
Mixed-Initiative Design of Game Levels:
Integrating Mission and Space into Level Generation

Daniël Karavolos
Amsterdam University of

Applied Sciences
Duivendrechtsekade 36-38

1096 AH Amsterdam
The Netherlands

k.d.karavolos@hva.nl

Anders Bouwer
Amsterdam University of

Applied Sciences
Duivendrechtsekade 36-38

1096 AH Amsterdam
The Netherlands

a.j.bouwer@hva.nl

Rafael Bidarra
Delft University of Technology

Mekelweg 4
2628 CD Delft

The Netherlands
r.bidarra@tudelft.nl

ABSTRACT
A level designer typically creates the levels of a game to
cater for a certain set of objectives, or mission. But in
procedural content generation, it is common to treat the
creation of missions and the generation of levels as two sep-
arate concerns. This often leads to generic levels that allow
for various missions. However, this also creates a generic
impression for the player, because the potential for synergy
between the objectives and the level is not utilised. Follow-
ing up on the mission-space generation concept, as described
by Dormans [5], we explore the possibilities of procedurally
generating a level from a designer-made mission. We use a
generative grammar to transform a mission into a level in a
mixed-initiative design setting. We provide two case studies,
dungeon levels for a rogue-like game, and platformer levels
for a metroidvania game. The generators differ in the way
they use the mission to generate the space, but are created
with the same tool for content generation based on model
transformations. We discuss the differences between the two
generation processes and compare it with a parameterized
approach.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General—Games

General Terms
Game Design, Procedural Content Generation, Generative
Grammars, Automated Game Design, Mixed-Initiative De-
sign, Level Generation

1. INTRODUCTION
Modern computer games often contain a large amount of
content, which is typically organised in levels, to ensure
narrative development, variation, and (re)playability. Gen-
erating this content takes a lot of time and effort, even for
experienced game designers. To deal with these problems,

researchers have been looking at procedural content gener-
ation [22, 17] and automated game design [5, 3, 11, 24, 2].
Both focus on automatically generating game content, and,
if done correctly, support the human designer by reducing
the amount of time involved in the operational development
of games.

Research on procedural content generation often differen-
tiates the game content into different objects, for exam-
ple, a certain data structure, that can be created and/or
modified automatically to generate variations that are in
some sense similar to the original object. Ideally, but not
always, these variations should ensure replayability of the
game with varying levels of difficulty [25]. While the qual-
ity of game levels generated in such a way has long been
high enough to be applicable in popular games, such as
Rogue [23], The Sentinel [4], Sid Meier’s Civilization [13],
Diablo [16], Minecraft [14] and Spelunky [15], the quality
(in terms of user experience) is still considered lower than
those created by human game designers [21]. Shortcomings
of generated levels include low reliability, high predictabil-
ity, low visual quality and believability, and are, in general,
difficult to evaluate in terms of quality.

To ensure a higher level of quality, it is important to con-
sider other game aspects, such as narration or the underlying
game mechanics, in the generation of levels. For instance, if
the generated level includes no challenge for the player, there
is a large chance it will not be seen as a positive experience.
This is a topic often addressed by automated game design
research, which has the ambition to generate game levels in
conjunction with other aspects of the game, such as the goal,
mission, narrative, or theme, visual style, and/or the rules
of game play [2]. These approaches tend to be explorative,
as it is not yet clear how game aspects can best be used in
the automatic generation of levels [11, 24].

Instead of taking the perspective that computers should au-
tomatically generate the content of the games on their own,
we feel it is important to understand how the human de-
signer and the algorithms used to generate content can work
together [18]. Therefore, in this work, we take a different
approach, by looking at the automatic generation of game
content as a collaborative mixed-initiative design process,
similar to work by Smith et al. [20]. In their work, a human
designer can manipulate a level generator through a set of



parameters, which will then provide different level configu-
rations for the designer to choose from. Other researchers,
such as Mawhorter & Mateas [12], instead propose a mixed-
initiative approach to generating platformer levels based on
the assembly of manually designed level chunks.

