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Abstract

Multi-fields are widely used in areas ranging from physical simulations to medical imaging. Illustrative
visualization techniques can help to effectively communicate features of interest found in a given field.
Current techniques for multi-field visualization are mostly focused on showing subsets of local attributes
such as single values or vector directions, e.g., using colors, texture, streamlines or glyphs. Instead, we
present an approach based on highlighting areas with similar characteristics, considering all attributes of
the field.

Our approach is example-based and interactive. A user simply selects a point within the field, upon
which the system automatically derives the characteristic combination of attributes for that point. Our
system then automatically creates a visualization highlighting areas within the field which are similar to
the example point with respect to these characteristics. The visualizations are presented using sparse,
illustrative techniques, using contours and colors to clearly delineate and identify separate areas. Users can
interact with the visualizations in real-time, by moving the example point or, optionally, by changing the
characteristics or adjusting other parameters used to determine similarity.
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1. Introduction

Detection and extraction of features is an impor-
tant step in the process of visualizing any dataset.
Features are patterns of interest within the data.
As interest in and specification of such patterns
vary between applications, features are often seg-
mented from the data using application-specific ap-
proaches.

With this work, our contribution is the follow-
ing: We present a method whereby user interest
in any multi-field dataset can be indicated by sim-
ply pointing somewhere in the dataset. Based on
a real-time analysis of the high-dimensional data
attributes at this example point and a point of con-
trast, the system then determines and illustrates
all similar regions as feature objects. The user can
interactively manipulate existing or add new fea-
ture objects, resulting in illustrations such as shown
in figure 1. This enables an explorative approach
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to the specification and investigation of features in
multi-field datasets.

Our techniques can be used to create an
illustration-by-exploration approach: Rather than
creating a single visualization that shows all fea-
tures, we create sparse, user-guided visualizations
of specific features, where an overview of the en-
tire dataset and the context of features is obtained
through exploration rather than being given in a
single, potentially cluttered image. Illustrative ren-
dering techniques are well-suited to visualize fea-
tures found through such exploration, due to their
sparseness and ease of interpretation.

These techniques can supplement existing visu-
alization and segmentation techniques by offering a
quick and intuitive way to explore a given dataset,
and assist in locating and examining the character-
istics of features in the dataset. This information
can then be used by existing techniques to extract
and / or quantify such features.

In the following, we first discuss work related
to multi-field visualization and our proposed ap-
proach. We then present our interactive explo-
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Figure 1: Illustrative visualization, created using our ap-
proach, of a multi-field representing the flow behind a ta-
pered cylinder, placed vertically on the right side just outside
the field. The field consists of the velocity vector field and its
derivatives. The illustration highlights the alternating vor-
tices characteristic for such flow. The transparent surface
shows the area where flow velocity is altered by the cylinder.

ration approach, followed by a detailed description
of the feature extraction and rendering techniques
involved. We illustrate our approach with several
example visualizations of extended vector and ten-
sor fields. Finally, we present our conclusions and
directions for future work.

The complete implementation of our techniques
and the prototype application have been released
as open source software and are available at
http://multifieldexplorer.googlecode.com/.

2. Related work

Fields are functions that are defined on the spa-
tial domain. Multi-fields or multi-field datasets
simply refer to datasets consisting of two or more
fields on the same spatial domain. This defini-
tion includes data consisting of any combination
of multiple scalar fields, vectors and tensors. For
an extensive overview on the visualization of this
type of data, we refer the reader to the survey by
Fuchs et al. [1]. In the remainder of this section, we
give a compact summary of current work on multi-

field data visualization, grouping and ordering tech-
niques according to their level of data abstraction.

In feature-tracking, features are objects, local be-
haviors or other patterns of interest in a dataset,
whereas in many other fields they are the dimen-
sions of a feature space or components of an image.
In order to resolve this ambiguity, we refer to the
former as feature objects, while the components of
a multi-field are referred to as attributes.

Current techniques for vector field visualization
often focus on showing directions [2]. In tensor vi-
sualization, second order symmetric tensors can be
represented by ellipsoids or super-quadrics [3], or
reduced to their principal directions and visualized
as a vector field. Analogously, many techniques for
multi-scalar visualization are also based on repre-
senting each sample point with a single visual ele-
ment. For example, in multi-scalar volume render-
ing, the transfer function is extended to map from
the multi-dimensional input space to the RGBA
output space [4]. These techniques all attempt to
visualize multi-field data as directly as possible.

