JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 1

Efficient Stochastic Rendering of Static and
Animated Volumes using Visibility Sweeps

Philipp von Radziewsky, Thomas Kroes, Member, IEEE, Martin Eisemann,
and Elmar Eisemann, Member, IEEE,

Abstract—Stochastically solving the rendering integral (particularly visibility) is the de-facto standard for physically-based light
transport but it is computationally expensive, especially when displaying heterogeneous volumetric data. In this work, we present
efficient techniques to speed-up the rendering process via a novel visibility-estimation method in concert with an unbiased importance
sampling (involving environmental lighting and visibility inside the volume), filtering, and update techniques for both static and animated
scenes. Our major contributions include a progressive estimate of partial occlusions based on a fast sweeping-plane algorithm. These
occlusions are stored in an octahedral representation, which can be conveniently transformed into a quadtree-based hierarchy suited
for a joint importance sampling. Further, we propose sweep-space filtering, which suppresses the occurrence of fireflies and investigate
different update schemes for animated scenes. Our technique is unbiased, requires little precomputation, is highly parallelizable, and is
applicable to a various volume data sets, dynamic transfer functions, animated volumes and changing environmental lighting.

Index Terms—Visibility, Raytracing, Volume Rendering, Stochastic Rendering, Importance Sampling

1 INTRODUCTION

N stochastic volume rendering the rendering equation is
Ievaluated using Monte Carlo (MC) techniques by taking
many point-samples (shooting rays) to compute the light
distribution within a volume. Starting at the camera, for
each sample a ray traverses the volume until a scattering
event occurs along this ray based on the current transfer
function, which maps the volume’s density to material prop-
erties. Evaluating the rendering equation at the position of
the scattering event requires generating and traversing one
or more sample rays which are ultimately either absorbed
within the volume or hit a light source, e.g., the environ-
mental light. Without incorporating knowledge about the
light characteristics or volume absorption this process can
be highly inefficient as many rays might contribute little or
nothing to the final image.

Importance-sampling techniques [5], [7], [27] incorporate
knowledge about scene content, e.g., material properties,
and light distribution to improve convergence during ren-
dering. Visibility, however, is usually not taken into account
as its direct computation is almost as costly as solving the
rendering integral directly. Another drawback of a brute-
force visibility precomputation is that any change in the
transfer function, lighting or motion within the scene would
require a complete reevaluation.

The problem we tackle in this work is the evaluation of
direct lighting for an (animated) volume data set in the con-
text of an unbiased MC-based stochastic volume renderer.
We support arbitrary and interactively changing transfer
functions to define varying diffuse materials. The volume is

e P von Radziewsky, T. Kroes, and E. Eisemann are with the Delft Univer-
sity of Technology, Netherlands.
E-mail: {p.vonradziewsky, t kroes, e.eisemann}@tudelft.nl

e M. Eisemann is with TH Koln, Germany.
E-mail: martin.eisemann@th-koeln.de

Manuscript received December 31, 2015; revised XXX.

lit by natural illumination in form of environmental lighting.

The main idea of our approach is to estimate a joint prob-
ability density function (pdf) combining lighting and ap-
proximate visibility information, used to steer the sampling
for any scattering event within the volume, which is more
efficient than in previous work and still unbiased. While
generalization is possible, we illustrate the application to
single scattering only.

This work is an improved and extended version of [14].
We include all aspects and components of the previous
paper for the sake of completeness and point out note-
worthy differences where appropriate. In addition to the
contributions, which are:

e An efficient sweeping-plane algorithm to compute
approximate visibility within a 3D volume;

e A product importance sampling solution based on
joint environmental light and visibility information;

e A GPU-adapted and highly-parallel implementation

we extend the previous version by:

o Several implementation details;

o An efficient filtering technique to avoid rendering ar-
tifacts stemming from (potentially) insufficient sam-
pling of the visibility domain;

e Treatment of animated volumes via three (lazy) up-
date schemes to avoid costly visibility recomputa-
tions.

Our technique is useful for any volumetric renderer
with dynamically changing content, such as environmental
light, transfer functions, volume data, etc., making it an
interesting addition to visualization and rendering systems
aiming for unbiased results.

2 RELATED WORK

The literature on volumetric-illumination techniques is vast
and a recent survey on this topic can be found in [11]. We

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 2

'

Our Two-Step
MSE: 20.57e-3

’ WEnvironment
 [MSE: 43.01e-3

upiform-it, " * WERVirehivent. :

Our Two-Step” M | EN n X
MSE¥ 4068 7c-3 MNSE 688563

MSE: 26.7e-3

= MEnvironment
MSE:%49.07e-3

Out Two-Step: - -~ #+ MEavironment’" il Qur Two-Step - [l 1
WSE; 5o0ce-3- i M 7ex3 JIMSE: 6871e-3 15 [l MSE: 37.28e-3}