In this paper, we describe two case studies in game level
design (for a top-down dungeon quest game and a side-view
platform game) to explore the underlying design processes
in terms of collaboration between human designers and com-
puter algorithms. To this end, we have created explicit mod-
els of the design processes involved, using the LudoScope
tool [5, 6], which is able to transform conceptual design ideas
about missions and space to concrete game levels for actual
playable games in interaction with a human designer. In
this approach, we use the strength of computers to system-
atically employ rules for transformations, combine multiple
inputs, and generate alternatives, but also acknowledge the
skill of the designer in exploring sources of variation, spot-
ting potential problems, recognizing opportunities, and find-
ing creative solutions to problems.

In section 2, we discuss related work on graph-based and tile-
based transformations, and the Ludoscope tool. Section 3
and 4 describe case study 1 and 2, respectively, in terms
of the design process and the targeted game content. In
section 5, we discuss the differences and the resulting lessons
learned. Section 6 finally presents concluding remarks and
recommendations for future research.

2. RELATED WORK
Both of our case studies use a different approach to create
game content through a cooperation between designer and
algorithm. These approaches are best classified as ’graph-
based transformations’ and ’tile-based transformations’. In
the coming subsections we will first explain how these trans-
formations work and how they have been incorporated in
previous work. After this, we will briefly introduce Ludo-
scope [5, 6, 8], the tool used to formalize the game design
flow.

2.1 Graph-based Transformations
Van der Linden et al. [25, 26] proposed a graph grammar
method for procedurally generating dungeons, and imple-
mented it for a game called Dwarf Quest [28] based on a
graph of player actions. This generator has two stages, graph
creation and transforming the graph into game space (or lay-
out solving). The graph is generated by a graph grammar,
which contains information about the mission in the level.
For example, a level always contains a boss fight and a part
leading up to it.

Each node stands for a specific player action, e.g. fighting a
monster or looting a chest. Generally there is only one player
action per room. However, there are two exceptions. The
first is that fighting a monster and picking up its dropped
key are two actions, but take place in the same room. The
second exception is that there can be filler rooms. To trans-
form the action graph into a level, the algorithm performs
some layout solving, to fit the graph into a 2D grid according
to the games’ constraints. This can introduce filler rooms
that are not essential to the gameplay, but which could po-
tentially contain filler actions or enemies.

The grammar of Van der Linden et al. [25] also contains
recursive rules, for example a recursive puzzle node can be
transformed into a recursive puzzle node and a puzzle. This
allows the system to create graphs of arbitrary length, which
can be controlled by a parameter that affects the firing prob-
ability of this recursive rule. Concurrently, the recursion cre-
ates a hierarchy that contains information about the graph,
for example which keys and locks are connected. This would
allow the generator to insert actions between picking up the
key and unlocking the lock, or even create nested key-lock
mechanisms.

The algorithm has several parameters for the action graph:
length, branching, difficulty, and seeds can be set to fix the
layout solving algorithm. However, this is limited control.
The designer cannot make minor changes, such as remov-
ing/adding a single action, or adding/removing edges be-
tween nodes. The algorithm can only be run again, with
potentially a completely different layout as result.

In section 3 we will describe an approach that allows the user
to change the design at multiple stages in the generation
process.

2.2 Tile-based Transformations
Spelunky [15] is a platformer that contains rogue-like ele-
ments, such as permadeath and procedurally generated lev-
els. The level generation system is based on the principle of
dividing a grid into rooms, selecting rooms that will be part
of the player’s necessary path, and filling in the details of the
rooms based on templates with probabilistic elements [10].
After generating the level geometry, the enemies are placed
in a similar fashion. The generator uses a grammar to trans-
form abstract tile types, represented by numbers and letters,
into the tiles that can be instantiated by the game engine.

This level generator has several interesting characteristics.
First, the symbols used to describe the outline of the level
contain information about the connections of the rooms. For
example, a ‘1’ means that a room only has connections to
rooms left and right, whereas a ‘2’ means that a room is
guaranteed to also have upward and downward connections.
This allows assumptions about the neighbors of a symbol
without actually having to check these neighbors.

