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Multivalued Geodesic Ray-Tracing for Computing Brain Connections Using
Diffusion Tensor Imaging∗
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Abstract. Diffusion tensor imaging (DTI) is a magnetic resonance technique used to explore anatomical fibrous
structures, like brain white matter. Fiber-tracking methods use the diffusion tensor (DT) field to
reconstruct the corresponding fibrous structure. A group of fiber-tracking methods trace geodesics
on a Riemannian manifold whose metric is defined as a function of the DT. These methods are
more robust to noise than more commonly used methods where just the main eigenvector of the DT
is considered. Until now, geodesic-based methods were not able to resolve all geodesics, since they
solved the Eikonal equation, and therefore were not able to deal with multivalued solutions. Our
algorithm computes multivalued solutions using an Euler–Lagrange form of the geodesic equations.
The multivalued solutions become relevant in regions with sharp anisotropy and complex geometries,
or when the first arrival time does not describe the geodesic close to the anatomical fibrous structure.
In this paper, we compare our algorithm with the commonly used Hamilton–Jacobi (HJ) equation
approach. We describe and analyze the characteristics of both methods. In the analysis we show
that in cases where, e.g., U-shaped bundles appear, our algorithm can capture the underlying fiber
structure, while other approaches will fail. A feasibility study with results for synthetic and real
data is shown.

Key words. diffusion tensor imaging, fiber-tracking, Riemannian geometry, geodesics, Euler–Lagrange equa-
tions, Hamilton–Jacobi equation

AMS subject classifications. 92C55, 65D17, 68U10

DOI. 10.1137/110824395

1. Introduction. Diffusion tensor imaging (DTI) is the only noninvasive technique that
allows the reconstruction of images of brain white matter bundles [2, 34]. Due to the fibrous
structure of white matter, diffusion of water molecules is dominant in the direction of the
fibers. Diffusion and its directional variation can be measured by diffusion weighed magnetic
resonance imaging (DW-MRI). By acquiring DW images in at least six gradient directions, it
is possible to estimate a 3 × 3 positive-definite symmetric second-order tensor, the so-called
diffusion tensor [2, 35]. The eigenvector corresponding to the largest eigenvalue of this tensor
is considered to point in the direction of the fiber tracts. Numerous algorithms have been
introduced for reconstructing the fibrous structure from DTI. In the most commonly used
fiber-tracking algorithms, i.e., streamline-based methods, the fibers are estimated by using
the principal direction of the diffusion tensor [35]. Here, fiber-tracking stops if there is a sharp
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turn in the trajectory, or when the fiber enters a region of low anisotropy where the main
eigenvector cannot be clearly identified. The main eigenvector is not well defined, either due
to noise or to the presence of crossing fibers. Furthermore, streamline methods are based on
local characteristics and therefore sensitive to noise.

A possible solution for resolving these limitations of classic fiber-tracking is to apply more
global approaches such as geodesic-based algorithms [13, 27, 44, 32]. These techniques are
based on the assumption that fibers follow the most efficient diffusion propagation paths. A
Riemannian manifold is defined using as metric the inverse of the diffusion tensor. Paths on
this manifold are shorter if the diffusion is stronger along that path. Therefore geodesics (i.e.,
shortest paths) on this manifold follow the most efficient diffusion paths. The geodesics are
often computed from the stationary Hamilton–Jacobi (HJ) equation. Equidistant fronts are
emanating from a certain initial point. The propagation speed of the fronts at each point
in space is a local variable. Parker, Wheeler-Kingshott, and Barker [42] presented a similar
approach where the local speed was based on a combination of the normal vector and the
tensor dominant eigenvector. This approach is prone to incorrect propagation in anisotropic
domains. In recent publications [27, 19, 20], front propagation inside anisotropic domains has
been considered, which is suitable for oriented domains. The propagation speed of the front
is given by the diffusivity rate in the normal direction of the front; the fibers are extracted by
back tracing along the characteristics of the front.

One property of solving the HJ equation is that it gives only the single-valued viscosity
solution corresponding to the minimizer of the length functional. It is also well known that the
solution of the HJ equation can develop discontinuities in the gradient space, cusps. Cusps
occur when the correct solution should become multivalued. HJ methods are not able to
handle this situation. In this paper, we focus on developing an algorithm that can tackle this
shortcoming.

Recently, Sepasian et al. [49, 48] presented a ray-tracing algorithm for computing geodesics
in anisotropic domains. They defined the metric as the inverse of the diffusion tensor [13, 27].
In contrast to other geodesic-based methods, this approach can capture multivalued geodesics
connecting two given points by considering the geodesics as functions of position and direction.
Moreover, it is based on the Euler–Lagrange (EL) equations, and therefore local changes in the
geodesic can be taken into account. In [49] Sepasian et al. focused on the mathematical and
numerical model for analytic and synthetic fields in two-dimensional domains. In a later paper
[48], Sepasian et al. presented the algorithm for the ray-tracing method in three dimensions
with some examples of synthetic and brain data. The purpose of the current paper is to provide
better insight into details of the ray-tracing algorithm. It presents the differences, advantages,
and disadvantages compared to numerical solution of the HJ equation. In addition, we evaluate
the algorithm for real brain DTI data, as well as for synthetic crossing fibers.

It should be noted that the methods mentioned until now belong to the class of deter-
ministic fiber-tracking methods; i.e., given the same input, these methods will always give the
same result. In the case of geodesic-based methods, given two points in the domain, a finite
number of geodesics paths (i.e., one in the case of HJ methods) will be found. Probabilistic
fiber-tracking constitutes another class of methods, where the variation of the pathways due to
model assumptions and/or noise is considered. A probabilistic distribution is built, and a ran-
dom process generates many paths originating from one initial position [5, 41, 39, 10, 9, 51].
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Then the probability that a fiber originating in that position goes through a given area is
determined by the number of random paths that go through that area [40, 18]. Probabilistic
methods can use deterministic fiber-tracking methods as part of the process [17, 4, 3, 18, 21].

