Combined Surface and Volume Processing
for Fused Joint Segmentation

Peter R. Krekel?, Edward R. Valstd: Frits H. Post,
P. M. Rozing, Charl P. Both&

aDepartment of Orthopaedics, Leiden University Medical €erieiden, The Netherlands
bvisualisation Department, Delft University of TechnoloBglft, The Netherlands

Abstract

PurposeSegmentation of rheumatoid joints from CT images is a corafgit task.
The pathological state of the joint results in a non-unifai@nsity of the bone tis-
sue, with holes and irregularities complicating the segatéon process. For the
specific case of the shoulder joint, existing segmentagohriiques often fail and
lead to poor results. This paper describes a novel methatémegmentation of
these joints.

MethodsGiven a rough surface model of the shoulder, a loop that eesithe
joint is extracted by calculating the minimum curvaturelwd surface model. The
intersection points of this loop with the separate CT-slamesconnected by means
of a path search algorithm. Inaccurate sections are ceddmnt iteratively apply-
ing a Hough transform to the segmentation result.

ResultsAs a qualitative measure we calculated the Dice coefficiedtrdausdorff
distances of the automatic segmentations and expert msegialentations of CT-
scans of ten severely deteriorated shoulder joints. Fdrihgerus and scapula the
median Dice coefficient was 9% with an interquartile range (IQR) of 3% -
99.4% and 98%% (IQR 983% - 992%) respectively. The median Hausdorff dis-
tances were 3.06 mm (IQR 2.30 mm - 4.14 mm) and 3.92 mm (IQR 96
5.92 mm) respectively.
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ConclusionThe routine satisfies the criterion of our particular apgimn to ac-

curately segment the shoulder joint in under two minutescveelude that com-
bining surface curvature, limited user interaction andatige refinement via a
Hough transform forms a satisfactory approach for the saeggien of severely
damaged arthritic shoulder joints.
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1. Introduction

In orthopaedic surgery, CT-scans are routinely used to dsgand plan joint
replacement surgery for severe cases of osteoarthritigteeumatoid arthritis.
These diseases are the two most common forms of arthritigi@ncharacterised
by heavy deterioration of the cartilage and bone surfaceinfy. The CT-scans
yield anatomical information that is hard to obtain througher means. A wide
variety of orthopaedic applications require CT-scans tovige pre- and intra-
operative assistance to the surgeon [12, 7, 21].

Segmentation of the data enables the surgeon to distintgfuessheometry of
the different bones of the joint. This allows for fast asesmst of the state of the
pathological joint and provides means to set up a pre-operptan for surgery.
One of the target applications for our segmentation routiiizes the bone ge-
ometry for biomechanical modelling of the shoulder. Thelleinging aspect of
this segmentation problem is that bone tissues need to lagateq, rather than
just classified.

For arthritic joints the segmentation process is typicatiyplicated by large
variations in bone density and irregularities of the bordase (see Figure 1 for
an example slice of such a dataset). The varying bone deswitylicates inter-
pretation of the data. In addition, the joint often appeatse fused in the CT data
due to the significantly decreased joint space. As the agdilof pathological
joints wears off, the joint space can become virtually weeble. This is fur-
ther complicated by the limited resolution of the CT scanmggipment. Manual
slice-by-slice segmentation is labor intensive and mag ik to two hours per
dataset.

Existing segmentation techniques, including a high-laviglgration of level-
sets and watershed segmentation, have limited succesthwgitspecific segmen-
tation task, as discussed by Botha [2]. Although these teci®silead to accurate
segmentation results, they require adaptation of numegratemeters. This is a



Figure 1: A single slice of a CT-dataset used in this studye ifhage shows the right and left
shoulder in the transverse plane (i.e. view from feet to heaslcan be seen, the left shoulder joint
(on the right side of the image) is heavily deteriorated dueheumatoid arthritis, complicating

segmentation of this shoulder.



time-consuming process and therefore these techniquemaseiitable for clini-
cal protocols.