Second, many templates contain probabilistic blocks and
probabilistic tiles. These probabilistic blocks have their own
set of templates, which can again contain various types of
probabilistic tiles. After applying the block templates, the
remaining tiles can be transformed into air, ground or spikes,
creating minor variations in the rooms. Together, these op-
tions create a multitude of different level configurations.

Finally, as shown in [10], these transformation steps are split
up into separately executable modules. This could poten-
tially be used to enable the designer to change the minor
variations without changing the room templates, or change
the room template without changing the path, if he/she so
desires, but this potential is not employed in Spelunky -
the level generation system is fully automatic, without any
(need for) interaction with a human designer.



Despite its success, Spelunky’s level generator has several
limitations. It can only generate a level in a 4x4 grid, and
the path to the exit is mostly linear. This precludes some
interesting game-flow patterns such as the deliberate gener-
ation of multiple paths, or non-linear traversals of the level
through a set of lock-and-key pairs.

2.3 Ludoscope
Ludoscope [5, 6, 8] is a mixed-initiative design tool based on
the principles of model driven engineering and generative
grammars. It promotes the approach of creating a content
generator by making a model of the design process. This
comes down to breaking down the generation process into
small, separately executable steps, called modules. In Ludo-
scope, the game content - in our case a level - is defined as
an expression that is generated by a grammar. This gram-
mar can be based on strings, tile maps, voronoi diagrams,
graphs, or shapes. The designer can define the alphabet of
the grammar, i.e. the elements of an expression, and a set of
transformation rules, i.e. rules that can rewrite parts of an
expression. Furthermore, the designer can define a (parallel)
sequence of modules that transform the expression based on
their grammar. Each of these modules receives input from
either another module or some starting expression. Then,
the module can either execute a set of rules probabilistically,
execute a set of rules according to some user-defined recipe,
or allow the designer to make changes to the expression. The
output is either sent directly to another module for further
processing, sent to a binary check that chooses a module
based on some user-defined (logical) condition, or presented
to the designer as the final result.

3. CASE STUDY 1: DWARF QUEST
The first case study is Dwarf Quest [28], a dungeon crawler
with turn-based combat, created in Unity3D1. In this game,
the player explores a set of connected rooms in search for loot
and new equipment. A room can contain one of the following
elements: a trap, loot, monsters, a locked door or bridge, or
a lever or a hidden key. The bridges and the locked doors
are considered as puzzles, because they require the player
to find the correct path to the corresponding lever or key.
There are also empty rooms (fillers), which contribute to the
maze-like dungeon feeling and facilitate the orthogonality of
the map.

In the approach of Van der Linden et al. [25], described in
section 2.1, the dungeons are created with one button press,
after setting the desired parameter values. Both the creation
of the action graph and the conversion to playable levels is
done in working memory, without feedback to the user. This
is a fine approach for an endless mode at runtime, but we
consider the case of using procedural content generation at
development time. By separating the creation of the action
graph from the conversion to the game level, we can allow
the game designer to make changes to the flow of a level
without having to consider all the details. Moreover, the
designer can store graphs as seeds for game levels, or even
use a selection of graphs to create a story line. This increases
the influence of the designer, while maintaining the benefits
of procedural generation.

1http://unity3d.com/

Figure 1: A model of the action graph generation
process. Left: The squares represent meaningful
products, the circles represent transformation mod-
ules. Right: These figures show the data represen-
tation during the generation process. The colored
nodes in the graphs can be transformed, the white
nodes are leaf nodes. The bright rooms in the re-
sulting game level are based on the graph, the dark
rooms are fillers created by the layout solver.

