intraoperative
images can be large. For this reason, we believe
that resampling should be avoided.
Several multi-volume rendering frameworks exist,
however to our knowledge none of these imple-
mentations fulfill all the points specified above.
Especially, thecombination of multiple volumes
with transparent geometry and concave clipping
is not supported by any existing framework. For
this reason, we propose a GPU-based multi-volume
ray-casting framework with the goal of being

VMV 2008 O. Deussen, D. Keim, D. Saupe (Editors)



as flexible as possible with respect to the points
specified above, that is, allowing independent,
volume-local sampling of multiple volumetric
datasets possibly intersected with opaque or
translucent geometric shapes and convex or con-
cave clipping shapes. Registration of the datasets
is assumed as a pre-processing step that gives us
the coordinate transformations needed to position
volumes and geometry in space.

The outline of this paper is as follows: Section 2
discusses related work in the field of multi-volume
rendering. In Section 3 we explain the concepts
of our multi-volume depth peeling algorithm, vol-
ume/geometry intersections, different options for
rendering intersection regions and depth-based clip-
ping. In Section 4 we illustrate how our multi-
volume rendering framework could benefit the plan-
ning of brain tumor resections. In this Section we
also discuss memory and performance issues. Fi-
nally, we end with conclusions and future work in
Section 5.

2 Related Work

Several implementations for multi-volume render-
ing have been proposed in the past. Due to the
computational complexity of rendering multiple
volumes, software-based methods require advanced
acceleration techniques such as using segmentation
information [22] and efficient memory addressing
and multi-threading [17]. Without such tech-
niques software-based multi-volume rendering is
restricted either to non-intersecting volumes [4] or
non-interactive, static images [34, 23].
With the advent of harware acceleration and
programmable GPU’s interactive and high-quality
multi-volume rendering has become much more
feasible. Hadwiger et al. [13] propose a two-level
volume rendering method that allows different
parts of the dataset to be visualized with different
rendering modes such as MIP, DVR and isosurface.
However, they do not explicitly support multiple
volumes or intersecting geometry.
As mentioned in the introduction, we consider
the combination of volume data with geometric
shapes to be an important feature of a multi-
volume rendering framework. However, most
multi-volume rendering frameworks do not support
this [8, 24, 9, 16, 19]. Those that do, are mostly

limited to convex, opaque geometry [10, 7, 6].
Translucent geometry intersections are reported by
Levoy [2] and Kreeger et al. [5]. However, the
ray tracing framework proposed by Levoy only
produces still images. Kreeger et al. mention that
they support multiple volumes with translucent
geometry, however they discuss only the single-
volume case. Futhermore, their implementation
requires a specialized hardware architecture.
In our algorithm we use depth peeling [33] in
combination with GPU-accelerated ray-casting
[29, 27] to allow flexible volume/geometry in-
tersections. A similar approach has been used
by others [14, 11, 35, 30] although these imple-
mentations are restricted to single-volume scenes.
Borland et al. [30] propose a technique called
volumetric depth peeling, however it is not related
in any way to depth peeling as an algorithm for
depth-sorting translucent polygons. It does impose
a layered structure on the volume data by restarting
ray-casting after some threshold is reached, but this
is a purely volumetric technique with no support
for intersecting geometry.
One of the most challenging issues in multi-volume
rendering is how to deal with overlapping materials
(or tissues). This remains a largely unsolved
question but several implementations exist that
offer a range of mixing strategies at different levels
in the rendering pipeline. They are either based
on opacity-weighted mixing [3, 20, 21, 19, 24],
successively applying compositing on each sample
(in some order) [10, 17] or other operators such as
minimum, maximum, negative, sum, product and
blend [9].
Most implementations simplify sampling by
mapping all volumes onto a common coordinate
frame [6, 16, 10, 15]. However, if volumes are
not axis-aligned and only partially overlapping
then this requires resampling. This introduces
numerical inaccuracies and may also increase
memory consumption significantly if resolutions
differ greatly. Only a few implementations sample
each volume locally within its own coordinate
frame [17, 4, 8, 9], however neither of these support
volume/geometry intersections or complex clipping
shapes.
Finally, many existing methods for multi-volume
rendering were proposed with a clear application
in mind such as seismic data exploration [9]. In
the medical area, Beyer et al. [10] propose a