In this article we focus on deterministic geodesic-based methods. Next, we first describe
different mathematical models for computing geodesics and their connections to diffusion
tensor (DT) images. Later, we propose numerical methods for solving the equations. Finally,
we present results for realistic synthetic data and human brain DTI.

2. Mathematical models. As mentioned in section 1, we assume that fiber tracts coincide
with geodesics in the Riemannian manifold defined using the inverse of the DT as metric. The
rationale behind this assumption is that water molecules move freely along fiber tracts, and
their movement is restricted in the perpendicular direction. Therefore, it is assumed that
the fiber connecting two points follows the most efficient diffusion path for water molecules.
We are searching for a path that maximizes diffusion. This can be achieved by inverting the
metric that makes the largest eigenvalue become the smallest one. Consequently, the geodesic
for this metric represents the fibers [56]. In order to construct the geodesics, two different
governing equations can be derived. In this section, first we present the EL equations for a
specific metric. Next, we formulate the corresponding HJ equation.

Consider a bounded curve C, with parametrization x = χ(τ), a � τ � b. A geodesic
between two points χ(a) and χ(b) is the smooth curve whose length is the minimum of all
possible lengths. In the presentation that follows we use the Einstein notation; i.e., we sum
over repeated indices, one in the upper (superscript) and one in the lower (subscript) position.
Introducing the metric ds2 = gαβdx

αdxβ, the length of C is given by

(2.1) J [χ] =

∫
C
ds =

∫ b

a

(
gαβ(χ(τ)) χ̇

α(τ)χ̇β(τ)
)1/2

dτ,

where G = (gαβ) is the inverse of the diffusion tensor D, i.e., G = D−1. Therefore, (gαβ)
depends only on x and is symmetric positive definite. In the following we use the shorthand
notation ẋα = χ̇α(τ).

From calculus of variations, we know that the necessary condition for χ(τ) to minimize
J [χ] is the set of EL equations which read [14]

(2.2)
∂L

∂xα
− d

dτ

(
∂L

∂ẋα

)
= 0,

where L = L(x, ẋ) is the Lagrangian corresponding to (2.1) and is given by

(2.3) L(x, ẋ) =
(
gαβ(x)ẋ

αẋβ
)1/2

.

The required derivatives of L are given by

∂L

∂xα
=

1

2L

∂gβγ
∂xα

ẋβẋγ ,
∂L

∂ẋα
=

1

L
gβαẋ

β.

Next, we take for τ the arc length, i.e., L = 1 and dL
dτ = 0 [29]. Substituting the derivatives

above into (2.2), we obtain

(2.4) gαβ ẍ
β + [βγ, α]ẋβ ẋγ = 0,
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where [βγ, α] is the Christoffel symbol of the first kind, given by

(2.5) [βγ, α] =
1

2

(
∂gαβ
∂xγ

+
∂gαγ
∂xβ

− ∂gβγ
∂xα

)
;

see [47, 14]. Multiplying (2.4) with the inverse of the metric G−1 = (gαβ), we find

(2.6) ẍα + Γα
βγ ẋ

βẋγ = 0,

where Γα
βγ is the Christoffel symbol of the second kind, defined by

(2.7) Γα
βγ = gαδ[βγ, δ].

In contrast to the functional in (2.1), we now consider the functional that minimizes the
length of all curves joining the fixed point χ(a) and variable end point χ(t), i.e.,

(2.8) T (x, t) = min
χ

∫ t

a
L(χ(τ), χ̇(τ))dτ,

with x = χ(t) and L given in (2.3). The geodesic connecting χ(a) with χ(t) can be determined
from the HJ equation, given by

(2.9) H

(
x,

∂T

∂x

)
= 1,

where the Hamiltonian H is described by [46, 38]

(2.10) H2(x,p) = gαβ(x)pαpβ, pα := gαβ(x)ẋ
β .

With this choice for the Hamiltonian we obtain the anisotropic eikonal equation

(2.11) F (xα, qα) = gαβ
∂T

∂xα
∂T

∂xβ
− 1 = 0, q =

∂T

∂xα
.

We can show that the first-order PDE (2.11) is equivalent to the Charpit system of equations
[31], i.e.,

ẋα =
∂F

∂qα
= gαβqβ,(2.12a)

q̇α = − ∂F

∂xα
= −1

2

∂gβγ

∂xα
qβqγ ,(2.12b)

Ṫ = qα
∂F

∂qα
= gαβqαqβ.(2.12c)

This seven-dimensional system of ODEs describes the solution of (2.11). Here (2.12a) and
(2.12b) are the canonical form of the EL equations [15, 45]. In this way we can reconstruct
the geodesics by tracing back the characteristics of the fronts T (x, t) = const. Note that for
an isotropic medium the characteristics are perpendicular to the fronts. For more details we
refer the reader to Sethian and Vladimirsky [50].
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The solution of the HJ equation may develop multivalued solutions when two fronts collide,
such as focus points, caustics, or discontinuities in the gradient field. Those regions are called
shocks. Therefore, the viscosity solution is needed to ensure the existence and uniqueness of
the solution of (2.11); see, e.g., Mantegazza and Mennucci [30]. Regardless of the numerical
scheme for solving the HJ equation, the solution always satisfies the viscosity solution concepts,
and there is always a unique geodesic that connects two given points. Under the viscosity
concept T need not be everywhere differentiable, and there may be points where ∂T

∂xα does not
exist; i.e., there could be a kink in T and yet T satisfies the equation in an appropriate sense
[11]. However, using the viscosity solution will not ensure that the solution we obtain is the
real physically meaningful one [45].