Fig. 1: Overview: We compute the product of approximated visibility and environment map lighting in a stochastic Monte
Carlo volume renderer to steer a joint importance sampling of the direct lighting. Our proposed approach is well suited for
dynamic changes in visibility and lighting functions due to a fast sweeping-plane algorithm to estimate visibility. The insets
show how our technique (magenta) achieves faster convergence with fewer samples compared to a uniform sampling (red)
and importance sampling of the environment map (yellow). Here, 4 samples per pixel have been used. The Manix data set

consists of 512 x 512 x 460 voxels.

no light

visibility
light

samplin
strong piing

light

scattering event

Fig. 2: Problem statement: For efficient sampling, samples
with both strong light and strong visibility need to be found.
Sampling according to the lighting only (red) may give bad
results as samples may get absorbed within the volume
before reaching the light source , sampling only according
to the visibility (blue) might miss important lights. Product
sampling (green) solves the problem. Unfortunately, the
required visibility is usually unknown beforehand.

will focus only on certain aspects to put our approach in
perspective.

Ambient Occlusion helps to better perceive certain shapes
and their relative positions by measuring the light accessi-
bility for each scene point. In these approaches, luminance is
linked to the degree of local occlusion [38]. Multi-resolution
variants [20], and even dynamic ambient occlusion vari-
ants [32], which allow changes to the transfer function, have
been considered. Nonetheless, ambient occlusion computes
only a statistical scalar value to approximate the ambient
light, which means that directional information is lost. We

incorporate full directional support for high-quality unbi-
ased physically-based rendering.

Visibility Approximation for Semi-Transparent Structures
are most common in physically-based volume rendering.
Opacity shadow maps [12] are an extension of shadow
maps [37] using a stack that stores alpha values instead
of depth values to support shadow computation for com-
plex, potentially semi-transparent structures. Deep shadow
maps [21] are a more compact representation, which store
a shadow-function approximation per pixel. They have
quickly been adopted for volume rendering [9], [31]. Re-
cently, other approaches showed links to filtering [16]. They
approximate occlusion in a very efficient way but at the
expense of precision.

All such techniques are fast but inapplicable in our
scenario of stochastic MC volume rendering. First, using
approximate visibility directly for shading introduces a bias.
Second, these techniques support only point and directional
light sources, whereas we aim for environmental lighting.
Third, visibility is costly to compute and even approxi-
mating it can usually involve many rays, although not all
locations might ultimately contribute to the image. Our
approach computes visibility in a coarse 5D grid and uses it
only to carefully steer the sample generation. In this way,
our approach remains unbiased, and supports arbitrary
environmental lighting.

Basis-Function Techniques decouple light-source radiance
and visibility, which allows for dynamically changing the
illumination. Spherical harmonics (SH) are prominent ba-
sis functions, used for example for pre-computed radiance
transfer [34], and were first used in the context of volume
rendering to pre-compute and store isosurface illumina-
tion [2]. They have also been used to store visibility for
volume rendering under natural illumination [30]. Other

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 3

research in this area mostly aimed at generalizations to sup-
port advanced material properties [19] or reduce memory
costs [17].

While SH are well suited to represent low-frequency
functions, their direct use for visibility is a strong approx-
imation and introduces bias. Further, only low-frequency
illumination is supported, in contrast to our solution.

Image Plane-Sweep Volume Illumination Approaches
move a virtual plane through a scene to invoke the shading
computations for all positions within the plane in parallel.
The parallelism makes these approaches highly applicable
to modern parallel architectures, such as the GPU. Using
carefully-chosen approximations (e.g., a forward-peaked
phase function, single-point or directional light source), sin-
gle and forward multiple-scattering effects can be simulated
at interactive frame rates [35]. We decouple the plane sweep
from a particular light source to enable general illumination
and drive the sampling process in stochastic MC volume
rendering.

Recently, iterative convolutions on volume slices have
also been used to approximate direct lighting [26]. The
results are approximate, some parameter settings have to
be carefully chosen, and only particular light-source con-
figurations are efficiently supported (e.g., usually Gaussian
and behind the observer).

Monte Carlo Ray Tracing for volume rendering gained
attention with the advances of modern GPUs, which made
interactive progressive rendering possible. First attempts
sacrificed generality for performance [29] and did not sup-
port translucent materials. New approaches, such as Ex-
posure Render [15] achieve images of very high realism.
They employ all the benefits of physically-based MC tech-
niques: arbitrary natural illumination, real-world cameras
with lens and aperture (e.g., for depth-of-field effects). We
implemented our approach building upon this open-source
solution. Only recently, specialized algorithms have been
developed to efficiently handle participating media by split-
ting the evaluation into an analytically and a numerically
evaluated part [24].

Importance Sampling is a powerful sampling technique
to render objects illuminated by natural or complex envi-
ronmental illumination [7]. An efficient method for non-
specular materials is to place pre-integrated directional
lights at the brightest locations [1], [13], [25]. These meth-
ods work extremely well in the absence of occlusion, but
shadowed regions may appear noisy. When materials are
increasingly specular, a large number of lights is needed to
adequately represent the environment map. Consequently,
many physically-based MC techniques sample the environ-
ment map directly to avoid such artifacts. The intensity of
the environment map can even be used as a pdf to steer the
sampling [27].