framework for planning key-hole neurosurgery.
Hardenbergh et al. [6] added DTI fiber geometry
to an already existing functional MRI visualization
system. However, they do not support translucent
geometry or complex clipping shapes. Koehn et
al. [26] present a system for neurosurgery planning
that has features very similar to ours. However,
they do not support multi-volume rendering at the
sampling level. They can combine multiple volume
renderers and mix their outputs at the image-level.

Much work has been done for multi-volume ren-
dering. However, we conclude that most frame-
works do not have the flexibility to combine mul-
tiple volumes in arbitrary orientations without re-
sampling or deal with intersecting geometric shapes
and clipping. We believe that this is especially
needed in neurosurgery applications. We intend
to offer this flexibility by using (1) GPU ray-
casting, which allows interactive, high-quality ren-
dering and perspective projections, and (2) depth
peeling, which allows a natural integration between
volumes, opaque or translucent geometric surfaces
(e.g. for visualizing surgical tools) and complex
clipping combinations (e.g. for virtual resection).

3 Method Overview

Sampling multiple volumes independently in a sin-
gle rendering pass is problematic, especially if the
volumes are intersected by arbitary and possibly
translucent or concave geometric surfaces. To cor-
rectly include the geometry colors and opacities in
the volume compositing along each ray, intersection
calculations would have to be performed at each
sample step for all possible surfaces. Computa-
tionally this is not feasible in real-time, especially
for more complex object shapes. For this reason,
we propose a multi-pass approach where we ren-
der the scene in separate layers usingdepth peel-
ing [33]. This subdivides the scene into regions
where sampling conditions do not change and we
only have to determine our sampling position with
respect to each volume at the beginning of such a
region. As we will describe later, surface geometry
requires no special intersection calculations. Fig-
ure 1 gives a high-level overview of our algorithm
and the functional steps performed during asingle
iteration of the algorithm. Rendering the complete
volume/geometry scene consists of repeatedly exe-

cuting these steps for each iteration after which the
final result is rendered to screen.

Figure 1: Overview of the algorithm subdivided
over two fragment shaders, one for depth peeling
(shader 1) and one for ray-casting (shader 2). Illus-
trated are the different functional steps taken during
a single iteration of the algorithm.

In short, our algorithm alternates depth peeling with
a ray-casting pass until all depth layers of the vol-
ume/geometry scene have been processed. The use
of depth peeling and ray-casting is not new in itself
[14, 11, 35]. However, their application to multiple
volumes intersected by translucent geometry and
concave clipping shapes is novel and our main con-
tribution. In the following subsections we explain
our multi-volume ray-casting algorithm in more de-
tail.

3.1 Depth Peeling

Depth peeling is a well-known technique for view-
independently depth sorting a collection of poly-
gon surfaces and originally used for rendering
translucent polygons correctly. It is a multi-
pass, fragment-level technique that was initially de-
scribed by Mammen [12] and Diefenbach et al. [25]
and implemented by Everitt [33] using hardware-
accelerated shadow mapping. Depth peeling can be
applied to any scene consisting of polygon surfaces.
This means it can also be applied to GPU-based
ray-casting because it is initiated by rasterizing the
front faces of a geometric bounding box. If we have
multiple, partially overlapping volumes, rasterizing
their bounding boxes while performing depth peel-



ing over multiple passes will sequentially give us
access to the fragments of each volume’s bound-
ary. This is precisely what we need for efficiently
computing sample positions with respect to each
volume. To implement depth peeling for multi-
volume ray-casting we use an approach that is simi-
lar to the algorithm proposed by Everitt [33]. How-
ever, he uses a shadow mapping technique that re-
lies on relatively slow and obsolete buffer-to-texture
copies. We use the OpenGL Framebuffer extension
and programmable fragment shaders to extract the
different depth layers and store them directly in a set
of high-precision depth textures without the need
for expensive copy operations.