In DTI fiber-tracking, different methods have been derived based on front propagation
in anisotropic fields using the HJ equation [19, 28, 20, 42]. Moreover, it is known that for
anisotropic domains, such as in DTI, the more realistic fibers can be reconstructed by back
tracing the characteristics rather than gradients of the fronts [19, 50].

Our group [49, 48] introduced an algorithm based on the ray-tracing method for geodesic
fiber-tracking. In this approach, all arrival times of the fronts are considered, rather than
only the first arrival time at each grid point. The major advantage of this approach is the
capacity to capture possible multipath connections between two given points. This is an
advantage because in ray-tracing we do not constrain the solution to the viscosity solution;
instead, at each grid point, we can get many possible arrival times. Therefore, the ray-tracing
method can better simulate the correct solution. Figure 1 shows the difference between the
solutions of ray-tracing, the eikonal equation, and wave front propagation for anisotropic media
with one source. Wave propagation in anisotropic media, as it occurs in DTI fields, creates
shocks (see Figure 1(a)). It has been shown that one can reconstruct wave fronts that evolve
according to rays [6, 45]. In contrast to the fronts obtained by solving the HJ equation (see
Figure 1(b)), the wave fronts obtained by ray-tracing maintain the corresponding topology
once the multivalued solution occurs (see Figure 1(c)). It can be observed that the eikonal
solution in Figure 1(b) fails to reproduce the real front solution, while ray-tracing is able to
grasp the complex multivalued solutions in Figure 1(c). Wave front construction becomes
very complex and computationally expensive for fields with complex topology in comparison
with the ray-tracing method.

3. Numerical methods. In this section we focus on constructing numerical schemes for
computing the geodesics using the geodesic equations (2.6) or the HJ equation (2.11). First, we
present the so-called ray-tracing method for reconstructing fiber tracts in a three-dimensional
Riemannian space. Subsequently, we explain the fast sweeping algorithm for computing the
solution of the HJ equation that we use for comparison.

3.1. Ray-tracing. Ray-tracing refers to methods for calculating the trajectory of waves or
particles passing through a domain with regions of varying propagation velocity. This affects
the resulting propagation wavefront topologies such that they may bend or change direction.
Ray-tracing assumes that the particle or wave can be modeled as a large number of very
narrow bundles of rays, and for a very small distance a ray is locally straight. The ray-tracing
procedure constructs the ray over this distance. In order to estimate the ray’s new direction,
a local derivative of the medium is used. From the new location, a new ray is traced, and
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(a)

source

(b)

source

(c)

source

Figure 1. Wave propagation in heterogeneous media with one source of wave propagation. Light to dark
background illustrates increasing velocity. (a) Wave front real solution. (b) Eikonal equation solution and the
geodesics drawn by back tracing the characteristics. (c) The ray-tracing solution. (Reproduced from [45] by
permission.)

the procedure is repeated until a complete path is computed. For some general references on
ray-tracing methods, we refer the reader to, e.g., [22, 8, 25, 45, 36, 53]. In the following, we
describe the ray-tracing procedure in more detail.

A geodesic connecting a pair of points on a Riemannian manifold minimizes the length
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functional (2.1). Let x = (x1, x2, x3)T be a point on a geodesic. As we showed in section 2,
the minimizer of (2.1) satisfies the system of three second-order ODEs (2.6) with so-called
Christoffel symbols defined in (2.5) and (2.7). Let us introduce uγ(τ) := ẋγ(τ) for γ = 1, 2, 3;
then we can rewrite system (2.6) as follows:

ẋα = uα,

u̇α = −Γα
βγu

βuγ .(3.1)

Consider a point (x1(0), x2(0), x3(0)) as the given initial point in the domain, and (u1(0), u2(0),
u3(0)) as the initial direction. We compute the solution to (3.1) for the given initial position
and multiple initial directions using sophisticated ODE solvers, such as the fourth-order ex-
plicit Runge–Kutta method. This gives us a set of geodesics connecting the given initial point
to some points on the boundary. In ray-tracing [22, 26, 7], there is no control of where the rays
pass through. A common way to obtain a solution from the given initial point to a desired
point is to apply two-point ray-tracing; see, e.g., [49, 45, 43]. First, a large number of rays are
shot from both points. We continue the integration until rays hit the boundary. This gives us
two sets of geodesics that connect each initial position to the boundary. Next, we obtain the
geodesics between the two points by postprocessing the geodesics. In applications where the
medium is piecewise linear the postprocessing is simplified. This is because rays are straight
lines or very smooth. However, the postprocessing becomes computationally expensive when
the application involves rays from multiple source points to multiple end points, and the
extension to three dimensions is relatively complex. On the other hand, for our specific appli-
cation, DTI fiber-tracking, calculating the exact connection between two given points is not
favored since this is not known. Instead, we prefer the connection between two given regions.
Therefore, in this paper we focus on developing ray-tracing for point-region and region-region
fiber-tracking.

The computational domain is discretized uniformly with grid size h and grid points xijk =
(x1i , x

2
j , x

3
k) = h(i, j, k) for i = 0, 2, 3, . . . , N − 1, where N is the number of grid points in each

spatial direction. For simplicity we take the number of grid points equal in all directions. We
assign to each grid point a 3 × 3 tensor Gijk = D−1

ijk. We approximate the derivatives of gαβ
at each grid point by the standard second-order central difference scheme, i.e.,

(3.2)
∂gαβ
∂x1

(x1i , x
2
j , x

3
k) ≈

1

2h

(
gαβ(x

1
i+1, x

2
j , x

3
k)− gαβ(x

1
i−1, x

2
j , x

3
k)
)
.