One of the promising techniques for separating skeletattires is presented
by Kang et al. [11]. The technique consists of 3D region gngmvith locally
adaptive thresholds, followed by a mixture of 3D and 2D motpbical oper-
ations to close holes in the segmentation. The resultinghsatation is then
smoothed by adjusting its containing iso-surface. Therniegle is applied to
the hip, the knee and the skull. The authors state that agéeHic approach is
required for separating different bony structures at pb@foretheir techniques
can be applied and that this separation is site specific. lo@iunion, the determi-
nation of this site-specific separation method is one of thetrohallenging tasks
in the case of the shoulder due to its deformed shape.

In the work of Zoroofi et al. [29] rheumatoid hip joints are semnted by
making use of histogram-based thresholding. A number afrtearks are chosen
relative to the convex hull. These points are used to cocisém initial ellipsoid
around the femoral head. This ellipsoid is used to derivendral estimate of
the joint space, which is subsequently refined on a Hesdiarefil version of the
data. Although their method yields accurate segmentaéisults for less arthritic
joints, the joint spaces of severely arthritic and extrgnaethritic hips were only
correctly segmented 30% and 12% respectively.

Branzan-Albu et al. [4] and Tremblay et al. [24] describe dtegue for seg-
menting shoulders from T1-weighted MRI images of healthyusdters. Although
this work is based on MRI data rather than CT data, it is reldvacause it specif-
ically targets the shoulder. A separate 2D segmentatioari®pned on each 2D
slice. This segmentation is based on Wiener filtering, Selddgk detection and
region growing. Morphological techniques are used to ssefadly reconstruct a
smooth 3D segmentation from the 2D segmentations. Howiwemyvork focuses
on healthy subjects with large acromiohumeral and glen@nahdistances. Their
technique does not address the problems of decreasedpa# and bone decal-
cification. It does however indicate the promise of MRI-bassdhniques for the
segmentation of the shoulder skeleton.

Model-based segmentation techniques can also lead to assfictsolution
for the segmentation of anatomical shapes [22, 18, 28].thopaedics, statistical
shape models for hips and knees have been investigated QROHawever, the
great variability in healthy shoulder bone anatomy [19,, 2@hether with the
numerous small and unpredictable variations due to themmhénid state of the
shoulders that we wish to segment, greatly complicate theessful application
of shape models.



We were inspired by curvature-based segmentation tecésithat operate
directly on 3-D surface meshes. For example, by adaptingrtbehological
watershed to segment regions of similar surface curvatur® D meshes, object
surfaces can be decomposed into meaningful regions [15, Tfis generally
works well for the segmentation of solid objects that givéharp contour in the
image data. However, for organic structures watershechigols lead to less
satisfactory results.

To the best of our knowledge no algorithm exists that can led @ the seg-
mentation of severely deteriorated shoulder joints from @#ad The discussed
techniques require extensive adaptation to be applicalted difficult segmenta-
tion problem. Usage of these adapted techniques wouldreegpiage processing
expertise and therefore they cannot be included in dayayoetinical workflow.

In this paper we describe a new technique that exploits thergml shape
of the humeral head to automatically segment the rheumgiwoits. The center
of rotation of the glenohumeral joint can be determined bglypg a Hough
transform directly on the CT data, as described in [25]. Ingathological case,
this spherical shape may have partially disappeared aed afipears to be fused
with the shoulder blade. However, the remaining curved et gjve an indication
of where the joint gap is located. Our technique utilises kmowledge and, with
a minimum of user interaction, segments highly patholdgitenohumeral joints
in less than two minutes.

The major contribution of our work is that we combine curvatinformation
of surface data with path searching techniques on volumé#ita. By combining
these techniques, we retain fine details of the volumetria,dmabling this fast
routine to result in accurate bone models. Concepts tradillyp from visualisa-
tion are combined with concepts traditionally from imageqgassing in order to
solve a challenging segmentation problem. Expert orthdipagurgeons stated
that the segmentation process is sufficiently accurate astdtd be included in
a clinical protocol, enabling a wide variety of diagnosisiaurgical planning
purposes.