Visualization of quantities derived from a field
can often show more about the field than a visu-
alization of only the direct attributes that are part
of the field. For example, the inclusion of image
gradients has been shown to lead to better transfer
functions [4], and Busking et al. [5] visualized de-
formation vector fields by highlighting areas of sig-
nificant change in volumes based on a measure de-
rived from the field’s Jacobian. However, different
derived quantities may be required for different ap-
plications. Van Walsum et al. [6] presented a frame-
work which allowed users to select and visualize ar-
bitrary quantities derived from vector fields. Their
system also allowed users to combine the resulting
feature objects using Boolean set operations. Sim-
ilar compositing techniques were applied to the vi-
sualization of multi-field and time-varying data by
Woodring and Shen [7], although only direct at-
tributes of the fields were used in their work.

A multi-field can also be seen in terms of its fea-
ture space, where each attribute is a dimension.
Henze [8] presented a visualization approach using
multiple views of “linked derived spaces”, which are
essentially projections of this feature space. Kniss
et al. [4] presented a dual-domain interaction ap-
proach for exploring multi-field volume data, where
interactions in the spatial domain are mapped to
a linked view of the feature space. This view can
then be used to manipulate transfer functions (de-
fined on this feature space), which are in turn used
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for direct volume rendering of the volume data in
the spatial domain. This idea was further devel-
oped by linking multiple scatter plots of the fea-
ture space with a direct volume rendering showing
selected subsets of the data [9, 10, 11].

Finally, feature extraction techniques attempt to
reduce complexity in the data by extracting phys-
ically meaningful patterns, hence lifting the re-
sultant visualization to a higher level of abstrac-
tion [12]. This is also the goal of visualization tech-
niques based on topology [13], clustering [14, 15] or
the extraction of physical properties, such as vor-
ticity. Vortex extraction, the most common type
of feature extraction technique for vector fields, is
often based on a combination of physical and math-
ematical criteria [12].

The efficacy of topology techniques on vector and
tensor data is highly dependent on the presence and
configuration of respectively critical and degenerate
points. Results of clustering are often too dense
for illustration. Furthermore, control is limited to
selecting clustering heuristics, which may be non-
intuitive. Both techniques are also computation-
ally intensive, which makes them less suitable for
interactive use. Extraction of physical properties is
highly domain-specific.

Ma proposed using machine learning techniques,
neural networks for example, to extract meaningful
physical feature objects from the multi-field data,
based on user interaction [16]. This is a good at-
tempt towards automatic generation of feature de-
tection criteria, but is difficult to control and not
directly and transparently linked to field attributes.

In this paper, we combine the direct visualization
of arbitrary combinations of field attributes with a
feature space approach and example-based interac-
tion. Rather than visualizing attributes directly,
we introduce the use of local similarity as the basis
for feature selection. We use example-based, user-
adjustable similarity measures computed in feature
space to visualize feature objects consisting of all
points within a dataset that are similar to a user-
defined example. This way, rather than specifying
the characteristics of feature objects directly (e.g.,
extracting an iso-surface of attribute X at value Y ),
the user can simply point at interesting areas in the
data.

In our work, illustration plays an important role
in visually summarizing the data. Illustrative vi-
sualization is often used to give a deliberately un-
balanced view of a complex scene, by emphasizing
objects of interest, de-emphasizing or suppressing

other objects, and showing context only for ori-
entation. Various techniques have been proposed
to integrate such visualizations of focus+context
in a single image, including cut-away views or
importance-driven visualization [17]. One could
also see example-based feature specification as a
flexible and interactive method of specifying an im-
portance field. For our work, however, we take ad-
vantage of the interactivity of our techniques to cre-
ate a strongly selective approach, where the objects
shown are only those selected by the user. Con-
text should be provided either by interactive explo-
ration, the addition of other user-specified objects,
or by integration of our techniques with existing,
possibly domain-specific techniques.

In terms of the example-based specification of
feature objects, our work is related to the stroke-
based transfer function specification of Ropinski et
al., where the user specifies interesting edges by in-
dicating them directly in the rendering by means of
a stroke, resulting in the automatic specification of
a transfer function that emphasizes the visual ap-
pearance of all stroked edges [18]. Our approach is
differentiated by catering for multi-fields and utiliz-
ing the direct calculation of similarity versus indi-
rect application through a transfer function.