Second-order one-sided differences are applied when the grid points are situated on the bound-
ary, i.e.,

∂gαβ
∂x1

(x10, x
2
j , x

3
k) ≈

1

2h

(−3gαβ(x
1
0, x

2
j , x

3
k) + 4gαβ(x

1
1, x

2
j , x

3
k)− gαβ(x

1
2, x

2
j , x

3
k)
)
,(3.3)

∂gαβ
∂x1

(x1N−1, x
2
j , x

3
k) ≈

1

2h

(
3gαβ(x

1
N−1, x

2
j , x

3
k)− 4gαβ(x

1
N−2, x

2
j , x

3
k) + gαβ(x

1
N−3, x

2
j , x

3
k)
)
.(3.4)

Note that similar expressions hold for derivatives with respect to x2 and x3. Solving the ODE
system (2.4) gives the solution at points that are not necessarily located in the grid points.
Therefore, the values of the metric and its derivatives are obtained by applying trilinear
interpolation. The integration of geodesics continues until the geodesic hits the boundary of
the computational domain.
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Initial directions. As mentioned before, in classic ray-tracing we compute the geodesics for
the given initial position and a large number of directions densely grouped together. Initial
vectors are uniformly distributed using the vertices of regular symmetrical polyhedra [33].
Here all initial vectors are normalized. Astola, Florack, and ter Haar Romeny [1] show that
geodesics locally follow trajectories parallel to the direction of the main eigenvalue. However,
globally the geodesics are not necessarily parallel to the streamlines obtained by integrating
along the main eigenvector direction. This behavior can be exploited to reduce computational
time if we assume that the main eigenvector is relatively stable at the initial position. In
particular, for DTI fiber-tracking, we can restrict the number of initial shooting directions to
an elliptic cone with the largest eigenvalue λ0 as its axis, and λ1R and λ2R as the semimajor
axes of the ellipse forming the base of the cone. R is a parameter to control the width of
the base. The ellipse constitutes the base of the cone; see Figure 2. Notice that eigenvectors
have no sign, so the rays are shot in two directions, and therefore we actually have a double
cone. Again here all computed initial directions are normalized. To make the choice of initial
directions more reliable, instead of using a constant spread, the elliptic cone could be made
dependent on the noise and certainty of the underlying data, similarly to what has been done
in probabilistic methods.

λ0^
λ1R^

λ2R^

Figure 2. An illustration of the elliptic cone for reducing the number of initial directions. Here R is the
radius, and λ̂ represents the eigenvalue of the tensor at the initial position.

In order to obtain the geodesics of interest with ray-tracing techniques, postprocessing is
often desired. A common method is to use the two-point ray-tracing algorithm [36, 43] that
was extended to two-dimensional Riemannian DTI space by Sepasian and coworkers [49, 48].
This method computes the multivalued geodesics between two given points inside the domain.
Note that finding the exact pathway connecting two given points is not a realistic question
for DTI fiber-tracking. It is not possible to know a priori the exact location of the points
that are connected. Therefore, we did not further exploit this method. A more realistic
approach is to use a point-region or region-region selection. This can be done by selecting two
regions of interests which are known to be connected. Geodesics are then started, and filtered
by these regions such that they pass through both. Once geodesics are computed, different
postprocessing approaches to select the desired geodesic can be applied (see section 4).

3.2. Fast sweeping. For the sake of clarity and better understanding of the differences
between the two EL- and HJ-based models, in this section we give a brief review of the
numerical method for solving the HJ equation. We present the method used for comparison
in this paper. To discretize a general Hamiltonian H(x,p) several techniques have been
developed for both structured and unstructured grids. In this paper we use the Lax–Friedrichs
(LF) numerical discretization, proposed by Kao, Osher, and Qian in [23], which satisfies the
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required monotonicity and consistency conditions. The major motivation for applying the LF
scheme is that an explicit solution formula can always be derived without any assumption on
the Hamiltonian.

In order to compute the solution of the discretized eikonal equation, a suitable numerical
method needs to be applied. Lenglet et al. [28] and Jbabdi et al. [20] apply fast marching
schemes used to determine geodesics and the viscosity solution of the time-dependent HJ equa-
tion. Jackowski et al. [19] apply the fast sweeping scheme to estimate the viscosity solution of
the stationary HJ equation. In this approach short trajectories that minimize some conformal
energy, corresponding to the largest diffusion along the trajectories, are estimated rather than
the geodesics. Kao, Osher, and Tsai [24] show that computing the optimized trajectories
using the fast sweeping scheme, regardless of discretization, gives the lowest computational
complexity. However, Yatziv, Bartesaghi, and Sapiro [58] show that it is also possible to
implement the fast marching method with complexity similar to that of fast sweeping. The
purpose of our paper is to show the difference between single arrival time solvers and the
solvers that compute multivalued solutions such as ray-tracing. Very careful selection of the
numerical scheme for solving the HJ equation can lead to a more computationally efficient
implementation; see [57]. However, we compute only the first arrival time solution. In this
paper we select the fast sweeping scheme for computing the geodesics. Next, we will explain
the concept in detail.