3.2 Multi-Volume Ray-Casting

Our multi-volume ray-casting algorithm starts by
rendering the front-most faces of the scene and
storing the fragment depths and colors in offscreen
buffersDnear andCnear. This is illustrated in Figure
2A. In the second pass the scene is rasterized again
except now a fragment shader is activated, with
Dnear as input parameter, that compares the raster-
ized fragment depths to the corresponding depth
value in bufferDnear. If, for a given fragment, its
depth isless or equal to the Dnear value then the
fragment is discarded. Since depth test LESS is
still applied, this will result in the second-nearest
fragments being stored in a second set of offscreen
buffersD f ar andC f ar. This is illustrated in Figure
2B.

After depth peeling the first two depth layers,
stored inDnear andD f ar, we initiate a ray-casting
pass by rasterizing the scene again with a depth
test EQUAL. The depth test only passes fragments
that have a depth equal to those inDnear. For these
fragments a second fragment shader is activated,
with Dnear, D f ar and color bufferCnear as input
parameters. This fragment shader performs direct
volume ray-casting starting at the layer correspond-
ing toDnear and stopping at the layer corresponding
to D f ar. The composited color and opacity are
written to an offscreen accumulation bufferCacc
which is updated and passed as an input parameter
to the next ray-casting pass.

Sampling corrections: When doing ray-casting in
a multi-volume scene, special care should be taken
to preserve equidistant step sizes as we cross vol-

ume boundaries from one iteration to the next. The
distance between two depth layers will almost never
be an exact multiple of the ray step size.

A

B

C

Figure 2: (A) Use depth test LESS to extract first
depth layer and store in textureDnear. (B) Peel
away first depth layer by using fragment shader to
discard fragments with depth equal toDnear, then
use depth test LESS again to extract second depth
layer and store in textureD f ar. (C) GPU ray-casting
is started at the fragments corresponding toDnear.
A depth test EQUAL is used to select these frag-
ments. The output of the ray-casting shader is writ-
ten to the color accumulation bufferCacc.

Therefore, to preserve equidistant steps along the
ray through all volumes we need to add a slight
offset ∆d at the beginning of each region (except
the first). This offset is computed in the previous



pass.

Intersecting geometry: Due to our depth peeling
approach it is relatively easy to implement intersec-
tions with geometry because it is depth-peeled just
like any other layer. We store the color and opac-
ity of each layer inCnear so it is straightforward to
include this color and opacity in the compositing
equation before we do ray-casting for any given re-
gion. In this way, geometry is naturally taken into
account. Whether the geometry is opaque or semi-
transparent makes no difference.

3.3 Volume Entry/Exit States

To keep track of which volumes the viewing ray
enters and exits in a flexible way, we introduce
a scheme to maintain a list of bitflags, one flag
for each volume, that is toggled each time we
pass a volume’s boundary. A similar approach
to store state variables across multiple rendering
passes is used by Beyer et al. [10]. While they
use a 1D lookup texture to keep track of which
(anatomical) objects map to which volume ID, we
use a 2D texture to store a list of bitflagsfor each
viewing ray or pixel. It is illustated in Figure 3. All
bitflags are initialized to zero at the beginning of
ray traversal. Each volume has an associated index
which is used to retrieve the corresponding bitflag
from the list. To implement this feature, we use
an additional, screen-sized texture, which we call
the objectInfo texture, that is queried and updated
in each ray-casting pass. Each texture element
contains a floating-point value that encodes the
list of bitflags. Encoding and decoding of bitflags
as floating-point values is done using themodulo
operator. IfEi is the bitflag value for volumeVi,
T is the floating-point texture value to be decoded
andN is the number of volumes then we have,

Ei = mod

(

T
2i ,2

)

,0≤ i < N (1)

Given a volume indexi and bitflag valueEi we can
toggle the bitflag, without using IF-statements, as
follows,

Ei = mod(Ei +1,2) (2)

Finally, re-encoding the bitflags into the floating-

point value is done as follows,

T =
N

∑
i=0

2i
·Ei (3)

Figure 3: Bitflag values for traversing two volumes
(least significant bit on the right, only 2 out of 4
bitflags used). The indices (0,1,2,3) refer to the vol-
ume index.