3. Interactive exploration

We aim for interactivity, as this enables our vi-
sualization to be used as a tool for interactive ex-
ploration as well as for creating illustrations that
are effective in conveying meaningful feature ob-
jects identified during exploration. Globally, the
work-flow of a user using our system to illustrate a
field is as shown in figure 2:

1. As a preprocessing step, a multi-field is con-
structed from the input field, containing any
number of attributes. For example, a vector
field can be extended by adding derived quan-
tities such as magnitude, divergence or curl.
Adding such attributes allows any feature ob-
jects characterized by these attributes to be
identified and visualized by our system. It also
allows the system to better describe such fea-
ture objects to the user by presenting the defin-
ing characteristics in terms of these attributes.

2. Selection: the user selects a point of interest
within the field, or a pair of points which is
to be compared. The values at the first point
determine the example on which the feature
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Figure 2: The workflow in our interactive illustration system. Defining a feature object consists of selecting an example point
in the field (selection). The values at this point are used to automatically select characteristics of interest (abstraction). These
are then used to generate a similarity measure (generalization), from which the feature objects are extracted (filtering). The
system is interactive, allowing a user to provide feedback and immediately observe the results in the visualization.

object is based. The second point, if given,
determines values that should be outside the
feature object.

3. Abstraction: the system automatically deter-
mines characteristic attributes for the given
point or pair of points and presents these to
the user.

4. Generalization: Based on these characteristics
the system determines an appropriate similar-
ity measure. This measure combined with the
example point defines a similarity field over the
dataset.

5. Filtering: the resulting feature object, consist-
ing of all points in the volume that are similar
to the selected point with respect to the cho-
sen characteristics, is visualized interactively
by thresholding the similarity field.

6. Feedback: moving the selected point of interest
updates the visualization in real-time, allowing
interactive exploration of the data. The user
can also refine the feature object by manip-
ulating the selection of characteristics, or by
selecting from a number of visual styles to add
additional semantics to the illustration.

The process can be repeated to add any num-
ber of additional feature objects to the illustration.
In this way, a user can select multiple feature ob-
jects by using multiple example points, each with
its own selection of characteristics and visual styles,
thereby creating an illustration combining all fea-
ture objects of interest.

Section 4 describes our techniques for example-
based selection of meaningful feature objects.

These objects are visualized interactively using il-
lustrative styles, which are detailed in section 5.

4. Example-based selection of feature ob-
jects

Our illustrative exploration approach is based
on extracting similarity-based feature objects from
the data. These objects are defined as those ar-
eas which are similar to a user-defined point with
respect to a combination of user-defined character-
istics. We use a similarity measure defined on the
points of the multi-field in combination with a pair
of user-selectable thresholds to derive such areas.
By adjusting the thresholds, the user can decide
when points are considered “similar enough” to be
included in the feature object.

Our approach is based on the notion of feature
spaces. A sampling of any multi-field consisting of
N variables can also be interpreted as a set of points
in a feature space of N dimensions. Section 4.1 de-
scribes our definition of similarity in such a feature
space. The methods for creating a compact fea-
ture space in which these similarity measures can
be applied are described in section 4.2. Finally, sec-
tion 4.3 describes how we use user-defined examples
to derive appropriate parameters in order to enable
our interactive exploration approach.

4.1. Similarity

Various similarity metrics for multi-fields or vec-
tor fields have been proposed in literature [19, 20].
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Most of these, however, only compute global sim-
ilarity between whole fields. Furthermore, some
metrics are expensive to compute.

As noted above, we base our similarity metric on
the feature space representation of the multi-field.
Similarity (or rather dissimilarity) is equivalent to
distance within this feature space. We transform
the original feature space using projection and scal-
ing in order to provide user control and example-
based refinement of the similarity measure. To keep
our application simple and interactive, we use the
p-norm to measure distances in this transformed
space:

d(a,b) =

(
N∑
i=0

|ai − bi|p
) 1

p

Here, a and b are feature vectors consisting of
the values of all attributes of the multi-field, rep-
resenting the two points that are being compared,
after applying the feature space transformations de-
scribed below. The parameter p ≥ 1, can be used
to change the type of norm computed. This is gen-
erally set to 2 for the Euclidean norm.