We start with the derivation of an explicit formula for the three-dimensional eikonal equa-
tion (2.11). First we introduce the difference approximations,

δx1Tijk :=
1

2h
(Ti+1,j,k − Ti−1,j,k),(3.5)

δx1x1Tijk :=
1

h2
(Ti+1,j,k − 2Ti,j,k + Ti−1,j,k),

and the averaging operator,

(3.6) μx1Tijk =
1

2
(Ti+1,j,k + Ti−1,j,k),

and likewise for operators in x2 and x3. Here, Tijk is the numerical approximation of
T (x1i , x

2
j , x

3
k, ). At each grid point xijk we have the following numerical approximation:

H (xijk, δx1Tijk, δx2Tijk, δx3Tijk)− 1

2
h (σ1δx1x1Tijk + σ2δx2x2Tijk + σ3δx3x3Tijk) = 1.(3.7)

Notice that the only unknown in the equation above is Tijk, which can be isolated to obtain
the iterative solver

T n+1
ijk = c (1−H(xijk, δx1Tijk, δx2Tijk, δx3Tijk))(3.8)

+
1

2h
c (σ1μx1 + σ2μx2 + σ3μx3)Tijk,

where

c =
h

σ1 + σ2 + σ3
.
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Here σ1, σ2, and σ3 are the artificial viscosities satisfying

σα ≥ max

∣∣∣∣ ∂H∂pα
∣∣∣∣ = max

∣∣∣gαβpβ
∣∣∣ , α = 1, 2, 3.

The iteration indices on Tijk in the right-hand side of (3.8) are omitted on purpose, since, de-
pending on the direction of the sweeping, the value will correspond to the previous calculation
or the current one. We can show that the monotonicity and convergence of the method are
dependent on the appropriate choice of the viscosity terms σα for α = 1, 2, 3 and on the grid
size of the computational domain. We want to keep the viscosity term as small as possible
and still have a monotone solution. There are different studies on the appropriate choice of
value for σα (α = 1, 2, 3), and they show that there is a direct relation between convergence
rate and the viscosity term. In this paper we choose these values to be 1. More details about
the convergence and accuracy of the LF scheme are presented in [24, 61].

We solve the discretized system (3.8) using the fast sweeping method. Fast sweeping
relies on the idea of using central finite differences and Gauss–Seidel iteration with alternating
sweeping directions. Dividing the characteristics into a finite number of groups according to
their direction, the fast sweeping method follows the causality along characteristics. This
means that a newly computed value, T n+1

ijk , depends on T values in its domain of dependence
[24]. In other words, the domain of dependence of the grid point xijk is included in the
numerical domain of dependence. Values from the previous sweeping step are used to make
the error decrease. Therefore, the solution will be updated if and only if T n+1

ijk < T n
ijk. As

the method relies on the fact that by sweeping in different directions, the direction of the
characteristic of (2.11) will be eventually followed, there is no need for sorting, in contrast to
the fast marching method. The computational complexity of the algorithm is O(N3) for a
total of N grid points in each direction, and the number of iterations is independent of the
grid size [59, 60, 16].

The fast sweeping algorithm consists of the following steps: initialization, alternating
sweepings, and enforcing boundary conditions.

Initialization. We assign the exact boundary condition to T 0
ijk at the boundary and keep

these values fixed during the iterations. At the interior points we set T 0
ijk = M with M larger

than the maximum of the true solutions. These values will be updated in the process of
iterations.

Gauss–Seidel alternating sweepings. At iteration n + 1, calculate T n+1
ijk that solves (3.8).

At all grid points xijk in the internal domain we carry out the Gauss–Seidel iteration except
in those that have a local converged solution value. Recall that this process has to be done
in alternating sweeping directions, i.e., in opposite diagonal directions.

Enforcing boundary conditions. After each sweep, we enforce boundary conditions to en-
sure that characteristics move outside the domain and errors cannot propagate into the do-
main. Therefore, we have to specify carefully the values of points outside the computational
domain, as otherwise huge errors may be introduced and propagate into the computational
domain. To tackle this problem, Kao, Osher, and Qian [23] propose the following condition:⎧⎨

⎩
unew0,j,k = min

(
max( 2u1,j,k − u2,j,k, u2,j,k), u

old
0,j,k

)
,

unewN−1,j,k = min
(
max( 2uN−2,j,k − uN−3,j,k, uN−3,j,k), u

old
N−1,j,k

)
.
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Note that the same condition can simply be written for other boundaries.
Convergence test. After all the sweepings are performed, check whether

(3.9) ‖ T n+1 − T n ‖L1≤ ε,

where ε > 0 is the convergence tolerance.
The geodesics for the system described by the Hamiltonian can be obtained by solving

the Charpit equations (2.12a)–(2.12c). Notice that the momenta can be computed from the
viscosity solution. For this we use the central difference scheme. One can construct the
solution for the PDE (2.11) by integrating each one of the equations (2.12a)–(2.12c). Once
this step is finished, any point in the domain can be connected by a geodesic to the initial
position.

4. Pre- and postprocessing. In the previous sections we described how to compute the
geodesics in general. In the following we focus on pre- and postprocessing, suitable for our
specific problem.

Preprocessing. All geodesic-based methods allow the geodesics to deviate from the direc-
tion of diffusion. This is an advantage because the geodesics become less sensitive to noise,
but at the same time they can deviate too much if diffusion profiles are not sharp. In order
to deal with this problem, Descoteaux, Lenglet, and Deriche [12] propose tensor sharpening
by raising tensors to a certain power, i.e.,

Dsharp = Dn, n ∈ N.

Here D and Dsharp are the diffusion tensor and sharpened tensor, respectively. Sharpening
the matrix means small eigenvalues will become relatively smaller and large ones will become
relatively larger. This method causes the ellipsoid to increase or decrease in volume. To
prevent this, one can normalize the tensor using its determinant, which is the same as the
product of its eigenvalues. Afterwards, the ellipsoid has to be multiplied by the original
determinant to give its volume back, although it is not equal to the volume of the original
ellipsoid; thus

(4.1) Dsharp =

(
D

|D|
)n

|D|,

with |D| the determinant of the tensor D. Then we have

(4.2) |Dsharp| = |D|3−2n.

Note that for an m-dimensional matrix, (4.2) is written as the following:

(4.3) |Dsharp| = |D|n(1−m)+m.