3.4 Depth-based Clipping of Selected Vol-
umes

Volume clipping is an essential part of any 3D view-
ing toolbox because it helps to reduce cluttering
when a lot of information has to be visualized. Also,
if the sample values of an object differ only slightly
from the objects occluding it, it will be difficult to
expose it using a basic opacity transfer function. In
that case, clipping becomes the only way to show
the object by cutting away the occluding data.
In our multi-volume rendering algorithm we offer
support for depth-based clipping. We keep track of
clipping states in a similar manner as for volumes
except we do not use ’entry/exit’ (1/0) bitflags but
simply ’clip/no-clip’ (1/0) bitflags. These bitflags
are encoded in a second channel of theobjectInfo
texture which we introduced for the volume bitflags.
Depending on the clipping mode, volumeprobing
or volumecutting [11], theobjectInfo texture is ini-
tialized with ’1’ or ’0’ respectively. This is illus-
trated in Figure 4.
Using these volume and clipping bitflags we can
quickly determine for each volume whether to ren-
der it or not in a given region. We are able to handle
all the different combinations of volumes, clipping
shapes and clipping modes (probing or cutting) in a



Figure 4: Clipping modes: volume cutting (left) re-
quires clip object bitflag to start with ’0’, volume
probing (right) requires bitflag to start with ’1’.

flexible way without using multiple IF-statements.
For this, we precompute a 2D lookup table to con-
tain this logic. The integer-encoded volume and
clipping bitflags are used as lookup indices. The
output of the table is another integer-encoded bit-
flag list which specifies for each volume whether to
render it or not. Figure 5 shows an example sce-
nario consisting of two volumes and a single clip-
ping shape set forvolume cutting on volume 0 only.

Figure 5: ExampleclipInfo lookup table for a scene
consisting of two volumes and one clipping shape
set for volume cutting. PointP is associated with
volume bitflags ’0011’ and clip bitflags ’0001’. Per-
forming lookup in table results in ’0010’ mean-
ing volume 1 should be rendered, while volume 0
should not be rendered.

3.5 Data Intermixing

One of the most challenging aspects of multi-
volume rendering is to decide how to render over-
lapping volume regions. The difficulty lies not so
much in finding different mixing schemes, as in
deciding which schemes result inuseful visualiza-
tions. In our algorithm we limit ourselves to of-
fering a number of data mixing options without
proposing to solve the general problem. GivenN
volumes inside an intersection, the options we offer
are:

• Priority selection: Select one volume for ren-
dering based on apriority ID.

• Opacity-weighted average: Apply transfer
function classification and shading to each vol-
ume sample, pre-multiply the colors with their
associated opacity and compute the average
color.

• 2D intersection transfer function: Apply a 2D
transfer function to the intersection between at
most two volumes.

• Intersection color: Apply a single color and
opacity to the intersection region. This can be
used for visual collision detection.

Figure 6 illustrates these mixing schemes. We ap-
plied them to four abstract cube datasets to clearly
convey the difference between each scheme. The
2D intersection transfer function takes gray values
from two volumes and returns a color and opacity.
In the example, the 2D transfer function returns a
yellow color wherever two volume samples have
equal value (+/- an offset). We limit ourselves to 1D
and 2D transfer functions, however the algorithm
could easily be extended to 3D if memory availabil-
ity allows it. Note that it is far from trivial to define
high-dimensional transfer functions [7].