3.1 Generation Process
Figure 1 shows a model of the generation process and how
the representation looks during certain stages of the design
process. In this case study we have chosen to have the sys-
tem ask the designer for a sketch of an action graph and
expand that into a detailed graph. This detailed graph
is shown to the designer, allowing him to make manual
changes. To transform this graph into a level for Dwarf
Quest, this graph is fed to the layout solver of Van der Lin-
den et al. [25]. In more detail, we can discern the following
steps:

1. The first module allows transformations by the user. A
generative grammar needs an initial phrase (or in this
case graph) to transform. The generator provides an
example for an initial graph: Start -> Puzzle -> Boss -
> End. The designer can modify this graph by adding,
removing, and connecting non-terminal nodes. The
nodes describe abstract player tasks. Possibilities are:
battles (red), boss battles (red), puzzles with a locked
door (blue), puzzles with an open bridge (blue), traps
(blue), various item pickups (yellow), and an altar for



buying items (yellow). A valid level needs at least the
terminal nodes ‘Start’ and ‘End’.

2. The computer will then process the puzzles, pickups
and battles, respectively. This order is important, be-
cause puzzles can contain pickups and battles. The
available transformation rules depend on a difficulty
parameter, which is manipulable by the designer, even
between executing modules.

3. The result of the processing steps is a detailed graph,
which contains only terminal nodes. These nodes loose-
ly correspond to rooms in the dungeon. The user can
make changes with the ‘FineTuning’ module.

4. The quest is saved as a text file, which is parsed and
interpreted by a script in Unity. The game engine con-
verts each node into a room with the required elements.
Exceptions are the nodes concerning fighting and loot-
ing enemies for keys–these actions must take place in
the same room.

5. Finally, the layout solver defines the location of each
room, adds paths and empty rooms to fulfil some game-
specific constraints, e.g., the rooms must fit nicely in
a grid and can have at most four exits.

We could perform all automatic graph transformations in
one module. However, we have chosen to increase the in-
fluence of the designer by separating the application of the
rewrite rules for the puzzles, the loot and the monster en-
counters. This way the designer can, for example, change
the loot and the fights without changing the puzzles.

Note that, since Ludoscope produces a text-file, it is not
possible to connect nodes through a data structure. How-
ever, we do need to connect certain game elements in the
game to make them function properly. Therefore, we have
added ID tags in the form of members to the symbols for
keys and locks, and fighting and looting, e.g. LootKeyFrom-

Chest(keylockID = 4) and UnlockDoor(keylockID = 4).
This extra information can be used by the parser in the game
engine to connect the nodes.

4. CASE STUDY 2: TICKTICK++
The prototype TickTick++ is based on the game TickTick
[9], a small 2D side-view platformer game with a custom
game engine based on Monogame2. In TickTick++ the
player must reach the end of a level within a given time
limit. The player is obstructed by obstacles and enemies.
To overcome these challenges, the player must find three
power-ups. Each of these power-ups can be considered as a
key that unlocks a new part of the level.

4.1 Generation Process
The main difference between the platform level generator
and the dungeon generator is the data type of the gram-
mar. The quest grammar is based on graphs, whereas the
platform grammar is based on tiles. This is mainly because
the game engine has a level generator based on a tile parser.
Transforming a graph into a level for a side-view platformer
would either require creating templates in game code, such

2www.monogame.net

as in case study 1, or an elaborate process of transforming
the graph into a grid of tiles. The advantage of using tiles is
that it can be parsed as a level by the game engine without
further transformations.

The disadvantage of using tiles is that it is not an intuitive
representation for specifying a sequence of actions if the level
is not a line. Indeed, if the designer provides the system a
sketch with multiple paths, there is no way to specify in
which order the power-ups should be picked up. We could
make the designer responsible, by transforming a sketch that
not only contains the start and the exit, but also the specific
power-ups and their obstacles. However, this would require
little more than expanding paths and applying templates.
We are interested in using the generator to explore the design
space by influencing the lock-and-key mechanism, similar to
case study 1. Therefore, we let the designer give input in two
modules: one is used to specify the approximate locations
of the start, the exit and the power-ups, the second asks
the designer for a list that specifies the pickup order of the
power-ups. The generator will combine this information to
produce an outline with procedural generated locks.

Figure 2 shows a model of the generation process, with ex-
amples of how the representation looks during the genera-
tion process. The generation process contains the following
steps.