4.1.1. Projection

Not all attributes may be of interest when deter-
mining similarity. In fact, a user may want sim-
ilarity to be invariant with respect to certain at-
tributes. If those attributes directly correspond to
dimensions in the feature space it suffices to sim-
ply omit the respective values from the similarity
computation. However, we reduce the dimension-
ality of the feature space before visualization us-
ing principal component analysis (as described in
the next section). In this case attributes can be
eliminated by projection onto a subspace containing
only the remaining attributes. To achieve this, the
transformation between the original and reduced
feature spaces is stored during preprocessing. The
projection of a feature space point is computed by
transforming the point’s feature vector back to the
original space, setting the values corresponding to
the attributes that are to be ignored to zero and
transforming the result back to the reduced feature
space.

4.1.2. Non-uniform scaling

Furthermore, we enhance the similarity computa-
tion by introducing a bias vector. The bias vector is
a vector in feature space, determined automatically

(a) Normal feature space (b) Biased feature space

Figure 3: Non-uniform scaling of the feature space. The
orange circle represents the thresholded similarity measure,
and the small circles represent the example (yellow) and
other feature vectors. Stretching the feature space makes
the measure more sensitive to changes along the bias vector
(represented by the black arrow) and less sensitive to other
changes.

based on user input (see section 4.3), along which
this space can be stretched before determining sim-
ilarity. The effect is that changes proportional to
the linear combination of attributes specified in the
vector have more influence on the value of the simi-
larity measure than other changes, as illustrated in
figure 3. Stretching is implemented as simple linear
scaling along the bias vector with user-adjustable
scaling factor s. Adjusting the scaling factor allows
the similarity measure to be shifted between neu-
tral (s = 1) or any amount of bias (s > 1). Values
s < 1 are also allowed; the resulting similarity mea-
sure favors similarity in ways uncharacteristic of the
selected example. Such measures may be used to
uncover patterns normally obscured by trends in
the most characteristic attributes for a point.

The scaling operation is made volume-preserving
with respect to the user-selected feature subspace
by pre-scaling the entire space uniformly by factor
su = s−1/(N−1), then scaling along the bias vector
by sn = s/su. Here N is the number of dimen-
sions of the original feature space remaining after
projection. This way, given a uniform distribution
of points in the feature space, feature objects will
include approximately the same number of points
regardless of the value of s. In the case where s ap-
proaches infinity, the similarity measure becomes
equivalent to distance along the bias vector.

4.2. Creating the feature space

Multi-fields can potentially have large numbers of
attributes, which directly affects performance and
memory requirements in an interactive application.
Furthermore, feature space dimensions may be het-
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erogeneous in scale, or contain statistically depen-
dent behavior.

In order for our techniques to find interesting re-
lations, however, it is good to have a large number
of attributes between which such relations may be
found. Additionally, feedback (e.g., on user selec-
tions and bias vectors) is given and projections are
defined in terms of these attributes. This means
a good selection of attributes can help a domain
expert to understand features found in the dataset
in terms of the application domain. For this rea-
son we pre-compute the feature space for a given
multi-field in four steps:

1. Build the feature space from the points in the
original multi-field. Optionally add various
derived quantities as attributes of the field,
such as local derivatives (e.g., gradients) or
application-specific measures relevant to the
user’s interest.

2. Center the feature space on the origin by com-
puting the mean value over the data for each
dimension and subtracting this mean vector
from each point.

3. Scale the centered feature space such that the
variance over each dimension is 1 by dividing
each dimension’s values by their standard de-
viation.

4. Perform principal component analysis (PCA)
on the scaled space, then transform the data
to a basis of eigenvectors in order to reduce
the dimensionality while maintaining as much
data variance as possible.

PCA creates a basis of eigenvectors in order of
how much they account for the variability in the
original data. This means dimensionality can be re-
duced by selecting only a subset of the first N eigen-
vectors. However, if the original feature space is
heterogeneous in nature, the PCA may favor larger
scale dimensions. To alleviate this, we use autoscal-
ing (i.e., division by the standard deviation for each
dimension) to pre-scale the feature space dimen-
sions, such that PCA is based on correlation rather
than covariance. Pre-treatment techniques such as
autoscaling can strongly influence the results of the
PCA. The selection of an appropriate technique is
therefore highly application-dependent. Van den
Berg et al. [21] give a good overview of autoscaling
and alternative techniques, and their effects on the
results of the PCA.