4 Results and Discussion

Our multi-volume rendering algorithm can be used
for any application that involves multiple volumet-
ric datasets possibly intersected with geometric sur-
faces. However, our work was mainly motivated by
medical applications that require visualization of in-
formation from many different imaging modalities
and where resolutions may differ significantly be-
tween datasets. Tumor resection planning in neu-
rosurgery is such an application where the surgeon
needs to visualize general anatomical context, such
as the brain, and specific focus objects such as tu-



A B

C D

Figure 6: Different intermixing schemes: (A) pri-
ority selection where volume 1 has priority, (B)
opacity-weighted average, (C) intersection color
(magenta) and (D) 2D intersection transfer function
which highlights regions where sample values are
equal (+/- an offset).

mor, cortical activations, fiber tracts and surgical
tools. Figure 7 illustrates what this could look
like using our framework. In this example, differ-
ent representations are chosen for different objects.
The DTI fiber tracts are represented as stream tubes
(128×128×52, 16 directions) while the tumor and
cortical activations are volume data.
Figure 8 shows an example of a CT dataset
with one clipping shape used for simulating an
access hole in the skull through which a virtual
surgical tool is inserted. Another clipping shape
is used to offer a free view of the access hole
from an alternative viewing direction. Figure 9
illustrates an example of a concave surface model
of the brain used as a complex clipping shape to
extract the brain as a volume representation. The
performance and memory requirements of these
scenarios are discussed in the following paragraphs.

Performance: In most scenarios our algorithm
runs at interactive framerates (NVIDIA GeForce
8800 GTX, 512×512 window, 1mm stepsize). De-
pending on scene complexity however framerates
may drop significantly. For example, the CT dataset

Figure 7: Multimodal view of head, tumor (T1-
weighted MRI), cortical activations (fMRI) and
fiber tracts (DTI). Brain, tumor and activations are
all separate volumes. DTI fiber tracts are visualized
as stream tubes.

in Figure 8 renders at 12.6 fps which includes a
256×256×225 CT dataset, a 64×64×64 tumor
dataset and two clipping shapes. The MRI dataset
in Figure 7 renders at 2.5 fps and includes a
256×256×200 MRI dataset, a 64×64×64 tumor
dataset, a 64× 64× 64 fMRI dataset, DTI fibers
as streamtubes, a surgical tool and a clipping box.
This is the most complex scenario we rendered.
The MRI dataset in Figure 9 runs at 2.8 fps. and
includes the 256× 256× 200 MRI dataset and a
concave brain model consisting of around 450K
polygons. As can be seen the flexibility of our
framework comes at a cost. The performance drops
when the number of depth layers increases because
each depth layers is associated with an additional
ray-casting pass.

Memory consumption: Our algorithm requires
all volumes to fit inside GPU texture memory. This
means that there is a physical limit to the number
and dimensions of volumes that can be simultane-
ously visualized. However, due to our volume-local
sampling scheme there is no need for inflating low
resolution datasets. This keeps memory consump-
tion at acceptable levels. If 8-bit datasets are used,
the multi-volume scenario of Figure 7 requires only
15.4 MBytes (1 x 13Mb for head, 1 x 0.2Mb for tu-



Figure 8: Multiple clipping shapes applied to a CT
skull. The larger clipping shape allows an alterna-
tive view on the access hole with virtual tool.

mor, 1 x 0.2Mb for fMRI). For 16-bit datasets this
would be twice as much but still well within the lim-
its of GPU memory (768 MBytes).

5 Conclusions and Future Work

Our multi-volume depth peeling algorithm offers a
flexible way to visualize multiple, partially overlap-
ping volumes intersected with an arbitrary number
of opaque or translucent geometric shapes. Vol-
umes are sampled locally in their native resolution
which keeps memory requirements to a minimum.
Together with support for multiple, convex or
concave clipping shapes this makes our framework
especially suitable for neurosurgery applications
where volumetric datasets of differing resolutions
often need to be combined with geometric data
derived from DTI fiber tracking or additional
surface models. We also offer several options for
rendering the intersection between two or more
volumes.