1. The first input module asks the user to provide a sketch
of the level, this includes the player’s spawn location,
the exit, the three power-ups and the paths that con-
nect these elements. The second input module asks
the user to specify a string with the order in which
power-ups should be picked up.

2. The generator creates an outline based on the two in-
puts. The list of power-ups is used as a recipe, to
execute rules in a specific order [5]. These rules trans-
form the sketch and use global variables to mark the
generated paths with the availability of the power-ups.
This is done by adding a script to those rules, which
is executed after the rule is executed. Thus, the ex-
ecution of one rule triggers one or more other rules
to fire. Each power-up rule transforms the power-up
symbol into two temporary symbols; this allows each
power-up to use the same transformation rules. The
player’s path is generated between these two symbols,
after which both symbols are transformed into either
a path or the power-up. Finally, the system marks the
power-up as available by changing a global variable.

3. The combination of user input and transformations for
winding paths can create ambiguous paths. Ambiguity
is very difficult to solve with transformation rules. To
prevent undesirable or impossible solutions, the gener-
ator offers the designer the option to make changes to
the outline.

4. Each tile is split into 7x7 tiles to move from sketch to
level layout.

5. The locks are placed in the level at a location where
the related power-up is marked as available. The order
in which these locks are placed should be the inverse



Figure 2: Model of TickTick++ level generation
process. Left: The squares represent meaningful
products, the circles represent transformation mod-
ules. The grey shapes represent the designer’s steps.
Right: These figures show the data representation
during the generation process.

of the order in which the power-ups should be picked
up, because the last power-up has the least space in
the level. To achieve this, a module that receives in-
put from the designer’s list feeds the lock placement
module a recipe, a list of instructions similar to the
second step, but inversed.

6. After lock placement, the start, the exit and the power-
up tiles are transformed into rooms, using templates
of 7x7 tiles. The path tiles are transformed into level
segments based on templates of various sizes, to take
advantage of special shapes in the winding paths. This
is where the basic tasks of the player (jumping, fight-
ing/avoiding enemies) are added to the level.

7. The game for which this model was created uses char-
acters that are 2x2 tiles. Therefore, we need to gener-
ate a game-specific version of this level. This is done in
a separate module by splitting each tile into 2x2 tiles
of the same type, and transforming all the non-level
geometry back into 1 tile.

8. The resulting level is presented to the designer, who
can make final changes.

Figure 3: In-game view of a part of the resulting
level of Figure 2.

Figure 3 shows a part of the resulting level of the example in
figure 2, involving different jump heights, obstacles, pickups
and enemies.

5. DISCUSSION
In the previous sections we have described two cases of trans-
forming sketches into game levels. Table 1 shows prop-
erties of the two models. We would argue that the cy-
cle of sketching, transforming, fine-tuning, combined with
a model-driven approach is a viable way to generate levels
in development time. It allows for parameterization, but
has multiple input options and re-executable steps as extra
options to influence the generation process.

The main advantage of the described model-driven, mixed-
initiative approach compared to parameterized grammar-
based systems is that the designer can make manual changes
at any time in the generation process without changing the
content created in previous steps. Moreover, the user does
not just give input by tweaking numbers, but by manipulat-
ing the representation of the content directly. The generator
of case study 1 asks for user input before and after the gen-
eration of the quest structure, which gives the user extensive
influence on the mission before it is transformed into level
space. The generator of case study 2 starts by asking the
user for an initial level layout, later asking the user to check
the validity of the created outline and again to make final
tweaks.

User input modules are not the only input possibilities. The
generation process can be executed step by step, allowing
the user to re-execute a module if it initially does not give
the desired output. Similarly, in the generator of case study
1, the difficulty can easily be adjusted without affecting the
abstract action graph by re-executing the process with a
different difficulty parameter, starting with the first module
after the input module. This will change the selection of
monsters as enemies and affect the branching of the puzzles,
but not the type or the order of the tasks.