The remainder of this paper is structured as follows: Seci@resents the
details of our new segmentation technique and section 3rdests the results of
an evaluation we performed on ten pathological shoulder Gdsé#s. In Section 4
we present our conclusions and plans for future work.



Figure 2: Overview of the stages of our segmentation metta)d.he input data. (b) The data after
preprocessing, described in Section 2.1. (c) The jointrstjoa loop, described in Section 2.2.
(d) Slice-by-slice separation contours (Section 2.3) Tfg) Hough feature volume (Section 2.4).
(f) The final segmentation result, obtained after iterdyiamoplying the slice-by-slice separation
contours and the Hough feature volume (Section 2.5).



2. Method Description

The severity of rheumatoid arthritis can be representetiéwidely accepted
Larsen-score [13]. It is determined using radiographs adicates how much
bone damage has been done by the disease. A high Larsen soeralty means
that a corresponding CT-scan will be difficult to segment. \&eehdeveloped our
techniques for segmentation of the highest severity ldegk( 5) of this score.
This level of the Larsen-score implies that the joint ha®dekd from its normal
anatomical shape and the density of the bones is not unyodistributed. In
addition, holes are scattered over the articular surfacé@®foone. For many
of the slices the joint space is not visible. These factoasl ® a challenging
segmentation problem.

Our segmentation technique consists of four stages (seeg=2y of which the
first stage is a preprocessing stage to counteract vatyaipilihe scan parameters
and to eleviate noise. During the second stage a contouitésndi@ed that en-
circles the glenohumeral joint. The third stage connecgtirwise intersection
points of this loop and the individual CT-slices. This temggrsegmentation is
refined during the fourth stage by creating a surface mod#leofonnecting lines
and applying a Hough transform to this model to determine plawsable the dif-
ferent parts of the segmentation are. The Hough transfaowsius to improve
the segmentation results at noisy parts of the CT-data, wliffic interpret due to
the rheumatoid state of the joints.

2.1. Preprocessing

Clinical CT data is most often anisotropically sampled with #tice thick-
ness being greater than the pixel size. To facilitate latecgssing steps, the data
is isotropically resampled with trilinear interpolaticafter which it is smoothed
with a Gaussian filter with a standard deviation of 1.5 andusadf 2 voxels to
counter noise. The window size is chosen so that the joirdesisgpreserved after
smoothing. The smoothed volume is used for the second sfamer @pproach
that requires a volume with larger scale features. The un#imed isotropic vol-
ume that is used for the actual slice-by-slice segmentatimuld contain all de-
tails of the original volume. To enhance the edges of themaelut is sharpened
with the following voxel-wise operations: 1) The volume atsigradient magni-
tude are summed; 2) The gradient magnitude of this sum igasbd from the
volume.

The Hounsfield Scale is defined such that distilled wateldtesua Hounsfield
Unit (HU) of 0, whereas air at Standard Temperature and Bresssults in a HU



(a) Minimum Curvature (b) Path Seeking (c) Joint Separation Loop

Figure 3: Extraction of the joint separation loop. (&) Fitee minimum curvature of the rough
surface model is calculated. Areas with negative minimumature are colored green. (b) The
user selects a green part of the surface model where thetglerayal joint is located and this
initiates a path searching algorithm. (c) The path seelggréhm uses a cost function to encircle
the glenohumeral joint and return this edge loop as output.

of -1000. With these standards cortical bone has a HU of 4@0rb@umatoid
bone has a HU of 200. Surrounding muscle tissues have a HU. gd$@ result
of this, the gradient magnitude of the pathological aracslrface varies between
0 and 160.

2.2. Joint Separation Loop

We define the joint separation loop as the contour that desithe fused
humerus and scapula, running along the valley, an elongatddce depression,
where the bones meet. The joint separation loop will be uséater stages to de-
rive a surface that separates the humerus and scapulas Betttion we document
the determination of the joint separation loop. Figure Zgian overview of this
stage.