Tensor sharpening diminishes the isotropic part and enhances the dominant eigenvector. How-
ever, powering the tensor can introduce other difficulties such as enhancing noise. The proper
choice of the exponent n is highly dependent on the data and its orientation, and different
values are proposed in the literature [12, 54].

Postprocessing. Once all geodesics are computed either with HJ or ray-tracing, a selection
needs to take place. Any two points in the domain can be connected by geodesics, but not all

D
ow

nl
oa

de
d 

02
/1

7/
15

 to
 1

31
.1

80
.1

45
.5

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

494 SEPASIAN, TEN THIJE BOONKKAMP, TER HAAR ROMENY, VILANOVA

reflect the underlying fibrous structure. One can measure the strength of geodesics connecting
two points by applying a connectivity measure. The connectivity measure is used for finding a
suitable trajectory corresponding best to real fiber bundles. We apply these measures in order
to discard the geodesics without strong connections between points in the domain. Since the
fibers correspond to geodesics that connect a pair of points in the Riemannian manifold, the
most reasonable connectivity measure is the one that minimizes trajectories in a Riemannian
manifold.

In recent papers, Astola, Florack, and ter Haar Romeny [1] and Parker et al. [41] presented
the connectivity measure as the ratio of the geodesic lengths given by the Euclidean and
Riemannian metric tensors. This measure can be considered as a measure for the connectivity
strength of a geodesic. The proposed measure reads

(4.4) m[χ] =

∫ b
a |χ̇(τ)|dτ

J [χ]
,

with J [χ] defined in (2.1). Note that locally, in anisotropic voxels, this measure obtains its
maximum in the direction of the eigenvector corresponding to the largest eigenvalue; see [1].

5. Results. In this section, we present a feasibility study for the computation of geodesics,
for both discrete three-dimensional synthetic tensor fields and real human brain DTI data.
We present the results and analyze the behavior of streamline-based methods, the ray-tracing
algorithm, and our implementation of the fast sweeping method described in section 3.2.

The behavior of the presented methods is evaluated in fiber structures with high curvature,
like U-shaped fibers, and fiber crossings. We use synthetic data sets with a resolution of
20 × 20 × 6. We define the anisotropic region as R1 and the background as R2, and then
tensors corresponding to each region are computed with eigenvalues, λR1 ∼ [3 × 10−3, 17 ×
10−4, 17 × 10−4] mm2/s and λR2 ∼ [7, 7, 7] × 10−4 mm2/s. In order to mimic real DTI
acquisition, Rician noise is added. The signal attenuation for different gradient directions is
obtained using the inverse of the Stejskal–Tanner equation [52]. The noise is then added to the
noiseless signal with a signal to noise ratio (SNR) of 15.3, and then the tensors are estimated
again.

The evaluation on real data is based on two DTI data sets of healthy volunteers. The
first data set, D1, was acquired by a 3T Siemens scanner with 256 × 256 × 172 voxels, with
resolution 1 × 1 × 1 with a b-value of 1000s/mm2 and 72 gradient directions. The second
data set, D2, was acquired by a Philips scanner, with 128 × 128 × 66 voxels, with resolution
2× 2× 2mm, b-value of 1000s/mm2, and 32 gradient directions.

The seed regions are selected manually. In real data they are based on available anatomical
atlases. Once the seed region is selected, seed points are generated inside the selected seed
region in an arbitrary interval. In ray-tracing, the geodesic is computed by shooting rays
from an initial point to all selected directions. After fiber reconstruction, we can select fibers
by applying one point-region or region-region fiber-tracking; see section 3.1. Later, one can
narrow the geodesics (fibers) that connect the two given regions by applying the connectivity
measure.

5.1. Curved fiber reconstruction. In this section, we want to demonstrate that our pro-
posed ray-tracing method is superior to the first arrival solvers method for fiber bundles
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Figure 3. Synthetic data set with the form of a short U-shaped fiber: Geodesics computed for the tensor
field with and without sharpening using the ray-tracing method and the HJ equation.

with high curvature, like U-shaped fiber bundles. For this propose we use two different data
sets of short and long U-shaped bundles. Figure 3 shows a synthetic data set of a short U-
shaped fiber. The background is color coded based on the fractional anisotropy (FA), and
fiber tracts are colored using the common RGB color coding of the main eigenvector, e (i.e.,
(R,G,B) = (|e1|, |e2|, |e3|)). The seed points are indicated by red disks, and the end points
by dark blue disks. In the left side of Figure 3 we show the result for both HJ and ray-tracing
fiber-tracking using no sharpening. Note the shortcuts obtained using the HJ approach. Here,
no segmentation has been used. In the right side of Figure 3 we show the tractography results
with the anisotropy enhancement of the tensor using the sharpening factor n = 2. We see
that applying sharpening improves the front propagation to be faster along the U-fiber than
in the background. As a result, the fiber tracts obtained by back tracing the fronts follow
the U-fiber. Note that the ray-tracing method gives correct fiber tracts independent of the
sharpening.