Another quality of the model of case study 1 is the clear
separation between mission and space generation. It allows
the designer to experiment with the flow of the level without
having to consider the details of level geometry. Given that



Table 1: The difference between the models of the case studies.
Case Study Dwarf Quest TickTick++
User input Sketch of mission structure Sketch of space and list of objectives
Output Unity MonoGame
Representation Graphs Tiles
Process Linear Incoming branches
Mission/Space Mission first, then space Space and mission in parallel
Key-lock placement Based on mission Based on space
Parameterization Difficulty level -
Context Key-lock mechanisms Key-lock mechanisms, power-ups

the game objects are there, it is easy to expand the possibil-
ities of the action graph, for example with more elaborate
lock-and-key constructions. Also, this clear separation of
mission and space allows for the generation of a large num-
ber of levels, possibly with varying difficulty, based on the
same action graph. One can simply feed the detailed graph
to the layout solver multiple times to create different levels.

Though systems with a lot of interacting components, such
as these, offer a lot of flexibility in terms of design, an is-
sue that remains is debugging. A bug in the resulting level
could originate from the grammar, the model of the design
process, or from game code. It might be difficult to separate
the actual cause from the effects. So it should be noted that,
independent of having a mixed-initiative process, modular
generators require extensive testing of the individual com-
ponents.

An advantage of parameterized algorithms is that they typi-
cally communicate with the game engine through data types
stored in working memory, allowing elaborate connections
between elements through data structures. In Van der Lin-
den et al.’s quest generator, for example, a hierarchy is
stored, which allows locks and keys to be connected through
their parent nodes [25]. Striving for general compatibility,
Ludoscope, however, outputs text files. So, in Ludoscope
connections between symbols require a textual representa-
tion. As a solution, we have demonstrated the use of adding
members to symbols to pass along contextual information.

The generator of case study 2 also uses members, not to
connect symbols, but to differentiate between symbols of the
same type. Specifically, to mark available power-ups in each
path tile, allowing the system to detect where locks can be
placed. This could also be used to create more variation in
the paths, for example to increase the probability of a room
with more enemies if the player has a gun. Members are a
desirable solution if the templates are the same in principle,
but have some special cases. This reduces the number of
rules necessary, thereby optimizing the rule base.

In Spelunky, context is added to symbols in another way.
Path tiles with a different number of exits are treated as dif-
ferent symbols, even though they all encode path rooms [10].
In that case, having a different number of exits is not a spe-
cial case of a path tile, but requires a significantly different
template. This is a useful alternative, and could be used
in conjunction with the above mentioned members to solve
even more complex layout problems.

We have taken two different approaches to the interacting
concepts of mission and space while generating a level. In
case study 1, the mission is gradually transformed into a
spatial representation. Whereas in case study 2, the mission
is a list of instructions that guides the transformation of the
space. In the case of platformers, the second approach has
the advantage that the tile grid gives an easily recognizable
shape of the emerging level.

6. CONCLUSIONS
In this paper, we have explored the process of generating
content in a mixed-initiative design process. In particular,
we have described two examples of how game levels can be
generated in a mixed-initiative process with Ludoscope, a
tool based on generative grammars. We have described sev-
eral ways to guide the search space of generative grammars.
The design process can be split in multiple re-executable
modules, each with their own set of transformation rules.
This limits the number of rules that are considered at a cer-
tain time step, and is one of the ways to add order to the ex-
ecution of rules. Instead of deriving all applicable rules from
an expression and choosing one to execute, a recipe can tell
the system in which order the rules of a module should be
executed. Adding members to symbols can reduce the num-
ber of considered left-hand sides of a transformation rule.
Post-application scripts can be used to let rules trigger the
execution of other rules.

The separation of the mission and the space of a level is a
useful construct for designing levels at a high level of ab-
straction, which combines well with model transformations.
It separates the reasoning about the flow of a level from the
reasoning about how these abstract concepts translate to
game assets. However, the creation of templates that con-
vert the concepts to actual game assets still requires quite
some manual labor. For example, if the jump height of the
player is changed during the development process of a plat-
former, the current grammar-based generator requires man-
ual validity checking of the templates. Perhaps the creation
of these templates could be parameterized to allow auto-
matic adjustments based on the game mechanics.

