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Abstract

PurposeSegmentation of rheumatoid joints from CT images is a complicated task.
The pathological state of the joint results in a non-uniformdensity of the bone tis-
sue, with holes and irregularities complicating the segmentation process. For the
specific case of the shoulder joint, existing segmentation techniques often fail and
lead to poor results. This paper describes a novel method forthe segmentation of
these joints.
MethodsGiven a rough surface model of the shoulder, a loop that encircles the
joint is extracted by calculating the minimum curvature of the surface model. The
intersection points of this loop with the separate CT-slicesare connected by means
of a path search algorithm. Inaccurate sections are corrected by iteratively apply-
ing a Hough transform to the segmentation result.
ResultsAs a qualitative measure we calculated the Dice coefficient and Hausdorff
distances of the automatic segmentations and expert manualsegmentations of CT-
scans of ten severely deteriorated shoulder joints. For thehumerus and scapula the
median Dice coefficient was 98.9% with an interquartile range (IQR) of 95.8% -
99.4% and 98.5% (IQR 98.3% - 99.2%) respectively. The median Hausdorff dis-
tances were 3.06 mm (IQR 2.30 mm - 4.14 mm) and 3.92 mm (IQR 1.96mm -
5.92 mm) respectively.
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ConclusionThe routine satisfies the criterion of our particular application to ac-
curately segment the shoulder joint in under two minutes. Weconclude that com-
bining surface curvature, limited user interaction and iterative refinement via a
Hough transform forms a satisfactory approach for the segmentation of severely
damaged arthritic shoulder joints.

Key words: Segmentation, Curvature, Hough Transform, Rheumatoid Joints,
Glenohumeral Joint

1. Introduction

In orthopaedic surgery, CT-scans are routinely used to diagnose and plan joint
replacement surgery for severe cases of osteoarthritis andrheumatoid arthritis.
These diseases are the two most common forms of arthritis andare characterised
by heavy deterioration of the cartilage and bone surface of joints. The CT-scans
yield anatomical information that is hard to obtain throughother means. A wide
variety of orthopaedic applications require CT-scans to provide pre- and intra-
operative assistance to the surgeon [12, 7, 21].

Segmentation of the data enables the surgeon to distinguishthe geometry of
the different bones of the joint. This allows for fast assessment of the state of the
pathological joint and provides means to set up a pre-operative plan for surgery.
One of the target applications for our segmentation routineutilizes the bone ge-
ometry for biomechanical modelling of the shoulder. The challenging aspect of
this segmentation problem is that bone tissues need to be separated, rather than
just classified.

For arthritic joints the segmentation process is typicallycomplicated by large
variations in bone density and irregularities of the bone surface (see Figure 1 for
an example slice of such a dataset). The varying bone densitycomplicates inter-
pretation of the data. In addition, the joint often appears to be fused in the CT data
due to the significantly decreased joint space. As the cartilage of pathological
joints wears off, the joint space can become virtually untraceable. This is fur-
ther complicated by the limited resolution of the CT scanningequipment. Manual
slice-by-slice segmentation is labor intensive and may take up to two hours per
dataset.

Existing segmentation techniques, including a high-levelintegration of level-
sets and watershed segmentation, have limited success withthis specific segmen-
tation task, as discussed by Botha [2]. Although these techniques lead to accurate
segmentation results, they require adaptation of numerousparameters. This is a
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Figure 1: A single slice of a CT-dataset used in this study. The image shows the right and left
shoulder in the transverse plane (i.e. view from feet to head). As can be seen, the left shoulder joint
(on the right side of the image) is heavily deteriorated due to rheumatoid arthritis, complicating
segmentation of this shoulder.
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time-consuming process and therefore these techniques arenot suitable for clini-
cal protocols.