If also visibility or material properties are to be included,
the pdfs can be combined in a single MC estimator via
multiple importance sampling (MIS) [36]. MIS is most ef-
ficient if only one of the sampled functions is complex and
will choose accordingly. If both are complex, MIS provides
little advantage and is likely to waste samples in regions

with little influence. Visibility and lighting can both be
complex and only a joint sampling of both functions can be
efficient (Fig. 2). A first step towards this direction was taken
in [3]. Their technique importance samples the environment
map to produce a candidate sample. Its probability is then
evaluated again using a special pdf involving the BRDF to
determine if an evaluation is triggered. Such a sampling
can quickly become costly, due to potentially high rejections
rates (in the order of 90%) [3].

More related to our sampling algorithm are tech-
niques for joint importance sampling. They compute
the BRDEF/environment-map product [4], [5], [6] and
BRDEF/visibility /environment-map product [33] to steer
sample placement. In the context of participating media,
joint importance sampling can also be employed to optimize
volumetric paths [8]. In this article, we focus on efficient
visibility /environment-map sampling. Nonetheless, we also
rely on a quadtree-based product to hierarchically warp
samples [4].

3 OVERVIEW

Here, we describe our approach. First, we present the back-
ground knowledge necessary for the understanding of our
method (Sec. 4). Our actual solution is described, starting
with our data structures and data representations (Sec. 5).
All elements have been designed with GPU-efficiency in
mind. Our visibility-sweep algorithm (Sec. 6) allows us to
derive an approximate visibility within the volume. This
information is then used in conjunction with the scene
illumination to yield a joint sampling technique to steer
the MC evaluation (Sec. 7). We then extend the visibility
sweeps with an on-the-fly filtering function (Sec. 8) to
prevent potential undersampling artifacts. Further, we in-
vestigate three update schemes to support efficient re-usage
of visibility in animated volumes (Sec. 9). The benefits for
convergence behavior and the support of dynamic volumes
will be demonstrated in Sec. 10.

4 BACKGROUND AND GOAL

We use a single-scattering rendering equation [27] imple-
mented in the framework of [15] for isotropic media:

i " (e () Lo (), M

It describes the radiance L aggregated along ray positions
x(u) towards the camera at x. = x(0), where

Ttttz = e (- [rp)a) @

Lo(x(u)) = 7, (D (X(U)))/QV(X(U)yw)Li(W)dw
®)

T, is the transmittance between two points and L, the outgo-
ing radiance towards the camera. The negated exponent of
T, is called the optical thickness. The volume density D(x(u))
is mapped to an extinction coefficient 7, and a scattering
coefficient T, by a transfer function. The environmental light
L; is assumed to be independent of x(u). Consequently,

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 4

the visibility V' of the light in direction w from x(u) is the
transmittance to a point at infinity:

Vix(u),w) = hlingo T-(x(u), x(u) + hw), 4)

where the integration domain is, in practice, limited by the
volume’s bounding box. For brevity, we will mostly omit
the ray parameter u and write only x to denote a certain
location.

We use stochastic ray marching to solve the integral in
Egs. (1) and (2). To solve Eq. (3) stochastically, we rely on
MC integration:

1 NTpr Vix,wj)L;(w;
ORES> (DY o))

Here, p is a pdf, which is used to weigh and generate ran-
dom sample vectors w;. The efficiency of the MC integration
depends highly on the pdf p, as the variance and hence
the convergence of the estimator depends on how closely
p approximates the integrand (Fig. 2).

This paper addresses the question of how to approximate
this optimal pdf efficiently. To this extent, we split p into two
components py and pr,,:

1

py is a pdf resulting from visibility information, which
changes locally throughout the volume based on the loca-
tion x. pr,, is a pdf based on the position-independent envi-
ronmental lighting. Finally, W (x) = [pv (x,w)pr, (w)dw is
a normalization factor to produce a valid pdf.

pr, is known and can be derived directly from the
intensity of the environmental lighting, normalized by its
overall intensity. The representation of these functions, the
computation and update of py (x,w) and p(x,w), and how
to draw samples from p(x,w) are the core of our method
and explained in the following sections. We describe the
data structures, then the visibility approximation, which
will be used to derive py, before combining all the elements.
Then we will extend the basic approach and adapt py to
prevent visually disturbing high-energy samples and inves-
tigate three update schemes for py for animated volumes.

5 OCTAHEDRAL REPRESENTATION

Before explaining the algorithmic part of our approach, we
will focus on the chosen data structures. All representations
were developed with efficiency on modern graphics hard-
ware in mind. We opt for simplifying generation, sampling,
and product computation, which will be necessary to drive
the MC sampling process.