The translation from the abstract concept, or sketch, to the
actual game level benefits from having an extra layer of ab-
straction, such as the final graph in case study 1 or the
outline in case study 2. This layer should be based on en-
capsulated chunks of information, such as the rooms in a
dungeon. In case study 2 we have tried to take advantage of
the layout of the environment to place special level chunks.
However, this caused many exceptions that required very



specific rules. Even when generating platformers, using the
notion of rooms, like Spelunky does, is beneficial, because it
takes advantage of the pattern matching capabilities of the
computer.

Dormans [5] suggested that separating the mission and space
structures would facilitate the reuse of a space for multiple
levels. Based on our experience with the two case stud-
ies described, we agree, but it can also work the other way
around. A mission can be used as seed to create multiple
spaces. Designing this way would allow a designer to guar-
antee a certain flow in the overall game, but still promote
replayability by having procedurally generated levels.

We have created a model of the design process by group-
ing our model transformations into modules, based on their
function in the design process. These re-executable modules
are an interesting way to influence the design process. The
current system doesn’t change information of previous trans-
formation steps. However, when a module is re-executed,
desired elements of the previous result might still be lost.
There should be a way to select what the computer can and
cannot transform. Moreover, the designer should be able to
re-evaluate this choice every time the module makes trans-
formations.

The two case studies presented both involved interaction
between automated generation and human designers, but
not with players. An interesting avenue for further research
would be to include live adaptation of the game level design
process, based on a player’s behaviour or performance in
the game. Work in this direction has been done by Van
Rozen and Dormans [27]. Incorporating this would allow
game designers to intermittently playtest and modify their
game extensively, but it could also allow personalizing the
game based on the player’s behaviour [7, 1].

Another direction for further work includes adding meth-
ods for visualization of higher-level features of (sequences
of) generated game levels that facilitate a human designer
to reason about and fine tune the aspects of the generated
levels at the level of gameplay. For example, we can imagine
system that summarizes rooms in terms of difficulty, based
on its content, to allow the designer to see the flow of diffi-
culty of a level or to make suggestions to increase playability.

Our work resonates with work by Smith et al. [19], who argue
that the field of procedural content generation would ben-
efit from more insight into the goals, knowledge and tools
involved in the process of game design. We have created
two level generators in a mixed-initiative design tool, as case
studies to demonstrate the use of model transformations in
a mixed-initiative design process. We have also discussed
the effects of separately generating mission and space on
the level generation process, and pointed out directions for
future work. In our view, this work contributes to a bet-
ter understanding of how characteristics of a game influence
the design of appropriate levels, in a mixed-initiative process
that takes advantage of both algorithmic tools and human
designer skills.

7. ACKNOWLEDGMENTS
We would like to thank Dylan Nagel for giving us full access
to Dwarf Quest’s source code, Roland van der Linden for
his guidance in reusing and extending his grammar-based
dungeon generator, and Nick Degens for reading and com-
menting on earlier drafts of this paper.

This research has been carried out in the context of the
RAAK research project ’Automated Game Design’, which is
financially supported by the Stichting Innovatie Associatie
(SIA) in The Netherlands.

8. REFERENCES
[1] S. Bakkes, C. T. Tan, and Y. Pisan. Personalised

gaming: a motivation and overview of literature. In
Proceedings of the 8th Australasian Conference on
Interactive Entertainment: Playing the System,
page 4. ACM, 2012.

[2] M. Cook, S. Colton, and J. Gow. Automating game
design in three dimensions. In Proceedings of the AISB
Symposium on AI and Games, 2014.

[3] M. Cook, S. Colton, and A. Pease. Aesthetic
considerations for automated platformer design. In
AIIDE, 2012.

[4] G. Crammond. The Sentinel. Firebird, 1986.

[5] J. Dormans. Level design as model transformation: A
strategy for automated content generation. In
Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games, page 2.
ACM, 2011.