One of the promising techniques for separating skeletal structures is presented
by Kang et al. [11]. The technique consists of 3D region growing with locally
adaptive thresholds, followed by a mixture of 3D and 2D morphological oper-
ations to close holes in the segmentation. The resulting segmentation is then
smoothed by adjusting its containing iso-surface. The technique is applied to
the hip, the knee and the skull. The authors state that a site-specific approach is
required for separating different bony structures at joints beforetheir techniques
can be applied and that this separation is site specific. In our opinion, the determi-
nation of this site-specific separation method is one of the most challenging tasks
in the case of the shoulder due to its deformed shape.

In the work of Zoroofi et al. [29] rheumatoid hip joints are segmented by
making use of histogram-based thresholding. A number of landmarks are chosen
relative to the convex hull. These points are used to construct an initial ellipsoid
around the femoral head. This ellipsoid is used to derive an initial estimate of
the joint space, which is subsequently refined on a Hessian-filtered version of the
data. Although their method yields accurate segmentation results for less arthritic
joints, the joint spaces of severely arthritic and extremely arthritic hips were only
correctly segmented 30% and 12% respectively.

Branzan-Albu et al. [4] and Tremblay et al. [24] describe a technique for seg-
menting shoulders from T1-weighted MRI images of healthy shoulders. Although
this work is based on MRI data rather than CT data, it is relevantbecause it specif-
ically targets the shoulder. A separate 2D segmentation is performed on each 2D
slice. This segmentation is based on Wiener filtering, Sobeledge detection and
region growing. Morphological techniques are used to successfully reconstruct a
smooth 3D segmentation from the 2D segmentations. However,this work focuses
on healthy subjects with large acromiohumeral and glenohumeral distances. Their
technique does not address the problems of decreased joint space and bone decal-
cification. It does however indicate the promise of MRI-basedtechniques for the
segmentation of the shoulder skeleton.

Model-based segmentation techniques can also lead to a successful solution
for the segmentation of anatomical shapes [22, 18, 28]. In orthopaedics, statistical
shape models for hips and knees have been investigated [20, 10]. However, the
great variability in healthy shoulder bone anatomy [19, 27], together with the
numerous small and unpredictable variations due to the rheumatoid state of the
shoulders that we wish to segment, greatly complicate the successful application
of shape models.
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We were inspired by curvature-based segmentation techniques that operate
directly on 3-D surface meshes. For example, by adapting themorphological
watershed to segment regions of similar surface curvature on 3-D meshes, object
surfaces can be decomposed into meaningful regions [15, 17]. This generally
works well for the segmentation of solid objects that give a sharp contour in the
image data. However, for organic structures watershed techniques lead to less
satisfactory results.

To the best of our knowledge no algorithm exists that can be used for the seg-
mentation of severely deteriorated shoulder joints from CT data. The discussed
techniques require extensive adaptation to be applicable to this difficult segmenta-
tion problem. Usage of these adapted techniques would require image processing
expertise and therefore they cannot be included in day-to-day clinical workflow.

In this paper we describe a new technique that exploits the spherical shape
of the humeral head to automatically segment the rheumatoidjoints. The center
of rotation of the glenohumeral joint can be determined by applying a Hough
transform directly on the CT data, as described in [25]. In thepathological case,
this spherical shape may have partially disappeared and often appears to be fused
with the shoulder blade. However, the remaining curved shapes give an indication
of where the joint gap is located. Our technique utilises this knowledge and, with
a minimum of user interaction, segments highly pathological glenohumeral joints
in less than two minutes.

The major contribution of our work is that we combine curvature information
of surface data with path searching techniques on volumetric data. By combining
these techniques, we retain fine details of the volumetric data, enabling this fast
routine to result in accurate bone models. Concepts traditionally from visualisa-
tion are combined with concepts traditionally from image processing in order to
solve a challenging segmentation problem. Expert orthopaedic surgeons stated
that the segmentation process is sufficiently accurate and fast to be included in
a clinical protocol, enabling a wide variety of diagnosis and surgical planning
purposes.