PCA is a commonly used technique in pattern
recognition for the purposes of reduction and decor-

relation of high-dimensional data. While our ex-
periments (see section 6.2) have shown that the re-
sulting feature spaces enable good selections of fea-
tures within the data, alternative approaches exist
as well. Heimann and Meinzer [22] give a good
overview of alternative techniques for dimensional
reduction in the context of statistical shape models,
which could also be adapted to this application.

4.3. Example-based similarity

Feature objects are extracted by thresholding the
similarity field created by comparing each point in
the data with the values at the user-defined exam-
ple location. We use the bias vector to steer the
similarity measure to not only consider the values
at this location, but also their relative proportions.
The bias vector is automatically determined based
on the example vector of values at that location and
a second contrast vector. We provide two options
for selecting the second vector:

• The contrast vector can be set to the mean
feature vector computed over the entire field.
This way, deviations from the mean are empha-
sized as characteristic attributes for any user-
selected point.

• The contrast vector can be sampled at a user-
defined location. For instance, by selecting a
location outside of the objects of interest in
the field, characteristic attributes can be de-
termined based on comparison to background
values. Alternatively, such a selection can be
used to emphasize the differences in character-
istics between different feature objects in the
field by placing example and contrast points in
the objects to be compared.

While the resulting bias vector is normalized be-
fore being used to stretch the feature space, its orig-
inal length is used (together with the stretch factor)
to adjust the user-defined thresholds. This way, a
threshold of 1 will lead to the feature object includ-
ing all points with similarity values up to the dif-
ference between the two points that were selected.

In summary, given an arbitrary point ~p, example
feature vector x (sampled at a user-defined loca-
tion) and contrast feature vector c (which is either
the mean of the data or the feature vector at a sec-
ond user-defined position), the corresponding fea-
ture object is extracted as follows:

1. Sample the multi-field to obtain the feature
vector p corresponding to ~p.
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2. Project feature vectors p, x and c to a sub-
space which eliminates a user-defined subset of
“irrelevant” attributes.

3. Transform the projected feature vectors p′ and
x′ to the stretched space given by the bias vec-
tor v = x − c and a user-defined bias factor
s.

4. Compute the p-norm distance between the re-
sulting vectors p′′ and x′′.

5. Compare the resulting value to the user-
defined thresholds to classify point ~p as being
inside or outside of the feature object.

5. Illustrative visualization

Our objects of interest are areas similar to the
user-defined examples. We visualize each of these
feature objects using an iso-surface of the similar-
ity measure at a user-defined threshold. As we aim
for our visualization to be used in interactive explo-
ration scenarios, we use a sparse visualization style
which is easy to comprehend, but provides enough
detail to help the user gain insight into the data.
Our style is inspired by schematic drawings as used
in biology and engineering, which make heavy use
of contours and simple textures to delineate and
annotate feature objects in an image.

In order to enable interactive exploration and to
avoid the complexities of surface extraction, we ren-
der the iso-surfaces directly using a ray casting ap-
proach. Using current generation GPU hardware,
ray casting approaches can be implemented with
real-time performance.

We use a GPU ray casting algorithm based on
the technique introduced by Krüger and Wester-
mann [23]. Rendering involves using a rasterized
bounding volume to determine ray entry and exit
points. These are then used to trace each ray in par-
allel using a fragment shader, stepping through the
multi-field in fixed intervals. At each point along a
ray, we sample from volumes containing the prepro-
cessed field values to obtain the feature vector for
that point. The similarity measures for all feature
objects are then evaluated as described in section 4
in order to find intersections with the feature ob-
jects’ surfaces. If multiple surface intersections are
found, the positions of these intersections are re-
fined and then sorted. The front-most intersection
determines the surface visualized for that ray.

We use a deferred shading approach [24] in order
to create our illustrative visualization style. Rather

than performing surface shading directly during ray
casting, our ray casting pass outputs surface in-
formation to a G-buffer, including feature object
number, surface normal and the position of the ray-
surface intersection. The deferred shading pass uses
only the information in this buffer to shade the cor-
responding pixels. Furthermore, in order to sup-
port the use of transparent surfaces, we use depth-
peeling [25] in order to apply the deferred shading
enhancements to each of the surfaces encountered
along the rays. The results of each deferred shading
pass are composited to create the final image.