Figure 9: Top: semi-transparent geometric model
of brain combined with tumor and f-MRI data. Bot-
tom left: geometric brain model embedded in MRI
dataset. Bottom right: brain model used as con-
cave clipping shape to clip away surrounding tissue
thereby resulting in a volumetric representation of
the brain based on MRI data.

A number of points remain that need to be ad-
dressed in the near future. First, performance
could be improved by incorporating empty-space
skipping techniques and using the depth peeling
algorithm only when necessary. Most importantly
however, we wish to implement a neurosurgical
planning and navigation tool based on this frame-
work and evaluate its usability in a clinical setting.

References

[1] H. Hauser, L. Mroz, G.I. Bischi, M.E.
Groeller. Two-Level Volume Rendering.IEEE
Transactions on Visualization and Computer
Graphics, 7(3), 242–252, 2001.

[2] M. Levoy. A Hybrid Ray Tracer for Rendering
Polygon and Volume Data.IEEE Computer
Graphics and Applications, 2(4):33–40, 1990.



[3] W. Cai, G. Sakas. Data Intermixing and Multi-
Volume Rendering.Computer Graphics Fo-
rum, 1999

[4] A. Leu, M. Chen. Modeling and Rendering
Graphics Scenes Composed of Multiple Vol-
umetric Datasets.Computer Graphics Forum,
159–171, 1999.

[5] K.A. Kreeger, A.E. Kaufman, Mixing
Translucent Polygons with Volumes.IEEE
Transactions on Visualization and Computer
Graphics, 191–198, 1999.

[6] J. Hardenbergh, B.R. Buchbinder, S.A.M.
Thurston. Integrated 3D Visualization of
fMRI and DTI Tractography.IEEE Transac-
tions on Visualization and Computer Graph-
ics, 2005.

[7] S. Bruckner, E. Groeller. VolumeShop: An In-
teractive System for Direct Volume Illustation.
IEEE Transactions on Visualization and Com-
puter Graphics, 671–678, 2005.

[8] S. Bruckner, E. Groeller. Exploded Views for
Volume Data.IEEE Transactions on Visual-
ization and Computer Graphics, 2006.

[9] J. Plate, T. HoltKaemper, B. Froehlich. A
Flexible Multi-Volume Shader Framework
for Arbitrarily Intersecting Multi-Resolution
Datasets.IEEE Transactions on Visualization
and Computer Graphics, 2007.

[10] J. Beyer, M. Hadwiger, S. Wolfsberger, K.
Buehler. High-Quality Multimodal Volume
Rendering for Preoperative Planning of Neu-
rosurgical Interventions.IEEE Transactions
on Visualization and Computer Graphics,
2007.

[11] D. Weiskopf, K. Engel, T. Ertl. Interactive
Clipping Techniques for Volume Visualization
and Volume Shading.IEEE Transactions on
Visualization and Computer Graphics, 2003.

[12] A. Mammen. Transparency and Antialias-
ing Algorithms Implemented with the Vir-
tual Pixel Maps Technique.IEEE Computer
Graphics Applications, 43–55, 1989.

[13] M. Hadwiger, C. Berger, H. Hauser. High-
Quality Two-Level Volume Rendering of Seg-
mented Data Sets on Consumer Graphics
Hardware. Proceedings of IEEE Visualiza-
tion,, 2003

[14] M.A. Termeer, J. Olivan Bescos, A.C. Telea.
Preserving Sharp Edges with Volume Clip-
ping. In Proceedings of Visualization, Model-

ing and Vision,, 2006.
[15] T. Schafhitzel, F. Roessler. Simultaneous Vi-

sualization of Anatomical and Functional 3D
Data by Combining Volume Rendering and
Flow Visualization. InSPIE Medical Imaging
2007, 2007.

[16] F. Roessler, E. Tejada, T. Fangmeier, T. Ertl.
GPU-based Multi-Volume Rendering for the
Visualization of Functional Brain Images. In
Proceedings of SimVis, 315–318, 2006.