The remainder of this paper is structured as follows: Section 2 presents the
details of our new segmentation technique and section 3 documents the results of
an evaluation we performed on ten pathological shoulder CT datasets. In Section 4
we present our conclusions and plans for future work.
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Figure 2: Overview of the stages of our segmentation method.(a) The input data. (b) The data after
preprocessing, described in Section 2.1. (c) The joint separation loop, described in Section 2.2.
(d) Slice-by-slice separation contours (Section 2.3). (e)The Hough feature volume (Section 2.4).
(f) The final segmentation result, obtained after iteratively applying the slice-by-slice separation
contours and the Hough feature volume (Section 2.5).
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2. Method Description

The severity of rheumatoid arthritis can be represented by the widely accepted
Larsen-score [13]. It is determined using radiographs and indicates how much
bone damage has been done by the disease. A high Larsen score generally means
that a corresponding CT-scan will be difficult to segment. We have developed our
techniques for segmentation of the highest severity level (level 5) of this score.
This level of the Larsen-score implies that the joint has deformed from its normal
anatomical shape and the density of the bones is not uniformly distributed. In
addition, holes are scattered over the articular surface ofthe bone. For many
of the slices the joint space is not visible. These factors lead to a challenging
segmentation problem.

Our segmentation technique consists of four stages (see Figure 2) of which the
first stage is a preprocessing stage to counteract variability in the scan parameters
and to eleviate noise. During the second stage a contour is determined that en-
circles the glenohumeral joint. The third stage connects the pairwise intersection
points of this loop and the individual CT-slices. This temporary segmentation is
refined during the fourth stage by creating a surface model ofthe connecting lines
and applying a Hough transform to this model to determine howplausable the dif-
ferent parts of the segmentation are. The Hough transform allows us to improve
the segmentation results at noisy parts of the CT-data, difficult to interpret due to
the rheumatoid state of the joints.

2.1. Preprocessing

Clinical CT data is most often anisotropically sampled with the slice thick-
ness being greater than the pixel size. To facilitate later processing steps, the data
is isotropically resampled with trilinear interpolation,after which it is smoothed
with a Gaussian filter with a standard deviation of 1.5 and radius of 2 voxels to
counter noise. The window size is chosen so that the joint space is preserved after
smoothing. The smoothed volume is used for the second stage of our approach
that requires a volume with larger scale features. The unsmoothed isotropic vol-
ume that is used for the actual slice-by-slice segmentationshould contain all de-
tails of the original volume. To enhance the edges of the volume, it is sharpened
with the following voxel-wise operations: 1) The volume andits gradient magni-
tude are summed; 2) The gradient magnitude of this sum is subtracted from the
volume.

The Hounsfield Scale is defined such that distilled water results in a Hounsfield
Unit (HU) of 0, whereas air at Standard Temperature and Pressure results in a HU
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Figure 3: Extraction of the joint separation loop. (a) First, the minimum curvature of the rough
surface model is calculated. Areas with negative minimum curvature are colored green. (b) The
user selects a green part of the surface model where the glenohumeral joint is located and this
initiates a path searching algorithm. (c) The path seeking algorithm uses a cost function to encircle
the glenohumeral joint and return this edge loop as output.

of -1000. With these standards cortical bone has a HU of 400 and rheumatoid
bone has a HU of 200. Surrounding muscle tissues have a HU of 50. As a result
of this, the gradient magnitude of the pathological articular surface varies between
0 and 160.

2.2. Joint Separation Loop

We define the joint separation loop as the contour that encircles the fused
humerus and scapula, running along the valley, an elongatedsurface depression,
where the bones meet. The joint separation loop will be used in later stages to de-
rive a surface that separates the humerus and scapula. In this section we document
the determination of the joint separation loop. Figure 3 gives an overview of this
stage.