The deferred shading pass is used to create the
illustrative style of our visualizations. The use
of transparent surfaces can help show the interior
structure of feature objects, but multiple nested
transparent surfaces are often hard to interpret. To
alleviate this, object contours are enhanced using
image-based detection of silhouettes, surface inter-
sections and sharp edges. This enables the viewer
to easily distinguish the shapes of feature objects
even if transparent surfaces are used. Fully trans-
parent surfaces (showing only contours) can be used
as well, and may be helpful for adding contextual
information to a visualization.

By default, simple colors are used to identify the
feature objects in the image. Additionally, users
can select from a number of screen-space texture
patterns to be overlaid on the feature object sur-
faces. These textures can be used as a form of anno-
tation, for example, a pattern consisting of “plus”
glyphs can be used to indicate expansion or growth,
while “minus” glyphs can indicate decreases in local
volume.

Furthermore, we apply screen-space ambient oc-
clusion (SSAO) to simulate global illumination
(Ritschel et al. give a good overview of related
work in this area [26]). It has been argued [27]
that correct global illumination improves percep-
tion of surface shape and depth in visualizations,
and helps the user better understand the 3D posi-
tions of feature objects relative to each other. As it
is straight-forward to integrate existing SSAO tech-
niques in a deferred shading pipeline, their descrip-
tion falls outside the scope of this paper.

6. Results

We implemented our techniques in C++, using
OpenGL and GLSL for all GPU-based algorithms.
A user interface was created (see figure 4) which, in
addition to our visualization of the feature objects,
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Figure 4: The prototype application visualizing a synthetic
dataset in real-time (64×64×64 points). The interface con-
sists of our visualization (top left), a slice viewer for selecting
example points (top right), a list of all current feature objects
(bottom left), colored rectangles representing the values in
the contrast vector, the values at the current point and the
resulting bias vector (middle) and a set of sliders for manip-
ulating the thresholds and bias factor for the current feature
object. In this case, two feature objects have been defined
with different example points.

includes several controls to manipulate the param-
eters of each feature object.

A 2D slice view of the field allows users to specify
example points within the field. The example po-
sition is updated interactively by simply hovering
over the slice viewer, allowing for easy exploration
of the field. The values for the field’s attributes at
the selected point are visualized using a set of col-
ored rectangles, where values are mapped to colors
relative to the mean value over the field. In case
the field has been reduced in dimensionality (such
as described in section 4.2), the stored transforma-
tion is used to convert values back to the original
feature space before visualization. The normalized
bias vector resulting from the user’s selection is vi-
sualized in a similar way. Clicking the individual
rectangles in this view allows the user to further
manipulate the definition of similarity by selecting
the corresponding attributes to be ignored for this
feature object’s similarity measure.

6.1. Performance

As our techniques are aimed at interactive explo-
ration, we measured their performance using sev-

eral datasets. Using a current generation GPU
(NVIDIA GeForce GTX 280), performance is gen-
erally suitable for interactive exploration. As our
techniques are based on ray casting, performance
is strongly dependent on the resolution of the vec-
tor field under consideration. Using a dataset of
512 × 512 × 80 (figure 6(b)), average frame rates
were around 12 frames per second when rendering
at 600× 600 resolution. Image resolution does not
influence performance as strongly, as modern GPUs
are highly parallelized. Performance and data sizes
can likely be improved by integrating existing opti-
mization and large-data-handling techniques from
volume rendering literature.

As discussed in section 5, we used depth peeling
to enable transparent surfaces to be used. This adds
a separate shading pass for each layer in the scene,
as well as requiring ray casting to proceed beyond
the first surface hit, with both leading to decreased
performance. With up to 6 layers of transparent
feature object surfaces, performance of the same
dataset was around 7 fps, which is still suitable for
interactive use. If no transparent surfaces are used,
depth peeling is not required.