To initiate this stage, the smoothed volume is converted ¢oaase surface
model of the bones using the Marching Cubes algorithm [14{h&lgh healthy
bone has a HU of approximately 400, experiments showed ttraeahold value
of 100 captures most of the bone geometry when it is in a pagfcdl state.

Due to joint space narrowing the result is a single surfaceatthat represents
a fused scapula (i.e. shoulder blade) and humerus (i.e.r appg. The different
shapes of these bones result in a clearly visible valley éetwthe scapula and
the humerus that can be extracted by finding an edge looputhaialong vertices
where the minimum curvature has a great magnitude.

In order to determine the required surface curvature, baseslr triangular



mesh, we have used the technique described by Page et al. Théir method
determines the surface curvature at each vertex of a meshasd: First all trian-
gles in a neighbourhood of configurable size around thexareextracted. Then
the normals of these triangles are combined with an invastardce weighted av-
eraging to determine the normal at the vertex. Finally tbistal normal and the
positions of the vertices of the surrounding triangles aexito derive a curvature
tensor, of which the Eigen-analysis yields the principalatures at the central
vertex.

To extract the joint separation loop, the user selects anygiahe gleno-
humeral joint. The vertex closest to the point selected byutter acts as the seed
for a surface constrained region growing method. The se#tkimitial region.
Neighbouring vertices, i.e. nodes, are iteratively adddti¢ region until the joint
is completely encircled.

At each iteration, a cost function is evaluated for everyenoeighbouring the
current region:

N
C= 3 I xecall < (14 al) (1)
=1

The cost function is a modification of Dijkstra’s shortesthpalgorithm which
minimizes the length of a path between two nodes [8]. Pammeatfers to the
position of a node. Paramet@mprevents sharp inflections in the different branches
and is described below.

Because the glenohumeral joint is a ball and socket joint, avesafely state
that the joint separation loop will be located roughly in agie plane. To deter-
mine whether the direction of a growing tip of the path deasgtom the direction
of its predecessors, we evaluate the angle between therastpendicular to
the front half of its preceding segments and the vector pelipalar to all of its
preceding segments. Figure 4 illustrates how this aagkedetermined.

Because we are interested in the joint separation loop, the phould specifi-
cally connect nodes that have a negative minimum curvaiurerefore, when the
minimum curvature of a particular path is positive for thceasecutive steps, it is
assumed the path has left the joint gap. The path is thenrdisced. The num-
ber of three was chosen so that occasional bumps in the suttagot restrain the
algorithm from finding a solution, while paths do not con#irnto expand outside
of the joint gap.

The expectation is that a path evolves in two directions feostarting point
and will eventually encircle the joint. In other words, thwottips of the path

9
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Figure 4. Parametesr of equation 1. The angle in radians is calculated betweervéistor
perpendicular to the front half of the preceding segmemte(g) and the vector perpendicular to all
of the preceding segments (green plus purple). The veatbendw? are directed perpendicular
to v1, ul andv2, U2 respectively. If the path takes sharp turns, the value wofill increase, thus
increasing the total cost of the path. This prevents shdigciions.
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should meet each other. At each iteration, we check whethewdy added node
neighbours any other part of the path. If so, this could iati@ successful encir-
clement. Two further conditions have to be satisfied:

1. The two tips have to run in opposite directions when thegtmehis is the
case if the dot product of their respective directions isatieg.

2. The total path has to form a closed loop. This is the caseibitcumulated
path normal is close to 0. The accumulated path normal is etkfs the
sum of all surface normals crossed by the path, each scaldtebgverse
of the sum of the edges before and after the vertex that itfisetbon.

When the algorithm terminates, the result is a closed loopeheircles the
glenohumeral joint. We refer to this loop as the joint sefiandoop.