To initiate this stage, the smoothed volume is converted to acoarse surface
model of the bones using the Marching Cubes algorithm [14]. Although healthy
bone has a HU of approximately 400, experiments showed that athreshold value
of 100 captures most of the bone geometry when it is in a pathological state.

Due to joint space narrowing the result is a single surface model that represents
a fused scapula (i.e. shoulder blade) and humerus (i.e. upper arm). The different
shapes of these bones result in a clearly visible valley between the scapula and
the humerus that can be extracted by finding an edge loop that runs along vertices
where the minimum curvature has a great magnitude.

In order to determine the required surface curvature, basedon our triangular
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mesh, we have used the technique described by Page et al. [16]. Their method
determines the surface curvature at each vertex of a mesh as follows: First all trian-
gles in a neighbourhood of configurable size around the vertex are extracted. Then
the normals of these triangles are combined with an inverse distance weighted av-
eraging to determine the normal at the vertex. Finally this central normal and the
positions of the vertices of the surrounding triangles are used to derive a curvature
tensor, of which the Eigen-analysis yields the principal curvatures at the central
vertex.

To extract the joint separation loop, the user selects any part of the gleno-
humeral joint. The vertex closest to the point selected by the user acts as the seed
for a surface constrained region growing method. The seed isthe initial region.
Neighbouring vertices, i.e. nodes, are iteratively added to the region until the joint
is completely encircled.

At each iteration, a cost function is evaluated for every node neighbouring the
current region:

CL =
N

∑
k=1

||xk−xk−1||× (1+ ||α||) (1)

The cost function is a modification of Dijkstra’s shortest path algorithm which
minimizes the length of a path between two nodes [8]. Parameter x refers to the
position of a node. Parameterα prevents sharp inflections in the different branches
and is described below.

Because the glenohumeral joint is a ball and socket joint, we can safely state
that the joint separation loop will be located roughly in a single plane. To deter-
mine whether the direction of a growing tip of the path deviates from the direction
of its predecessors, we evaluate the angle between the vector perpendicular to
the front half of its preceding segments and the vector perpendicular to all of its
preceding segments. Figure 4 illustrates how this angleα is determined.

Because we are interested in the joint separation loop, the paths should specifi-
cally connect nodes that have a negative minimum curvature.Therefore, when the
minimum curvature of a particular path is positive for threeconsecutive steps, it is
assumed the path has left the joint gap. The path is then discontinued. The num-
ber of three was chosen so that occasional bumps in the surface do not restrain the
algorithm from finding a solution, while paths do not continue to expand outside
of the joint gap.

The expectation is that a path evolves in two directions froma starting point
and will eventually encircle the joint. In other words, the two tips of the path
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Figure 4: Parameterα of equation 1. The angle in radians is calculated between thevector
perpendicular to the front half of the preceding segments (green) and the vector perpendicular to all
of the preceding segments (green plus purple). The vectors~w1 and~w2 are directed perpendicular
to ~v1, ~u1 and~v2, ~u2 respectively. If the path takes sharp turns, the value ofα will increase, thus
increasing the total cost of the path. This prevents sharp inflections.
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should meet each other. At each iteration, we check whether anewly added node
neighbours any other part of the path. If so, this could indicate a successful encir-
clement. Two further conditions have to be satisfied:

1. The two tips have to run in opposite directions when they meet. This is the
case if the dot product of their respective directions is negative.

2. The total path has to form a closed loop. This is the case if the accumulated
path normal is close to 0. The accumulated path normal is defined as the
sum of all surface normals crossed by the path, each scaled bythe inverse
of the sum of the edges before and after the vertex that it is defined on.

When the algorithm terminates, the result is a closed loop that encircles the
glenohumeral joint. We refer to this loop as the joint separation loop.