As we are dealing with potentially semi-transparent
media in volume rendering, we will assume for the mo-
ment that V' is locally smooth with respect to x and w. In
consequence, it can be considered sufficient to estimate V' at
discrete positions x4 and using a few discrete directions wg.

We represent visibility by discrete values arranged on
a regular five-dimensional grid, the wisibility grid V. The
first two dimensions encode directions, the remaining ones
spatial positions. These positions encompass the density

volume and the values stored at the grid centers are inter-
polated during rendering to obtain the visibility estimates at
each location within the volume. Each entry represents the
average probability to hit the environmental light source for
all rays originating in the cube in physical space represented
by the spatial component in the visbility grid and whose
directional components are in the corresponding interval.

In our approach, we internally save several 3D textures
to store the visibility. Each texture saves the visibility for a
single direction wy throughout the 3D volume. Each pass
of our sweeping-plane algorithm (Sec. 6) updates one of
these textures. When sampling a direction during a scat-
tering event (Sec. 7) we opt for an octahedral representation
generated on the fly, which is a discrete image-based area-
preserving representation [28] and can be saved/accessed as
a 2D texture (Fig. 3). Each texel in this map is associated with
one direction wy and indicates the accumulated volumetric
visibility in direction wq from the respective grid cell’s
location.

6 VISIBILITY APPROXIMATION

In this section, we describe how to compute the entries
of the visibility grid via our sweeping-plane algorithm.
Visibility is computed for one direction wy at a time. In
each step, one slice of V is evaluated in parallel, reusing
results from the previous slice. This insight makes it pos-
sible to only use a few value lookups per slice, instead of
accumulating visibility along a ray throughout the whole
volume. In consequence, the amortized cost over all grid
cells is comparatively low. After all directions have been
treated, the resulting V is used to derive the pdf py, which
will guide the MC sampling process. An illustration of the
entire process is given in Fig. 4. Hereafter, we describe the
algorithm for a fixed direction wg.

In the following, we let Xynin, Xmaz € R3 be the 6 values
that describe V’s bounding box to ease notation. First, let a
plane Py be given by normal

n= argmax |w]f (6)
ne{e;,ez,es}

where {e1, €3, e3} is the standard basis, and distance from
origin

ifnTwy <0,

otherwise.

@)

Fig. 3: Octahedral representation: We encode spherical
functions using an octahedral representation. Left: 3D rep-
resentation, right: unfolded 2D representation.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015

For each direction wy in the octahedral map:

Sweeping Kernel

(1) Initialize rays and transmit-
tance.

i 1—1

(2) Iterate over density volume
to accumulate transmittance
to next slice of visibility grid.

Sweeping Kernel

(3) Add value to total transmit-
tance and save in 2D texture
of sweeping kernel.

i Sweeping Kernel

(4) Project centers of slice i of
visibility grid onto sweep ker-
nel and query transmittance.

L Repeat for each slice 7 along dominant axis J

Fig. 4: Precomputation algorithm overview: We compute the transmittance along sample rays starting at an axis-aligned
plane outside of the density volume. The accumulation of transmittance reuses results needed at the previous slice which
are cached in the sweeping kernel. Using a 3D texture to store the respective part of the visibility grid for each direction w

allows us to exploit memory locality on the GPU in this step.

Starting from this plane, we accumulate transmittance along
rays whose origins are arranged on a regular 2D grid within
P4. This grid is associated with a 2D texture, which stores
intermediate values during the sweeping-plane algorithm
and we’ll refer to it as the sweeping kernel. It is noteworthy
that visibility grid, input volume, and sweeping kernel
do not necessarily share the same resolution along corre-
sponding axes. It is sensible to choose the resolution of
the sweeping kernel to be similar to the resolution of the
input voxel grid to ensure not to miss small features of
the volume. In our experiments, we choose it to be s X s,
with s = max{ry,ry,,r.}, where ry,r,,r, are the number
of voxels in the input grid along the z,y, 2 axes. However,
doing the same for the five-dimensional visibility grid may
lead to prohibitive memory requirements, which is why we
typically choose a lower resolution for it.

To coordinate ray traversal, we introduce a sweeping
plane Sy parallel to Pg. The main loop moves Sy along n
by one visibility-map slice in V at a time until the entire
volume is traversed. The traversal is done reversely to wy
in positive (nTwy < 0) or negative direction (otherwise). At
iteration ¢, Sy is placed such that the centers of slice ¢ (or
r — 1 — 4, resp.) coincide with Sy. In one iteration, we only
need to compute a change from the previous slice by

V(x(t:),wa) = V(x(ti-1),wa) - Tr(x(ti-1), x(t:)), (8)
where t; = tepng - H:/ 2 with r the resolution of V along the
sweeping axis and tepg = N7 (Xmar — Xmin)/|nTwa|. The
value of T (x(t;—1),x(t;)) is computed via ray marching on
the input volume; then, we update the visibility according
to Eq. (8) and store it in the sweeping kernel. As the final
step of an iteration, we project the visibility grid centers of
slice i onto P4 and look up the visibility values via bilinear
interpolation of the neighboring grid cells in the sweeping
kernel. We will refine this step in Sec. 8 to account for
subsampled visibility grids.