Our current implementation is limited to data
sets which fit in GPU memory. This means both
the dataset size in voxels as well as the number
of attributes of the (PCA-reduced) multi-fields are
limited. However, it would be straightforward to
adapt current work on volume rendering for large
datasets (e.g., Kniss et al. [28]) to our approach,
in order to enable larger volumes to be explored
interactively. Similarly, our implementation of the
pre-processing stage currently uses an in-core ap-
proach. Processing of the largest dataset used in
the paper took around 20 minutes and up to 7 GB
of RAM on a recent machine. However, unless the
user needs to refine the selection of attributes, this
only needs to be done once per dataset.

6.2. Examples

We visualized several example datasets in order
to demonstrate our approach. These datasets from
different application domains contain well-known
features, which are typically extracted and shown
using application-specific techniques. This section
shows how our techniques can be used to quickly
find and visualize such features in an application-
independent manner, thereby demonstrating the
flexibility of our approach and validating its useful-
ness as a first step in exploring multi-field datasets.
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Our first example is a computational fluid dy-
namics dataset representing the flow behind a ta-
pered cylinder. The full dataset is time-dependent
and can be obtained online from NASA. As our
techniques do not yet handle time-dependent data,
we used a single frame from the dataset. Addi-
tionally, we cropped and re-sampled the (originally
64 × 64 × 32 curvilinear) dataset to a regular grid
of 128× 128× 204 points. We extended this vector
field dataset into a multi-field during pre-processing
by adding a simple set of derived attributes: In ad-
dition to the vector data, we added the normalized
vector, the vector magnitude, and several vector
calculus derivatives of the field. The derivatives
were all computed from the Jacobian of the field:
the trace of the Jacobian matrix is the divergence of
the field, while its determinant indicates changes in
volume. We also included curl, a vector-valued at-
tribute describing local rotation. The Jacobian can
be computed at a user-defined scale, which enables
filtering of small-scale details such as noise.

At certain flow speeds, such as the one used in the
simulation which created the dataset, a pattern of
vortices forms behind the cylinder. These vortices
alternate between clockwise and counter-clockwise
directions. We used our techniques to illustrate this
flow behavior.

By using a single feature object and simply mov-
ing the example point in the area behind the cylin-
der, two opposing patterns can be located. Fig-
ure 5(a) shows one of these feature objects. The
visualization of the example feature vector for this
object, shown below the figure, indicates that the
directional components of the field (the first six at-
tributes) are highly characteristic of the selected
example point. Masking out the non-directional at-
tributes of the field and increasing the bias factor
to further emphasize the characteristic attributes
reveals more of the pattern. The visualization of
the example vector also shows that directions in
the second feature object, shown in figure 5(b) are
opposite to the first.

As the yellow and blue areas indicate regions
with directions opposite to each other, we can as-
sume the vortices exist between these areas. To
highlight these, we use a pair of feature objects
with the similarity measure made invariant to di-
rection, and example points set between the yellow
and blue feature objects. Figure 5(c) shows how
these new feature objects (pink and green) cap-
ture a similar recurring pattern between the yel-
low and blue objects. The visualization of the ex-

ample vector confirms that these are the vortices,
as curl (represented by the rightmost three rect-
angles) is the characteristic attribute for the new
objects. Again, values for these attributes are op-
posite to each other, indicating rotation in oppo-
site directions. Figure 5(d) shows the final visual-
ization of the extracted feature objects, revealing
the 3D structure of these vortex patterns. Figure 1
shows another visualization of these vortices, with
an added feature object representing the area where
the flow velocity is altered by the presence of the
cylinder.

Figure 6 shows visualizations of a vector field re-
sulting from the non-rigid registration of two MRI
scans of a human knee. The use of such deformation
fields is common in medical image analysis. Busk-
ing et al. [5] created direct visualizations of such
fields by visualizing a growth measure derived from
the Jacobian determinant of the field (figure 6(a)).
A similarity measure based on a subspace contain-
ing only this growth attribute can capture the same
feature objects (figure 6(b)). Furthermore, by ex-
ploring the data using feature objects with different
feature-subspaces, areas were found with low mag-
nitude but a significant increase in volume. These
were highlighted in green using a feature object
based on both magnitude and growth.

Missing from our current implementation is a vi-
sualization of relevant context information. How-
ever, the techniques could easily be combined with
a visualization of contours such as used in the ear-
lier work mentioned above (shown in green in fig-
ure 6(a)). Context information could also be visu-
alized with our feature objects if the relevant data
is included in the multi-field.