2.3. Slice-by-slice Separation Contour
In this stage the joint separation loop is used to derive, foreach slice of the

unsmoothed isotropic volume (see Section 2.1 Preprocessing), a 2-D contour sep-
arating humerus and scapula. Together, these contours willform a surface that
separates the humerus and scapula in 3-D. On each slice, the two intersection
points of the joint separation loop with that slice serve as the end-points of the
2-D separation contour.

In the case of a healthy joint, the humerus and scapula would be separated by
a region of low intensity voxels. In our case, the more dense outer layers of the
humerus and scapula are pressed together, resulting in a transition region of more
or less consistent, but not necessarily low, density. The 2-D separation contour
attempts to connect its endpoints whilst remaining within this transition region
and crossing pixels of similar values to the values of the endpoints.

To connect a pair of endpoints a path seeking algorithm is used. The cost
function attempts to minimise the variation between consecutive pixels in the path.
In our data, bone has a HU of at least 100, while soft tissue surrounding the bone
has a range somewhere around 0 HU. To capture this variation,we determine the
absolute difference between the HU of a pixel and the HU of itspredecessing
pixel, divided by 100 and clipped to [0.0, 1.0]. These last two steps are required
to control the influence of the variation within the cost function, relative to the
additional parameter that is introduced in Section 2.5.

The cost function is defined as:

CH =
N

∑
k=1

min(1,
||Hk−Hk−1||

100
) (2)
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Figure 5: Surface model of the stacked 2-D separation contours. Highlighted areas indicate a high
confidence valueγ, further explained in Section 2.4.

whereH is the HU of a pixel. From both points a path evolves that minimizes
the cost function. When the two paths find each other, the path seeking algorithm
terminates and reinitializes for the point pair of the next slice.

It is highly unlikely that the segmentation is correct afterthe initial pass, be-
cause the pathological state of the shoulder allows the paths to run through cortical
bone, the thin outer layer of bone that normally has a high density and strength.
However, even an erroneous segmentation provides a useful basis for the subse-
quent refinement stage.

2.4. Hough Feature Volume

In this stage the 2-D separation contours are used to derive afeature volume,
based on the Hough-transform, that will be used in the subsequent stage to extract
a surface that accurately separates the humerus and the scapula.

An encapsulating surface is constructed of the rasterised separation contours
(see Figure 5). The surface is Laplacian smoothed with 20 iterations. This method
yields suitable surface normals for further analysis. In spite of this, it would be
interesting to investigate alternative volume-preserving smoothing methods in the
future, such as those proposed by Taubin [23] and Vollmer et al.[26].

We apply a Hough transform to the smoothed surface [9]. For each point on
the smoothed surface we follow its extended normal through an empty volume,
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rasterizing it using Bresenham’s algorithm [5]. The result is a volume where each
voxel contains a scalar equal to the number of times that an extended surface
normal of the smoothed surface has intersected that particular voxel. Due to the
sphericity of the humeral head and hence the smoothed surface, the area under the
center of the head contains consistently higher values.

Again, for each point on the smoothed surface we follow its extended normal
through the Hough volume and determine the position of the voxel that contains
the highest number of intersections. This position is referred to as the point origin
of the surface point that it corresponds with. The confidencevalueγ of a surface
point is defined as the ratio between the Hough value at its point origin and the
maximal value of the Hough volume. In other words, if a point origin is located at
a globally high Hough value, it is likely that the surface point is located within the
joint space and therefore we assign a high confidence. For each smoothed surface
point, the point origin, the vector to the point origin and the confidence are stored.

The smoothed surface is voxelized using 3-D splatting: For each surface point,
a Gaussian kernel (standard deviation 1.5, radius 5 voxels), weighted by the con-
fidenceγ for the point, is centered on the closest voxel position for that point.
The point’s stored information is additively spread to surrounding voxels via the
confidence weighted kernel. After all surface points have been traversed, the vox-
elisation is normalized with the per-voxel accumulated confidence. The per-voxel
accumulated confidence is separately normalised by the maximum per-voxel ac-
cumulated confidence.