2.3. Slice-by-slice Separation Contour

In this stage the joint separation loop is used to derivegtmh slice of the
unsmoothed isotropic volume (see Section 2.1 Prepro@gssi2-D contour sep-
arating humerus and scapula. Together, these contour$owill a surface that
separates the humerus and scapula in 3-D. On each slicewohmtersection
points of the joint separation loop with that slice servelssdnd-points of the
2-D separation contour.

In the case of a healthy joint, the humerus and scapula waugkparated by
a region of low intensity voxels. In our case, the more dengerdayers of the
humerus and scapula are pressed together, resulting insitima region of more
or less consistent, but not necessarily low, density. Ties&paration contour
attempts to connect its endpoints whilst remaining withnis transition region
and crossing pixels of similar values to the values of thepeirds.

To connect a pair of endpoints a path seeking algorithm isl.u3éhe cost
function attempts to minimise the variation between coatee pixels in the path.
In our data, bone has a HU of at least 100, while soft tissu@snding the bone
has a range somewhere around 0 HU. To capture this variat®dgtermine the
absolute difference between the HU of a pixel and the HU opredecessing
pixel, divided by 100 and clipped to [0.0, 1.0]. These last steps are required
to control the influence of the variation within the cost ftiog, relative to the
additional parameter that is introduced in Section 2.5.

The cost function is defined as:

N
. Hx — Hi_1]|
cH = S min(a, 1Mk Hieall 2
2. 100
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Figure 5: Surface model of the stacked 2-D separation comtélighlighted areas indicate a high
confidence valug, further explained in Section 2.4.

whereH is the HU of a pixel. From both points a path evolves that mings
the cost function. When the two paths find each other, the etkirsg algorithm
terminates and reinitializes for the point pair of the ndies

It is highly unlikely that the segmentation is correct afiee initial pass, be-
cause the pathological state of the shoulder allows thespattun through cortical
bone, the thin outer layer of bone that normally has a higtsitheand strength.
However, even an erroneous segmentation provides a ussdid tor the subse-
guent refinement stage.

2.4. Hough Feature Volume

In this stage the 2-D separation contours are used to defe@tare volume,
based on the Hough-transform, that will be used in the sulesgctage to extract
a surface that accurately separates the humerus and thdascap

An encapsulating surface is constructed of the rasterigpdration contours
(see Figure 5). The surface is Laplacian smoothed with 2&titms. This method
yields suitable surface normals for further analysis. Iitespf this, it would be
interesting to investigate alternative volume-preseyamoothing methods in the
future, such as those proposed by Taubin [23] and Vollmek [26&

We apply a Hough transform to the smoothed surface [9]. Foin gaint on
the smoothed surface we follow its extended normal througkrapty volume,
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rasterizing it using Bresenham'’s algorithm [5]. The resaifi volume where each
voxel contains a scalar equal to the number of times that sended surface
normal of the smoothed surface has intersected that plarticoxel. Due to the
sphericity of the humeral head and hence the smoothed sutfecarea under the
center of the head contains consistently higher values.

Again, for each point on the smoothed surface we follow iteested normal
through the Hough volume and determine the position of theMtat contains
the highest number of intersections. This position is reféto as the point origin
of the surface point that it corresponds with. The confideratee y of a surface
point is defined as the ratio between the Hough value at itst poigin and the
maximal value of the Hough volume. In other words, if a poingim is located at
a globally high Hough value, it is likely that the surfacenas located within the
joint space and therefore we assign a high confidence. Farssacothed surface
point, the point origin, the vector to the point origin and tonfidence are stored.

The smoothed surface is voxelized using 3-D splatting: Bohesurface point,
a Gaussian kernel (standard deviation 1.5, radius 5 voxe&syhted by the con-
fidencey for the point, is centered on the closest voxel position Fat fpoint.
The point’s stored information is additively spread to surrding voxels via the
confidence weighted kernel. After all surface points hawenlieaversed, the vox-
elisation is normalized with the per-voxel accumulatedfictemce. The per-voxel
accumulated confidence is separately normalised by thenmiawiper-voxel ac-
cumulated confidence.