After the algorithm finishes and all directions have been
processed, V encodes a discrete approximation of the visi-
bility within the volume, which, if normalized, results in the
pdf py. We add a small € = 0.01 beforehand to prevent zero
probabilities.

The iterative update is significantly more efficient than
individual visibility computations per visibility grid cell.
Additionally, one can implement a further optimization
which exploits that the visibility is multiplicatively accumu-
lated over [0, tepng). The accumulation towards the opposite
direction —wg4 can be computed from the final entries in the
sweeping kernel and the values in the visibility grid. Specif-
ically, given a ray y(.) with y(0) = X(tend), ¥ (tend) = x(0),
the visibility along y to slice r — 1 — i is

V(Y(tr—l—i)a _Wd): Tr(y(0)7 Y(tr—l—i))
= T, (x(ti), X(tend)) &)
_ T,(x(0), x(tena))
Vi(x(t:),wa)
where T,.(x(0), X(tenq)) is just the value stored in the sweep-
ing kernel at the end of a sweep. However, due to filtering
issues discussed in Sec. 8, we compute visibility for the

reversed directions explicitly using the original sweeping-
plane algorithm explained earlier.

7 JOINT IMPORTANCE SAMPLING

At a scatter event during rendering, we want to make use
of a joint importance sampling combining visibility and
environmental lighting. We have explained how to produce
the pdfs for py and pr,,. Here, we explain how to combine
both. The computation is divided into a preprocess, taking
place whenever the environment map, the data, or the
transfer function changes, and an online process, taking
place whenever a scattering event occurs during rendering.

Preprocess: For the preprocess, we assume that the en-
vironment map is given as an octahedral map, otherwise
we convert it first. As a reminder, p;, is defined as the
normalized intensity value of the environmental lighting,
giving higher importance to brighter parts. Being derived
directly from the environment map, the resolution of the
octahedral map of py,, is usually higher than for py . To com-
bine both, we first adapt the resolution of pr,. To simplify
explanations, we assume that the resolution in width and
height is chosen to be a power of two.

Similar to [4], we create a multiresolution pdf from py,,
in form of a quadtree, i.e., each node saves the average of its

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 6

four child nodes, with the leafs being the individual pixels.
To match the resolution between lighting and visibility, we
choose a level [in pr, whose resolution is equal to the
angular resolution of a single spatial position within the
visibility grid We then multiply all entries in V with the
respective information in py, at level [. The result is an
unnormalized joint pdf of the combined visibility /lighting
product.

Rendering: In the rendering phase, we create a final
combined pdf p for each scatter event at location x on the fly.
This pdf is then used to draw a single sample, as this strat-
egy is often more efficient than drawing multiple samples at
once in a stochastic volume renderer with semi-transparent
media [15]. Nonetheless, the sampling algorithm naturally
extends to any number and distribution of initial samples,
including quasi-MC methods [23].

To derive the pdf p, we first linearly interpolate the
neighboring visibility grid cells. After our preprocess, these
carry the information of visibility and lighting. Initially,
the interpolated result is not a pdf. Nevertheless, we do
not normalize it right away, but compute a multiresolution
representation in the form of a quadtree, where each node
is the average of its child nodes. Following the hierarchical
warping technique [5], we can then transform a uniformly
distributed [0,1)*-variable into one that is distributed ac-
cording to p by passing the sample down in the quadtree
following the local probabilities. In contrast to [5], we need
to normalize each 2 x 2 tile that we encounter during the
quadtree sampling to determine the actual probabilities.
Nonetheless, as we only draw a single sample per scatter
event, the effort is only O(logn), where n is the number of
texels in the lowest level of the quadtree. In comparison,
it would be O(n), if we created a complete pdf for the
interpolated octahedral map.

In case the environment map has a high resolution, we
propose an additional two-step approach, which continues to
descent in the remaining quadtree of the higher-resolved
environment map [4], [6]. This step is especially beneficial
in the presence of complex high-frequency illumination,
which is otherwise not well taken into account during the
sampling.

8 SWEEP-SPACE FILTERING

The variance of the estimator for L, sampled according to
p from Eq. (5) depends on how closely the reconstructed
visibility resembles the original one. Undersampling may
increase variance as it may introduce aliasing which will
lead to higher deviation from exact visibility. Sampling the
visibility at a sufficiently high rate is difficult, not only
because the visibility function is high-dimensional, but also
because Moiré-like interference resulting from projecting the
data volume to the visibility grid’s spatial sample positions
make the choice of an appropriate angular grid resolution
difficult.