For every voxel an agreement valueλ is determined, defined as the extent to
which the voxel location is in agreement with the Hough surface determined by
the neighbouring voxels (see Figure 6).

2.5. Iterative Refinement

In this step, the slice-by-slice separation contours are iteratively recalculated
in accordance with the Hough feature volume. The resulting slice-by-slice sepa-
ration contours form the final segmentation.

As shown in Figure 2, after their initial execution, stages 2.2 Joint Separation
Loop and 2.3 Slice-by-slice Separation Contour are repeateduntil a sufficiently
accurate set of separation contours are produced. With eachiteration, new con-
tours are calculated based on the Hough feature volume of theprevious iteration,
and based on these a new Hough feature volume is derived. The cost functionCT ,
shown in equation 3 and used in all repeated iterations is a modified version of
the cost functionCH used in the initial iteration. WhereasCH takes into account
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Figure 6: (a) The Hough volume is determined by applying a Hough transform to the surface
formed by the slice-by-slice separation contours. (b) For each point on this surface a point origin
O is determined, together with a vector~v pointing to this point. (c) Confidenceγ is a fraction of
the Hough value of the surface point’s point origin, relative to the maximum value in the Hough
volume. The values ofO,~v andγ are 3D-splatted across the surface using Gaussian kernels.For
all voxels we determine the distance to their 3D-splatted point origins. (d) The agreementλ is
the extent to which this distance and the length of the 3D-splatted vector~v correspond with one
another.
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Figure 7: Three iterations of the segmentation algorithm. The color mapping equals that of Figure
5. With each iteration, the smoothly curved surfaces influence the cost-function of neighbouring
areas by evaluating whether a separation contour is in agreement with nearby parts of the Hough
surface.

only the variations in volume intensity along the contour,CT takes into account
the agreement valueλ described in Section 2.4 as well.

CT =
N

∑
k=1

γk×λk +(1− γk)×min(1,
||Hk−Hk−1||

100
) (3)

More specifically, if confidenceγ is low, i.e. a point is not close to the Hough
surface, its cost is primarily determined by its intensity variation. However, if
confidenceγ is high, i.e. the point is close to the Hough surface, the agreementλ
of a point contributes more heavily to the cost: High agreement leads to low cost
and vice versa. With this, we ensure that contours run through surface points that
are located close to the Hough surface and are in agreement with their neighbours
as to the location of that surface.

The algorithm is iterated until convergence. The criterionfor this is that two
consecutive steps produce the same segmentation result. Inspection showed that
for most of the datasets four iterations of the algorithm aresufficient for conver-
gence. After the last iteration the joint separation lines are used to separate the
two bones and create two distinct volume masks.

2.6. Evaluation

We have evaluated our technique on ten shoulder CT-datasets.The datasets
we used for testing were acquired from the hospital PACS and were performed
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Dataset X-Ray Tube Current Exposure Time Spatial Resolution
1 120 1000 0.900× 0.900× 1.000
2 160 500 0.900× 0.900× 1.000
3 160 600 0.858× 0.858× 1.000
4 339 500 0.970× 0.970× 1.000
5 500 500 0.488× 0.488× 1.000
6 339 500 0.970× 0.970× 1.000
7 376 500 0.885× 0.885× 2.000
8 70 500 0.412× 0.412× 1.000
9 410 500 0.934× 0.934× 2.000
10 158 500 0.919× 0.919× 1.000

Table 1: Scan parameters of the evaluation scans.

over a period as part of the standard treatment workflow. As such, CT parameters
vary (see Table 1). All shoulders were diagnosed by an orthopaedic surgeon and
rated as the highest level (level 5) of rheumatoid arthritisusing the Larsen-score.