For every voxel an agreement valdds determined, defined as the extent to
which the voxel location is in agreement with the Hough stefdetermined by
the neighbouring voxels (see Figure 6).

2.5. lterative Refinement

In this step, the slice-by-slice separation contours amtively recalculated
in accordance with the Hough feature volume. The resultilcg-$y-slice sepa-
ration contours form the final segmentation.

As shown in Figure 2, after their initial execution, stages Jint Separation
Loop and 2.3 Slice-by-slice Separation Contour are repaatétia sufficiently
accurate set of separation contours are produced. Withiesaakion, new con-
tours are calculated based on the Hough feature volume @iréweous iteration,
and based on these a new Hough feature volume is derived.cEh&actionCT,
shown in equation 3 and used in all repeated iterations is difi@d version of
the cost functiorCH used in the initial iteration. Where&$' takes into account

13



(a) Hough Volume (b) CT slice (c) Confidence y (d) Agreement

Figure 6: (a) The Hough volume is determined by applying adfotransform to the surface
formed by the slice-by-slice separation contours. (b) Rahepoint on this surface a point origin
O is determined, together with a vectopointing to this point. (c) Confidenceis a fraction of
the Hough value of the surface point’s point origin, relatie the maximum value in the Hough
volume. The values dD, V andy are 3D-splatted across the surface using Gaussian keFls.
all voxels we determine the distance to their 3D-splatteidtparigins. (d) The agreemerit is
the extent to which this distance and the length of the 3@t vecto correspond with one
another.
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Figure 7: Three iterations of the segmentation algorithhe @olor mapping equals that of Figure
5. With each iteration, the smoothly curved surfaces infteethe cost-function of neighbouring
areas by evaluating whether a separation contour is in agnetewith nearby parts of the Hough
surface.

only the variations in volume intensity along the contdlit, takes into account
the agreement valuk described in Section 2.4 as well.

T < - |[Hc— Hial|
C _kzlwx)\k+(1 ¥) x min(1, 100 ) (3)

More specifically, if confidencg s low, i.e. a point is not close to the Hough
surface, its cost is primarily determined by its intensigriation. However, if
confidencey is high, i.e. the point is close to the Hough surface, theeagentA
of a point contributes more heavily to the cost: High agrestnfeads to low cost
and vice versa. With this, we ensure that contours run thr@ugface points that
are located close to the Hough surface and are in agreemgrteir neighbours
as to the location of that surface.

The algorithm is iterated until convergence. The critefionthis is that two
consecutive steps produce the same segmentation respechion showed that
for most of the datasets four iterations of the algorithmsarcient for conver-
gence. After the last iteration the joint separation lines #sed to separate the
two bones and create two distinct volume masks.

2.6. Evaluation

We have evaluated our technique on ten shoulder CT-dataEbésdatasets
we used for testing were acquired from the hospital PACS armé ywerformed
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Dataset X-Ray Tube Current Exposure Time Spatial Resolution

1 120 1000 0.906< 0.900x 1.000
2 160 500 0.900< 0.900x 1.000
3 160 600 0.858¢ 0.858x 1.000
4 339 500 0.970< 0.970x 1.000
5 500 500 0.488¢ 0.488x 1.000
6 339 500 0.970< 0.970x 1.000
7 376 500 0.885¢< 0.885x 2.000
8 70 500 0.412< 0.412x 1.000
9 410 500 0.934« 0.934x 2.000
10 158 500 0.91% 0.919x 1.000

Table 1: Scan parameters of the evaluation scans.

over a period as part of the standard treatment workflow. A8,90T parameters
vary (see Table 1). All shoulders were diagnosed by an oabdis surgeon and
rated as the highest level (level 5) of rheumatoid arthusisig the Larsen-score.