Even though this can be alleviated, storing this visibility
would lead to impractical memory requirements for high-
resolution density grids. Likewise, standard oversampling
in the angular and/or spatial domain scales precomputation
time by the number of samples per grid cell. The sweeping-
plane algorithm described in Sec. 6 suggests a more efficient

P Sy

min

max|

Fig. 5: Calculation of the filter size Hatched Area: We
account for the oblique projection when decimating the
sampling rate before transferring the values to the visibility
grid slice. Yellow Area: We widen the filter by a maximal
amount that depends on the opening angle o and distance
t; along wq.

approach which relocates the decimation to the iterations
of the sweeping stage. It assumes coherency of visibility in
both the angular and spatial domain and, particularly, that
coherency is still significant if both position and angle are
slightly varied.

As a first step, we apply an anti-aliasing filter along
the values on the 2D sweep plane before projecting them
onto the visibility grid cells, i.e., it is applied between
steps (3) and (4) in Fig. 4 to account for the 2D resampling
when mapping from the sweeping plane to a visibility grid
slice. We determine the filter size by computing a bounding
rectangle of a 3D visibility grid cell that is projected along
wq onto the sweep plane. A schematic view is presented in
Fig. 5.

Following the coherency assumption, we then widen this
filter along the axes of the sweeping plane to approximate
the visibility along further rays in the beams corresponding
to the grid cells. We account here for two quantities. The
first is the area covered on the unit sphere by a mapped
octahedral grid cell. We describe it by an opening angle «
of the beam corresponding to one cell of the visibility grid.
We assume « to be constant for simplicity, even though it
slightly varies due to anisotropy of the octahedral represen-
tation. With an 8 x 8 angular resolution, a does not exceed
/8 = 11.25°. The second quantity is the value ¢; (cf. Eq. (8))
which is the distance from slice ¢ of the visibility grid to
P4 along wy after which the transmittance does not change
anymore. We compute the extension of the filter by

t; - tan(B), (10

where 0 < § < a. A value of 8 = «/2 was empirically
found to yield good results. Estimating an optimal value
for 3 is left for future work as it always results in a trade-
off between precision and recall. Filtering with a box filter
across this domain can be efficiently implemented on the
GPU using a sliding window as its size is constant for all
positions across the filtered slice of the visibility grid and is
separable along its axes.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 7

; ‘L}\(a) Unfiltered

_B))Dversampling ax
£ \ O n

2\

{
\

g

2\

Fig. 6: Sweep-space filtering: Comparison of (a) the unfil-
tered result from [14], (b) 4%, and (c) 16 x oversampling in
the angular domain, and (d) our filtering algorithm. The
insets visualize the absolute differences to the reference
image. For all methods we use 64 samples per pixel (8192
SPP for the reference).

A comparison to angular oversampling is given in Fig. 6.
The depicted error insets show that the filtering, though
approximate, produces less pronounced errors in the final
image, even when compared to a 16x oversampling. In
Fig. 6a one can also see that undersampling leads to dis-
turbing visual artifacts.

9 LAzY UPDATE FOR ANIMATED VOLUMES

For static scenes the computation time required for the
sweeping-plane algorithm is negligible, but seems unnec-
essarily high for dynamic data, which often exhibits unex-
ploited coherence. Furthermore, in certain scenarios, such
as simulations, it is not possible to precompute visibility
and a direct evaluation in each frame would be required. In
the following, we will investigate different sampling options
for situations where data changes are not known in advance
but exhibit temporal coherency.

Under the assumption that the computed approximate
visibility does not change erratically from frame to frame,
we want to postpone the recomputation of the importance
function p for certain parts of the visibility map to reduce its
computational cost per frame. In other words, we decouple
the update frequency from the rendering frame rate. As
shown for the static case, the massive parallelism inherent in
the sweeping-plane algorithm, is crucial for the preprocess.
Thus, we focus on strategies that determine subsets of
directions wq to be updated per frame.

For animated data, the transmittance, visibility, volume
density and environmental light become time-dependent
quantities. Consequently, the joint probability p = p(x, w, t)
is also time-dependent. Since p steers the rendering, it is a
straight-forward assumption that update directions w; for
p’s discrete approximation should be chosen based on its
change with respect to time ¢ averaged over all positions
x within the volume. Computing the changes is, unfortu-
nately, as costly as computing visibility itself, which is why

Fig. 7: Round-robin lazy update: Calculation of the update
pattern for the round-robin lazy update algorithm. For a
2™ x 2™ octahedral map (right), we consider the 2n-bit binary
numbers (upper left). The = coordinates are composed of
the odd bits, the y coordinates of the even ones in reversed
order. The obtained order of directions is cyclically traversed
as the animation progresses (cf. Fig. 3).

we opt for simpler ways to update py. In the following,
we describe the various algorithms we tested in detail. The
evaluation and comparison of these algorithms will be given
in Sec. 10.

Round-Robin Update: One promising approach for
animation is a round-robin scheme. Inspired by low-
discrepancy sequences, we establish an update ordering for
this approach by indexing each visibility direction in the
octahedral visibility representation. The respective direction
is derived from the binary representation of the update
index (Fig. 7). Extracting and reversing the order of the even
and odd bits results in the x- and y-position, respectively.
Essentially, this is an inversion of the morton code [22]
that changes the most significant bits first instead of last.
This assures a well distributed sampling order over the
octahedral domain.