3. Results

To determine the accuracy of the algorithm, we compared the resulting seg-
mented voxel masks with voxel masks that were obtained with manual segmen-
tation. The voxel masks consisted of separate humeral (upper-arm bone) and
scapular (shoulder blade) volumes. Manual segmentation was performed by an
expert orthopaedic surgeon. We extracted a volume of interest which contained
the glenohumeral joint plus an additional 10% of its size in all directions.

For quantative evaluation we calculated the Dice coefficient between all man-
ual segmentations and the segmentations derived by our technique. The Dice
coefficientPvo, expressed as a percentage for convenience, is defined as follows:

Pvo =
2×|S∩R|
|S|+ |R|

×100% (4)

whereS andR refer to the two segmented volumes that are being compared. A
voxel-perfect segmentation results in a Dice coefficient of100%.

Table 2 shows the Dice coefficient for all datasets for both the scapula and
the humerus. For the humerus, the median Dice coefficent was 98.9% with an
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Humerus
Dataset Dice coefficient [%] Hausdorff distance [mm]
1 98.88 1.84
2 98.59 2.45
3 98.99 3.17
4 99.13 2.45
5 94.28 5.59
6 94.8 3.04
7 93.93 5.55
8 99.58 3.07
9 99.53 1.69
10 99.04 3.67

Scapula
Dataset Dice coefficient [%] Hausdorff distance [mm]
1 98.28 2.11
2 98.6 4.52
3 99.18 9.28
4 98.34 1.52
5 98.47 4.75
6 97.05 2.97
7 97.84 4.83
8 99.53 9.19
9 99.53 1.26
10 99.25 3.30

Table 2: Validation results of 10 shoulder CT datasets. The first column shows the id of the CT
dataset. The second column shows the Dice coefficient of the voxel mask as created by manual
segmentations and as created by our technique. Column threeshows the Hausdorff distances.
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inter-quartile range (IQR) of 95.8% to 99.4%. For the scapula, the median Dice
coeffient was 98.5% with an IQR of 98.3% to 99.2%.

The extent of the volumes was limited to the volume of interest as used for
the segmentation steps, i.e. the joint gap. This entails that a small segmentation
error will have a significant effect on the Dice coefficient. However, because we
also wanted to have a qualitative measure independent of thesize of the volume
masks, we calculated the Hausdorff distances using Mesh 1.13 [1]. The Hausdorff
distance is the maximum distance of a volume to the nearest point in the other
volume and thus reflects the largest segmentation error. As aframe of reference,
please note that the average diameter of proximal humeri is approximately 46
mm [3]. For the humerus, the median Hausdorff distance was 3.06 mm with an
IQR of 2.30 mm to 4.14 mm. For the scapula, the median Hausdorff distance was
3.92 mm with an IQR of 1.96 mm to 5.92 mm. The Hausdorff distances were
added to Table 2.

The results of an evaluation dataset together with its manual segmentation can
be seen in Figure 8. The Dice coefficients for the initial segmentation and three
iterations are 56.32%, 84.12%, 97.30% and 98.88% for the humerus model and
69.02%, 87.99%, 96.78% and 98.28% for the scapula model. These are typical
increments of accuracy that we see for other datasets.

In all cases, the complete segmentation process completed in under two min-
utes on a 2 GHz Core T2500 laptop processor. The time needed to find the joint
separation loop ranged from about five to about ten seconds.

4. Discussion

4.1. Limitations

For datasets 5 and 7 the humerus volume mask differed considerably from
the ground truth segmentation. Also, the Hausdorff distances of the scapulae of
datasets 3 and 8 were relatively large. Upon closer inspection we noticed that os-
teophytes, i.e. bone deformations, at the edge of the glenohumeral joint had been
included in the automatically segmented volumes, while they had been excluded
from the manual segmentations. Because the density of these osteophytes varies
heavily, subtle segmentation differences may influence whether an osteophyte is
included in the segmented volume. A possible improvement would be to high-
light the osteophytes and allow the user to explicitly make these segmentation
decisions.