3. Reaults

To determine the accuracy of the algorithm, we compareddhelting seg-
mented voxel masks with voxel masks that were obtained wahual segmen-
tation. The voxel masks consisted of separate humeral (wgpe bone) and
scapular (shoulder blade) volumes. Manual segmentatienpsegormed by an
expert orthopaedic surgeon. We extracted a volume of isttevhich contained
the glenohumeral joint plus an additional 10% of its sizeliiiaections.

For quantative evaluation we calculated the Dice coeffidietween all man-
ual segmentations and the segmentations derived by ouni¢tgeh The Dice
coefficientR,o, expressed as a percentage for convenience, is definedassfol

2x|SNR)|
= ———— x 100% 4
=g R “
whereS andR refer to the two segmented volumes that are being compared. A
voxel-perfect segmentation results in a Dice coefficierit@3%.
Table 2 shows the Dice coefficient for all datasets for bothgbapula and
the humerus. For the humerus, the median Dice coefficent &&8®with an
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Humerus
Dataset Dice coefficient [%] Hausdorff distance [mm]

1 98.88 1.84
2 98.59 2.45
3 98.99 3.17
4 99.13 2.45
5 94.28 5.59
6 94.8 3.04
7 93.93 5.55
8 99.58 3.07
9 99.53 1.69
10 99.04 3.67
Scapula

Dataset Dice coefficient [%] Hausdorff distance [mm]
1 98.28 2.11
2 98.6 4.52
3 99.18 9.28
4 98.34 1.52
5 98.47 4.75
6 97.05 2.97
7 97.84 4.83
8 99.53 9.19
9 99.53 1.26
10 99.25 3.30

Table 2: Validation results of 10 shoulder CT datasets. Tisé dolumn shows the id of the CT
dataset. The second column shows the Dice coefficient ofdkelynask as created by manual
segmentations and as created by our technique. Columnshoges the Hausdorff distances.
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inter-quartile range (IQR) of 98% to 994%. For the scapula, the median Dice
coeffient was 9%% with an IQR of 983% to 992%.

The extent of the volumes was limited to the volume of inteessused for
the segmentation steps, i.e. the joint gap. This entailsalsanall segmentation
error will have a significant effect on the Dice coefficientowever, because we
also wanted to have a qualitative measure independent aizbeof the volume
masks, we calculated the Hausdorff distances using Me8{1].1The Hausdorff
distance is the maximum distance of a volume to the nearest jpothe other
volume and thus reflects the largest segmentation error. ffesree of reference,
please note that the average diameter of proximal humemppsoaimately 46
mm [3]. For the humerus, the median Hausdorff distance wa& 3um with an
IQR of 2.30 mm to 4.14 mm. For the scapula, the median Hauksdistance was
3.92 mm with an IQR of 1.96 mm to 5.92 mm. The Hausdorff distsnwere
added to Table 2.

The results of an evaluation dataset together with its mamaggmentation can
be seen in Figure 8. The Dice coefficients for the initial segtation and three
iterations are 56.32%, 84.12%, 97.30% and 98.88% for theehusrmodel and
69.02%, 87.99%, 96.78% and 98.28% for the scapula modelseTare typical
increments of accuracy that we see for other datasets.

In all cases, the complete segmentation process completatier two min-
utes on a 2 GHz Core T2500 laptop processor. The time neededtth® joint
separation loop ranged from about five to about ten seconds.

4. Discussion

4.1. Limitations

For datasets 5 and 7 the humerus volume mask differed coabigerom
the ground truth segmentation. Also, the Hausdorff distaraf the scapulae of
datasets 3 and 8 were relatively large. Upon closer inspeete noticed that os-
teophytes, i.e. bone deformations, at the edge of the gleneral joint had been
included in the automatically segmented volumes, whilg teed been excluded
from the manual segmentations. Because the density of tlstsepbhytes varies
heavily, subtle segmentation differences may influencethdrean osteophyte is
included in the segmented volume. A possible improvementldvbe to high-
light the osteophytes and allow the user to explicitly mdkese segmentation
decisions.