Environment-Guided Update: While round-robin
schemes ensure a good distribution over time, they do
not directly exploit the changes in the scene. Because
volume changes are not easy to analyze, we decided to
investigate if the environment map can be better exploited.
Our motivation was that visibility towards strong light
sources should not be underestimated, as it can lead to
fireflies, which are difficult to remove. Consequently, we
choose the update directions by sampling the normalized
intensity values of the environmental lighting py, directly,
using the appropriate level whose resolution is equal to the
directional resolution in our visibility map.

Static Update: As a reference, we also implemented
a static update scheme, which simply updates py for all
directions in uniform intervals of n frames and uses this py
to render the following n frames.

10 RESULTS

We integrated our approach into a stochastic CUDA-based
volume renderer [15]. We tested our approach with two
different PCs, a 64bit Intel(c) Core™ {7 3820 with 3.60GHz,
32GB of RAM, and an NVIDIA GeForce GTX Titan as the
standard machine for generating the images and experi-
ments, and a 64bit Intel (© Core™ i7 920 with 2.67GHz,

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 8

12GB of RAM, and an NVIDIA GeForce GTX 760. We
compare performance and present a qualitative comparison
between existing solutions and our approach. Further, we
compute the mean-squared error (MSE) and compare to ref-
erence solutions using 8192 samples per pixel with uniform
sampling. Our environment maps all had a resolution of
2048 x 2048 pixels (in the octahedral representation). For
all tests, the joint importance pdf p was constructed on the
fly for each scattering event via interpolation of the eight
neighboring spatial grid cells. As each visibility direction
w is represented as a single 3D texture, we can efficiently
exploit hardware interpolation to create each entry in p from
its eight neighbors with a single texture lookup.

We will first show results for the basic algorithm de-
scribed in Secs. 6 to 7 and then show the improvements
achieved by our sweep-space filtering (Sec. 8), before dis-
cussing animated scenes (Sec. 9).

Timings and Parameters: The overhead during the ren-
dering phase using our visibility sweeps is low compared
to the gain in quality, especially as the sweeping-plane
algorithm to update the visibility in V does not need to be
invoked if only the viewing direction changes. As standard
parameters, we use a 8% directional map for each visibility
position and use one visibility position for each 43 voxels
in the original data volume. Using these parameters the
memory requirements of the visibility grid are equal to the
original data volume. The overhead during rendering is
only around 10%, compared to rendering the same number
of samples per pixel using plain uniform sampling. This
includes the interpolation, creating the multiresolution 2D
pdf representation on the fly and the joint importance sam-
pling itself. Please note that neither the filtering extension
nor the lazy updates affect render time as they solely act in
the preprocessing phase.

We compared our visibility sweeps approach to a brute-
force computation of the visibility, where all directional
entries for every discrete spatial position in V are computed
exactly using ray marching. Table 1 shows a comparison
of the timings for different parameters. For the aforemen-
tioned standard parameters and a reasonable number of
absorption rays our approach is approximately 6x faster
than the brute-force computation. It is important to note
that this factor becomes larger with an increasing number
of evaluated visibility positions within the volume (up to
a factor of 15 in our tests in Table 1). Further, the test scene
(Manix) resembles an isosurface. It has a very steep transfer
function, which means that the brute-force ray marching can
stop as soon as a ray hits the isosurface. Our sweeping-
plane algorithm needs to traverse the whole volume. So,
we deliberately chose a difficult scenario—the benefit will be
even bigger for more transparent volumes.

Filtering: While sweep-space filtering is highly beneficial
for scenes with strong visibility discontinuities (Fig. 6), we
still need to verify that our approach does not deteriorate
convergence in scenes with low-frequency visibility. To this
end, we choose a suitable scene and compare the filtered
results with importance sampling of the environment map
and the unfiltered two-step approach in Fig. 8. Even in
particularly uniform regions, where we expected the benefit
of filtering to be minor, the full-size filter is roughly on par
with the two-step approach in terms of MSE. Further, recall

Vis. Positions 2562 x 230 1282 x 115 642 x 57 322 x 28
Memory 964.7 120.6 15.0 1.8
Sweep (162) 3.76 1.93 0.76 0.53
Sweep (322) 3.89 1.97 0.79 0.54
Sweep (642) 4,05 2.03 0.79 0.55
Sweep (1282) 431 240 1.04 0.59
Sweep (2562) 6.36 3.23 1.63 1.41
Brute-Force 97.35 15.17 2.79 0.57

TABLE 1: Memory requirements (MB) and timings (sec-
onds) for the sweeping-plane algorithm and varying input
parameters in comparison to a brute-force visibility compu-
tation. We shoot 162, 322, 642, 1282 and 2562 absorption rays
per sweeping direction. All experiments are performed on
the Manix data set (512 x 512 x 460 voxels) on an NVIDIA
GeForce GTX 760. The variance of recorded timings of the
CUDA implementation can be quite high due to scheduling
with other render tasks of the OS. Hence, all depicted
timings are the best of 10 runs.