Figure 4 shows a synthetic data set of a long U-shaped fiber. The seed points and end
points are visualized by red disks. We learned from the previous figure that tensor sharpening
can improve the front propagation result. Therefore, here for preprocessing of the U-shaped
synthetic data we choose the tensor sharpening factor n = 2. The fibers are reconstructed by
solving the HJ equation with different choices of end points, and by the ray-tracing algorithm.
In Figure 4(a), the HJ equation is solved, and it can be seen that the fibers are correctly
reconstructed. However, if the end points are set at the other end of the fibers where the
reconstructed fibers should have higher curvature (see Figure 4(b)), the fibers actually cross
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Initial pointInitial point

End pointsEnd points

(a)

Initial pointInitial pointEnd pointsEnd points

(b)

Initial pointInitial point

(c)

Figure 4. Synthetic data set with the form of a long U-shaped fiber: Geodesics computed using the HJ
equation with different choices of end points (a), (b) and the ray-tracing algorithm (c). In all cases the initial
value is situated in the same point. The slice is color coded according to the FA with a rainbow color coding:
yellow indicates high anisotropy, and blue indicates low anisotropy. The fibers are colored according to the RGB
color coding of the main eigenvector.

the isotropic area. The choice of metric has influence on this, as Lenglet et al. [28] have
remarked. However, Figure 4(c) shows that with the same choice of metric and minimizing
the same functional, capturing the correct geodesic corresponding to the desired fiber bundle
is feasible. A heuristic explanation is that the viscosity solution obtained via fast sweeping
only gives the solution corresponding to the first arrival time. Since we do not apply any
threshold for defining the anisotropic regions for U-fibers, the Riemannian length of the shorter
trajectory connecting the two ends of the U will win the cost of the front evolution. We see
that in ray-tracing, Figure 4(c), the two possible geodesics starting from the given seed point
meet at the same point at the other side of the U-fiber.

In Figure 5, we demonstrate a similar effect for the healthy volunteer DTI data setD2. The
color codings are the same as those in Figure 4. We illustrate the reconstruction of a few fibers
of the corpus callosum bundle. Figure 5(a) is the result of solving the HJ equation by placing
the seed and end points in opposite extremes, and it has the same effect as in Figure 4(b).
Figure 5(b) illustrates that if the seed and end points are placed such that the individually
reconstructed fibers are less curved, the correct result can be achieved. Figures 5(c) and 5(d)
show the results using ray-tracing when the seed points and stopping regions are in similar
locations as in Figures 5(a) and 5(b), respectively. We can see that, regardless of the position
of the initial points, the ray-tracing will result in the correct fiber reconstruction.

5.2. Crossing fiber reconstruction. We also examine the capability of the method for
recovering the desired fiber bundle in areas with crossing fibers, i.e., X-fibers. Each line
segment along the geodesic curve follows Snell’s law (which describes the relation between
the angle of incidence and refraction). In addition, each line segment locally follows the
direction that satisfies the minimization constraint. In our case, the constraint is that the
direction minimizes the path. In the directional domains, the minimum not only depends on
the direction of the propagation speed (dominant diffusion direction) but is also influenced by
the whole diffusion profile at the point of arrival and the previous direction.
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(a) (b)

(c) (d)

Figure 5. Reconstructing a few fibers of the corpus callosum bundle for the D2 data set, using (a) and (b)
an HJ-based algorithm, (c) and (d) a ray-tracing algorithm.

(a) (b)

Figure 6. Fiber reconstruction computed using the streamline approach (a) and by solving the HJ equation
(b). Note that the front propagation is intrinsically triggered by the diffusion profile. Therefore, the fiber tract
is not exactly following the center line of the fiber bundle.

We examine this by an example of a synthetic forty-five degree X-fiber data set. In
Figure 6, the X-fiber data set is shown using the same color coding scheme described above.
The ellipsoids describing the diffusion profiles at each voxel are also shown. In Figure 6(a),
the reconstruction based on the classic streamline fiber-tracking is shown. Note that the fiber
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(a) (b) (c) (d)

Figure 7. Perturbation of the initial angle around the main eigenvalue of the tensor at the initial position
(a) R = 0.02, (b) R = 0.08, (c) R = 0.26, (d) R = 0.40.

(a) (b) (c)

Figure 8. Fiber-tracking results for the corpus callosum, using stream-line (a) or geodesics via the ray-
tracing method (b).

changes direction once it meets the crossing area. Figure 6(b) shows the result solving the HJ
equation. As expected, the HJ solution gives a structure closer to the expected correct path;
however, the path is not straight.

Figure 7 illustrates the computed results for the ray-tracing method. We can observe
that the results are closer to the expected fibers than in Figure 6. In order to show the
robustness of ray-tracing, we vary the number of shooting directions by varying the density of
sampled orientations within the cone as described in section 3.1. In Figure 7 the results are
shown for testing the stability of geodesics to small perturbation around the main eigenvalues
corresponding to the seed point. To do that we vary the radius of the shooting cone from
R = 0.02 to 0.4; consequently, we also reduce the sampling density of the initial directions.
We observe in Figure 7 that the geodesics still follow the desired bundles even with relatively
large perturbation.

In the following, we illustrate the behavior of crossing fibers in the real data set D1. We
reconstruct the corpus callosum around the centrum semiovale, which is the region where the
corona radiata bundle and the corpus callosum cross. It is expected that the corpus callosum
fibers around this area will diverge and spread towards the cortex. In Figure 8(a), we show
orthogonal slices of D1 FA map color coded by a gradient from black through brown to
white. Figure 8(b) shows the streamline results by seeding within a region of interest around
the corpus callosum in the middle sagittal slice. It can be observed that streamlines cannot
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(a) (b)

(c)

(d) (e)

Figure 9. Tractography results for D2 in the crossing regions: (a) a sketch illustrating crossing fibers of
corona radiata (CR), corpus callosum (CC), and cingulum (CG); (b) corticospinal tracts; (c) the seed regions;
(d) streamline tractography (streamlines); (e) ray-tracing tractography.

capture the corpus callosum fiber divergence. In Figure 8(c), we trace geodesics using ray-
tracing that starts at the same seed points as in Figure 8(b), sampling directions in a cone
around the main eigenvector of each seed point. The tracing is stopped after a finite time,
and fibers are selected using the connectivity measure (4.4). It can be observed that these
methods comply with the known anatomy of the corpus callosum [35]. Figure 9(b) illustrates
the fiber tracts for corticospinal fibers converging to the motor cortex through the corona
radiata, analyzed using D2 data set. Figures 9(d) and 9(e) show the fiber reconstruction for
the crossing regions of the corona radiata (CR), corpus callosum (CC), and cingulum (CG)
using a 10× 10× 30 cube cut from D2. Figure 9(d) shows the result of the streamline-based
tractography method. The fiber-tracking stops in voxels with threshold lower than 0.1. Figure
9(e) shows the tractography result for the ray-tracing method. In this figure fibers stop when
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Table 1
Computational time for HJ and ray-tracing tractography.