[17] S. Grimm, S. Bruckner, A. Kanitsar, E.
Groeller. Flexible Direct Multi-Volume Ren-
dering in Interactive Scenes. InVision, Mod-
eling, and Visualization, 386–379, 2004.

[18] T. Hendler, P. Pianka, M. Sigal, M. Kafri.
Two are Better Than One: Combining fMRI
and DTI-based Fiber Tracking for Effective
Pre-Surgical Mapping. InProceedings of In-
ternational Society for Magnetic Resonance
Medicine, 2003.

[19] B. Wilson, E. Lum, K. Ma. Interactive Multi-
Volume Visualization. InWorkshop on Com-
puter Graphics and Geometric Modeling,
2002.

[20] M. Ferre, A. Puig, D. Tost. Rendering Tech-
niques for Multimodal Data. InProc. SIACG
2002 1st Ibero-American Symposium on Com-
puter Graphics, 305–313, 2002.

[21] I. Manssour, S. Furuie, L. Nedel. A Frame-
work to Visualize and Interact with Multi-
modal Medical Images. InVolume Graphics,
385–398, 2001.

[22] K.J. Zuiderveld, M.A. Viergever. Multi-modal
Volume Visualization using Object-Oriented
Methods. InProceedings of the 1994 sympo-
sium on volume visualization, 59–66, 1994.

[23] D.R. Nadeau. Volume Scene Graphs. InPro-
ceedings of the IEEE Symposium on Volume
visualization, 49–56, 2000.

[24] A. Ghosh, P. Prabhu, A.E. Kaufman, K.
Mueller. Hardware Assisted Multichannel
Volume Rendering. InProceedings of Com-
puter Graphics International, 2003.

[25] P.J. Diefenbach, N.I. Badler. Multi-pass
Pipeline Rendering: Realism for Dynamic En-
vironments. InProceedings of the Symposium
on Interactive 3D Graphics, 59–ff, 1997.

[26] A. Koehn, F. Weiler, J. Klein, O. Konrad,
H.K. Hahn, H.-O. Peitgen. State-of-the-Art
Computer Graphics in Neurosurgical Planning



and Risk Assessment. InProceedings of Euro-
graphics, 2007.

[27] S. Stegmaier, M. Strengert, T. Klein, T.
Ertl. A Simple and Flexible Volume Render-
ing Framework for Graphics-Hardware-based
Raycasting. InProceedings of Volume Graph-
ics, 2005.

[28] R. Westermann, T. Ertl. Efficiently Using
Graphics Hardware in Volume Rendering Ap-
plications. In Proceedings of the 25th SIG-
GRAPH, 1998.

[29] J. Krueger, R. Westermann. Acceleration
Techniques for GPU-based Volume Render-
ing. In Proceedings of IEEE Visualization,
2003.

[30] D. Borland, J.P. Clarke, J.R. Fielding, R.M.
Taylor II. Volumetric Depth Peeling for Medi-
cal Image Display. InProceedings of SPIE Vi-
sualization and Data Analysis, 2006.

[31] K. Engel, M. Hadwiger, C. Rezk-Salama, J.M.
Kniss.Real-Time Volume Graphics. A.K. Pe-
ters, 2006.

[32] B. Preim, D. Bartz.Visualization in Medicine.
Morgan Kaufmann Publishers, 2007.

[33] C. Everitt. Interactive Order-Independent
Transparency. Technical report NVIDIA
OpenGL applications engineering, 2001.

[34] A. Koenig, H. Doleisch, E. Groeller. Multi-
ple Views and Magic Mirrors - fMRI Visual-
ization of the Human Brain.Technical report
Vienna university of technology, institute of
compute graphics, 1998.

[35] K. Eide. GPU-Based Transparent Polygonal
Geometry in Volume Rendering.Technical re-
port Norwegian University of Science and
Technology, 2005.