Figure 8 and the corresponding Dice coefficients point cait tie segmenta-
tion quality improves considerably during the first iteoas. A side effect of our
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Figure 8: The scapula and humerus model of an evaluatiosetadidter the initial slice-by-slice
segmentation and three subsequent iterations. The mbsimgge shows the manual segmenta-
tion that was used to evaluate the quality of our segmemtatio

approach is that when slice-by-slice separation contduasijacent slices follow
a smooth curve, the Hough feature volume will pick up this sth@rea and force
the slice-by-slice separation contours in subsequerdtitars in the same erro-
neous direction, never improving the segmentation quiditthese specific parts.
In general, the erroneous parts of the slice-by-slice sgjoarcontours do not fol-
low smooth curves, because they run through the pathologaee area rather
than through the joint space. Consequently, this distotias limited effect on
the segmentation accuracy of our approach, as shown by &hgad¢ion results.

The criterions used for determining and closing the joipasation loop per-
form very well for the evaluation datasets. It is conceieablat one of the criteri-
ons is not met, although we have not experienced this for &thedl0 evaluation
datasets. In this case, no joint separation loop will bernetdi and the surgeon has
to reselect the joint to retry. As demonstrated by Chambeak ¢6] the complex-
ity of finding the shortest separating loop is a NP-hard bl The criterions we
use to find the joint separation loop (i.e. evaluation of theimum curvature of
the surface and prevention of sharp inflections) are useflbés, reducing this
problem to a routine that, at least for the 10 evaluations#dsawe used, returns
a joint separation loop within ten seconds. One can thinkayfsato improve this
algorithm, for example by using more selection points, agddo the robustness
of the algorithm.

Another limitation of this study that the quality of the evation data differed
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due to the varying acquistion parameters and subject \ityaBor example, the

contralateral shoulder of subject 6 contained a prosthesiglucing scattering
effects in the CT-scan. Although the visible scatter in thgnsented shoulder
was limited, this additional noise may affect the segmématoutine. A future

phantom study would be interesting to systematically assessensitivity of our
algorithm to noise. However, the large variation in our dsuggests that the
technique is relatively robust and thus applicable to CT sedth different noise

levels.

4.2. Conclusion

In this paper we have presented a novel segmentation tehmigt com-
bines surface and volume processing to provide fast andatecsegmentation of
arthritic glenohumeral joints from CT data. From the evahratve conclude that
our technique is sufficiently accurate for the segmentatdidreavily deteriorated
glenohumeral joints.

The segmentation results of our data collection of ten stevalwere com-
pared to the manual segmentation as performed by an expgeosu The Dice
coefficients and Hausdorff distances indicate that ourntiegte yields highly ac-
curate results compared to manual segmentation. Our tpehimvas sufficiently
robust to extract accurate segmentations from the datissspste of their patho-
logical nature, as indicated by the Larsen-score level&y#rying bone density
and small joint space, and in spite of varying acquistiorapuaters.

To our knowledge, no other segmentation techniques exidthhve been
shown to cope with arthritic shoulder joints. As discussedhie introduction,
Botha [2] has shown that level-sets and watershed segnantatve limited suc-
cess, in the course of which setting the parameters is adonsuming process not
suitable for clinical practice. Although Zoroofi et al. [28]ccessfully segmented
arthritic hip joints, they were less successful for artbritips with Larsen-score
4 and 5. The lack of fast segmentation techniques capabkgafienting arthritic
shoulder joints was our motivation for the research desdrib this work. The
technique is currently applied to a pre-operative planm@ipglication used in our
clinic and will serve as a basis for surface-based orthdpagaplications that in-
volve arthritic shoulder joints. The high accuracy togetivéh the short time
required for the segmentation process make this techniqgaod approach for
the segmentation of glenohumeral joints in a clinical emwinent.

In future work we will test algorithm performance on othettgdogical joints,
such as the hip and knee joint. Because these joints nornaailydnhighly curved
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surface like the glenohumeral joint, we expect that theralym may also work
on these joints.
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