No. of fibers Tractography method Time(s)

300 Fast sweeping 247
300 Ray-tracing 9

they meet one of the boundaries. The initial directions are sampled with small cones around
the main eigenvector directions of the corresponding seed points. Note that for the case when
the seed points are situated in the crossing area of the corona radiata, it is better to sample the
initial directions using the vertices of regular symmetrical polyhedra. Similar to the previous
example, notice the capability of ray-tracing method for better reconstruction of the fibers
in the crossing area. It is good to mention that this is not possible with streamlines, and
that for the HJ approach end points would need to be defined at all corresponding cortex
positions. Compared to the HJ approach, in ray-tracing methods the geodesics are directly
computed. In the HJ approach, in order to compute the geodesics between an initial point
and any other points inside the domain, computation for the whole domain is necessary; once
the user needs to change the initial point, the whole computation would have to be repeated.
This is because the geodesics are computed implicitly from the fronts. However, in ray-tracing,
changing the seed points and computing geodesics for the new seed points can be done in a
couple of seconds. For more detailed discussions and results of reconstructing the fibers in the
corresponding regions using the HJ approach, we refer the reader to [20, 28, 19, 44].

Table 1 shows the computational time for the HJ and ray-tracing tractography for the
fibers originating from a single initial point. Note that in the case of the HJ approach the end
points should be defined. For this computation we set the end point on the boundaries. For the
ray-tracing method, fibers stop when they meet one of the boundaries. All the computations
have been done on a single computer having an Intel dual core central processing unit (CPU)
(only one core has been used) with a processor clock rate of 1.86 GHz.

We implemented the existing algorithm on the highly parallel architecture of a graphical
processing unit (GPU), using the NVIDIAs Compute Unified Device Architecture (CUDA)
programming language [37]. Since fibers can be computed independently of each other, the
tractography algorithm can be meaningfully parallelized. As a result, the running time can
be reduced by a factor of up to 175 using modern GPU, compared to an implementation on a
single-core CPU. The results for this test are shown in Figure 10. For this test we used a real
DTI image with dimensions of 128× 128× 30 voxels. Seed points were placed in a small, two-
dimensional region of 22×4 voxels, located in a part of the corpus callosum. Seed points were
randomly placed within this region, with a random initial direction. In order to fully explore
the performance gain, we used four different CUDA-supported GPUs. One of the important
specification of these GPUs is the memory bandwidth (number of bits which can be pulled
from memory per second). The number of seed points varies from 1024 to 4096, which closely
mimics a real-life application of the ray-tracing algorithm. For each configuration, we show
the running time in seconds and the speed-up factor relative to the CPU implementation. For
more detailed information about the implementation and memory management we refer the
interested reader to [55].
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(a) (b)

Figure 10. An illustration of the speed-up versus the number of scalar processor for (a) different number
of seeds and (b) the memory bandwidth.

6. Conclusions and future work. In this paper, we presented a geodesic-based method for
fiber-tracking in diffusion tensor imaging (DTI) data. We derived the Euler–Lagrange geodesic
equations for three-dimensional Riemannian space and applied the ray-tracing method to
compute the solution. This new algorithm allows us to have more control over local orientation
inside the domain and gives multivalued solutions. For comparison, we also discussed a fast
sweeping algorithm as an example of a first arrival solver for the stationary HJ equation. This
algorithm puts the constraint of the first arrival time and ignores later arrivals. This method
and similar approaches are robust to noise. However, they can produce nonphysical solutions,
e.g., shortcuts. This can be due to either the computation of only the first arrival time or
the choice of the functional to be minimized. It is worthwhile to investigate the behavior of
these methods for different functionals. Particularly for DTI, the realistic solution obtained
by the first arrival solver highly depends on how realistic the functional is for minimizing the
arrival time. For example, if we could derive a functional that could handle all limitations
of the data, then we could prevent so many well-known shortcomings of first arrival solvers.
However, the derivation of such a functional is still unknown to us. Therefore, it is promising
to have a method that suppresses these limitations and instead gives us a wider set of possible
geodesics. This can be obtained by looking at all possible solutions instead of only the first
arrival times. Furthermore, we are also interested in looking at algorithms that give better
insight into the local geometry as well as the global structure of the domain.

Results for realistic synthetic data have been shown for both HJ-based fiber-tracking and
the ray-tracing algorithm. We show the potential of the ray-tracing method for capturing the
correct tract, especially for U-shaped fibers.

The ray-tracing approach also suffers from some drawbacks. The numerical scheme com-
putes a finite number of rays. When these rays diverge, some regions will be visited by many
rays and some by none. Controlling the ray density to achieve roughly uniform sampling of
the travel-time is feasible by using computationally expensive interpolation. The challenge is
to develop an algorithm which retains the efficiency of modern first arrival time solvers and
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at the same time captures all arrival times. In ray-tracing the distribution of fibers is based
on the global minimization described by geodesics. As an extension of this research, we are
currently investigating the generalization of the ray-tracing algorithm for fiber-tacking to high
angular resolution diffusion imaging. Finally, it would be interesting to study the combination
of ray-tracing and probabilistic fiber-tracking.

Acknowledgment. The authors would like to thank Olof Runborg for permission to use
Figure 1.
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