Figure 7 shows a visualization of a dataset used
for hip joint replacement planning. This dataset
consists of two tensor fields representing simulated
stress and strain resulting from pressure being ap-
plied to the implant and femur bone. Dick et al. [29]
recently presented techniques for visualizing such
fields interactively with streamlines following the
first principal component of the stress tensor, shown
in figure 7(a). Figure 7(b) shows similar structures
highlighted using our techniques, applied directly to
the tensor field. The visualization clearly shows the
opposing tension (yellow) and compression (blue)
parts of the implant (shown in purple and green in
figure 7(a)), as well as the similarly opposing effects
on the sides of the bone itself (shown in pink and
green).
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(a) Single feature object (b) Opposing flow directions

(c) Vortices (d) 3D visualization

Figure 5: Using our techniques to explore the flow behind a tapered cylinder. Slice views show steps in the exploration process.
The crosshairs indicate example positions, the colored rectangles below each image visualize (from top to bottom) the contrast
and example feature vectors as well as the bias vector for the corresponding feature object.
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(a) Direct visualization of deformation [5]. (b) Similarity-based feature objects.

Figure 6: Visualizations of a deformation field (512×512×80 points) representing changes between two MRI scans of a human
knee.

(a) Stress tensor streamlines [29]. (b) Similarity-based feature objects.

Figure 7: Visualizations of a dataset (85 × 79 × 101 points) consisting of simulated stress and strain tensors in a human femur
with a hip joint replacement implant.

11



7. Conclusions

Our contribution in this paper is a new method
for the interactive visualization and exploration of
multi-fields. Our technique is based on the direct
visualization of similarity, defined as distance in a
feature space, where the similarity measure is au-
tomatically derived from user-specified examples.

While our prototype implementation offered the
concepts presented as the only option for exploring
a dataset, we expect similarity-based techniques for
exploration and visualization to be integrated with
traditional direct visualization of field attributes.
This way, traditional visualizations can guide a
user in locating points of interest. Our techniques
then automatically highlight similar areas within
the dataset, the details of which the user can further
explore using different visualization techniques.

Our techniques lead to an intuitive approach to
interactive exploration, as little interaction (only
point selection) is required in order to explore a
given field. Furthermore, the concepts and tech-
niques presented are generic, and can be applied to
the visualization of any type of multi-field.

In this work we have presented a proof of concept
for a new idea, supported by several application
examples demonstrating the utility of the proposed
method. When these concepts have been integrated
into a real visualization system for such an appli-
cation, that would present a good opportunity to
perform user-oriented evaluation.

7.1. Future work

While our techniques can be applied to any type
of multi-field, extension to time-varying data is
more involved. Feature tracking techniques could
be applied to track user-defined features over time.
New visual representations should be developed to
visualize the evolution over time of any detected
feature objects. Stompel et al. [30] presented var-
ious illustrative techniques for enhancing the visu-
alization of features in multi-field and time-varying
datasets, which could be applied to our feature ob-
jects for this purpose.

The techniques proposed could be applied to seg-
mentation of features from a given dataset. Boolean
combinations of feature objects, as used by van
Walsum et al. [6] and Woodring and Shen [7], could
be used to specify areas to segment. More advanced
filtering techniques could also be added, including
the detection of connected components to distin-
guish between separate parts of the same feature

object. Alternative similarity metrics should also
be investigated. A variety of metrics in combina-
tion with a system for combining feature objects
would create a powerful system for segmentation
by example.

The definition of examples could also be ex-
tended. For example, tracing techniques like
streamlines are frequently used to visualize vector
fields, while brushing techniques are frequently used
to make selections in other example-based systems.
Such selections consisting of multiple points could
be used as examples in our approach by, e.g., aver-
aging attributes over the set, or by considering sim-
ilarity of points as compared to the example point
closest to the point being evaluated. This way,
our approach can be integrated with application-
specific techniques for feature selection. For in-
stance, in a medical brain dataset, areas with sim-
ilar characteristics could be selected around fibers
traced from DTI data.

Finally, we plan to integrate our approach with
other visualization techniques. In addition to high-
lighting areas using our current rendering tech-
niques, similarity-based feature objects could also
be used to indicate importance or user interest in
an importance-based visualization approach.
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