[6] J. Dormans. Engineering emergence: Applied theory
for game design. PhD thesis, University of
Amsterdam, 2012.

[7] J. Dormans and S. C. J. Bakkes. Generating missions
and spaces for adaptable play experiences. IEEE
Transactions on Computational Intelligence and AI in
Games. Special Issue on Procedural Content
Generation, 3(3):216–228, 2011.

[8] J. Dormans and S. Leijnen. Combinatorial and
exploratory creativity in procedural content
generation. In Proceedings of the 4th International
Workshop on Procedural Content Generation in
Games, 2013.

[9] A. Egges, J. D. Fokker, and M. H. Overmars. Learning
C# by Programming Games. Springer, 2013.

[10] D. Kazemi. Spelunky generator lessons.
http://tinysubversions.com/spelunkyGen.

[11] M. Kerssemakers, J. Tuxen, J. Togelius, and G. N.
Yannakakis. A procedural procedural level generator
generator. In Computational Intelligence and Games
(CIG), 2012 IEEE Conference on, pages 335–341.
IEEE, 2012.

[12] P. Mawhorter and M. Mateas. Procedural level
generation using occupancy-regulated extension. In
2010 IEEE Conference on Computational Intelligence
and Games, Copenhagen, Denmark, 2010. IEEE,
IEEE.

[13] MicroProse. Sid Meier’s Civilization. MicroProse and
Koei, 1991.

[14] Mojang. Minecraft, 2011.

[15] MossMouth. Spelunky, 2013.



[16] B. North. Diablo. Blizzard Entertainment, Ubisoft and
Electronic Arts, 1997.

[17] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes. A
survey on procedural modeling for virtual worlds.
Computer Graphics Forum, 33(6):31–50, 2014. doi:
10.1111/cgf.12276.

[18] R. M. Smelik, T. Tutenel, K. J. de Kraker, and
R. Bidarra. A declarative approach to procedural
modeling of virtual worlds. Computers & Graphics,
35(2):352–363, April 2011.

[19] G. Smith. Understanding procedural content
generation: a design-centric analysis of the role of
PCG in games. In Proceedings of the 32nd annual
ACM conference on Human factors in computing
systems, pages 917–926. ACM, 2014.

[20] G. Smith, J. Whitehead, and M. Mateas. Tanagra:
Reactive planning and constraint solving for
mixed-initiative level design. IEEE Transactions on
Computational Intelligence and AI in Games,
3(3):201–215, September 2011.

[21] J. Togelius, N. Shaker, and M. J. Nelson. Introduction.
In N. Shaker, J. Togelius, and M. J. Nelson, editors,
Procedural Content Generation in Games: A Textbook
and an Overview of Current Research. Springer, 2015.

[22] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content
generation: A taxonomy and survey. Computational
Intelligence and AI in Games, IEEE Transactions on,
3(3):172–186, 2011.

[23] M. Toy, G. Wichman, K. Arnold, and J. Lane. Rogue,
1980.

[24] M. Treanor, B. Blackford, M. Mateas, and I. Bogost.
Game-o-matic: Generating videogames that represent
ideas. In Proceedings of the The third workshop on
Procedural Content Generation in Games, page 11.
ACM, 2012.

[25] R. van der Linden, R. Lopes, and R. Bidarra.
Designing procedurally generated levels. Artificial
Intelligence in the Game Design Process 2: Papers
from the 2013 AIIDE Workshop, pages 41–47, 2013.

[26] R. van der Linden, R. Lopes, and R. Bidarra.
Procedural generation of dungeons. IEEE
Transactions on Computational Intelligence and AI in
Games, 6(1):78–89, mar 2014. doi:
10.1109/TCIAIG.2013.2290371.

[27] R. Van Rozen and J. Dormans. Adapting game
mechanics with micromachinations. In Proceedings of
the 9th International Conference on the Foundations
of Digital Games, 2014. ACM, 2014.

[28] Wild Card Games. Dwarf Quest, 2013.