Figure 8 and the corresponding Dice coefficients point out that the segmenta-
tion quality improves considerably during the first iterations. A side effect of our
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Figure 8: The scapula and humerus model of an evaluation dataset after the initial slice-by-slice
segmentation and three subsequent iterations. The most right image shows the manual segmenta-
tion that was used to evaluate the quality of our segmentation.

approach is that when slice-by-slice separation contours of adjacent slices follow
a smooth curve, the Hough feature volume will pick up this smooth area and force
the slice-by-slice separation contours in subsequent iterations in the same erro-
neous direction, never improving the segmentation qualityfor these specific parts.
In general, the erroneous parts of the slice-by-slice separation contours do not fol-
low smooth curves, because they run through the pathological bone area rather
than through the joint space. Consequently, this distortionhas limited effect on
the segmentation accuracy of our approach, as shown by the evaluation results.

The criterions used for determining and closing the joint separation loop per-
form very well for the evaluation datasets. It is conceivable that one of the criteri-
ons is not met, although we have not experienced this for any of the 10 evaluation
datasets. In this case, no joint separation loop will be returned and the surgeon has
to reselect the joint to retry. As demonstrated by Chambers etal. [6] the complex-
ity of finding the shortest separating loop is a NP-hard problem. The criterions we
use to find the joint separation loop (i.e. evaluation of the minimum curvature of
the surface and prevention of sharp inflections) are useful exploits, reducing this
problem to a routine that, at least for the 10 evaluation datasets we used, returns
a joint separation loop within ten seconds. One can think of ways to improve this
algorithm, for example by using more selection points, adding to the robustness
of the algorithm.

Another limitation of this study that the quality of the evaluation data differed
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due to the varying acquistion parameters and subject variability. For example, the
contralateral shoulder of subject 6 contained a prosthesis, producing scattering
effects in the CT-scan. Although the visible scatter in the segmented shoulder
was limited, this additional noise may affect the segmentation routine. A future
phantom study would be interesting to systematically assess the sensitivity of our
algorithm to noise. However, the large variation in our datasuggests that the
technique is relatively robust and thus applicable to CT scans with different noise
levels.

4.2. Conclusion

In this paper we have presented a novel segmentation technique that com-
bines surface and volume processing to provide fast and accurate segmentation of
arthritic glenohumeral joints from CT data. From the evaluation we conclude that
our technique is sufficiently accurate for the segmentationof heavily deteriorated
glenohumeral joints.

The segmentation results of our data collection of ten shoulders were com-
pared to the manual segmentation as performed by an expert surgeon. The Dice
coefficients and Hausdorff distances indicate that our technique yields highly ac-
curate results compared to manual segmentation. Our technique was sufficiently
robust to extract accurate segmentations from the datasetsin spite of their patho-
logical nature, as indicated by the Larsen-score level 5, the varying bone density
and small joint space, and in spite of varying acquistion parameters.

To our knowledge, no other segmentation techniques exist that have been
shown to cope with arthritic shoulder joints. As discussed in the introduction,
Botha [2] has shown that level-sets and watershed segmentation have limited suc-
cess, in the course of which setting the parameters is a time-consuming process not
suitable for clinical practice. Although Zoroofi et al. [29]successfully segmented
arthritic hip joints, they were less successful for arthritic hips with Larsen-score
4 and 5. The lack of fast segmentation techniques capable of segmenting arthritic
shoulder joints was our motivation for the research described in this work. The
technique is currently applied to a pre-operative planningapplication used in our
clinic and will serve as a basis for surface-based orthopaedic applications that in-
volve arthritic shoulder joints. The high accuracy together with the short time
required for the segmentation process make this technique agood approach for
the segmentation of glenohumeral joints in a clinical environment.

In future work we will test algorithm performance on other pathological joints,
such as the hip and knee joint. Because these joints normally have a highly curved
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surface like the glenohumeral joint, we expect that the algorithm may also work
on these joints.
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