MSE: 10.45¢-3 - MSE: 7,29e-3

3

¥ =
(a) Environment MSE: 6.77¢-3 (b) Unfiltered MSE: 4.58¢-3

MSE: 7.32¢-3

(d) QAngle

MSE: 5.16e-3

Fig. 8: Influence of the sweep-space filter to regions with
homogeneous visibility: In addition to a result from envi-
ronment map only (a) and the unfiltered result from [14]
(b), we compare the filtered result in which we used the full
angle « (d) to one of half the magnitude (c). All images have
been created from 32 SPP.

that the filter approach approximates the mean visibility
along a frustum by averaging visibility along parallel rays.
We, therefore, additionally compare to a generated image
for which the sweeping plane is filtered assuming half of
the angle ¢, i.e. 5 = a/2. We found this value to deliver the
best tradeoff in our experiments and use it as the standard
value in all experiments.

Our filtering approach is significantly faster than naive
oversampling. Table 2 lists runtimes of the basic approach
along with overhead factors for filtering for various data
sets. We used one visibility position for each 83 subset of
the respective data volumes. Sweep-space filtering (SSF)
is faster than 4x angular oversampling, which yields an
overhead factor of 3x, for most data and a sweep plane
resolution of 256%. The ratio improves with finer resolution
of the sweep plane. We found the influence of the filter
size insignificant due to the separable sliding window im-

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 9

Resolution 2562 5122 10242
Engine 2562 x 128 0.63 (2.05x) 0.98 (1.28x) 2.33 (0.55x)
Fluid 2563 0.60 (2.36x) 1.03 (1.42x) 2.72 (0.52x)
Smoke 3842 x 512 1.05 (2.26x) 1.75 (1.40x) 4.56 (0.57x)

Backpack 5122 x 373 1.09 (3.08x) 1.81 (1.88x) 4.96 (0.81x)
Statue 535 x 342 x 690 1.29 (3.24x) 2.05 (2.17x) 5.47 (0.85x)
Manix 5122 x 460 1.46 (2.42x) 2.21 (1.66x) 5.33 (0.81x)

TABLE 2: Timings in seconds for the sweeping-plane
approach without filtering: In parentheses we list overhead
factors of our sweep-space filtering for 2562, 5122, and 10242
rays per sweeping direction. All depicted timings are the
best of 10 runs on an NVIDIA GeForce GTX Titan.

Environment
MSE: 4.9e-3
SPPz 130

«Uniform
MSE: 10.6e-3
SPP: 112

Reference

Two-step
MSE: 3.0e-3
SPP:99

Combined
MSE: 7.2e-3
SPP: 101

Visibility
MSE: 9.6e-3
SPP: 115

Fig. 9: Equal time comparison: All images, except the refer-
ence image, have been created using 10 seconds of rendering
time on an NVIDIA GeForce GTX 760.

plementation. Note that oversampling and filtering can be
mixed in a natural way.

Qualitative Evaluation for Static Scenes: In a static
context, we compare our approach to uniform sampling
(Uniform), importance sampling of the environment map
only (Environment), importance sampling of the visibility
only (Visibility), a combined approach, where the visibility
pdf is multiplied with the downsampled pdf from the en-
vironment map (Combined), as well as our combined two-
step approach, which makes use of the combined sampling
but switches to the full environment-map resolution as soon
as a leaf in the combined pdf representation is reached
(Two-step). In Fig. 9 we investigate the benefits of the basic
approach [14]. For all the remaining test scenes sweep-space
filtering is additionally enabled.

Fig. 9 shows an equal-time comparison of all the tech-
niques after 10s render time, excluding the visibility pre-
computation. For comparison, we show the computed num-
ber of samples per pixel (SPP) and the Mean-Squared Error
(MSE) for each approach. Though the number of samples
is lower, due to the computational overhead induced by
the joint sampling, the noise is significantly reduced with
our approach. Due to a lower ray coherency the uniform
sampling creates fewer samples per pixel in the same time
than most of the other approaches.

Results for static scenes with an equal sample count
are shown in Fig. 10. In all cases the proposed Two-step
approach performs best.

Additionally, we provide error plots for the Beetle,
Statue, and Backpack scenes with respect to the number
of samples in Figs. 11, 12 and 13. The y-axis in all plots
is in log scale. As expected, uniform sampling performs
worst. Environment map and uniform sampling perform
almost equally well on the Statue scene. Presumably, envi-
ronmental importance sampling wastes a lot of samples that
are absorbed within the volume. The combined sampling
approach suffers to some extent from the low resolution
of the visibility function and, therefore, the combined pdf
is not able to capture the high frequency details in the
environment map. This disadvantage is compensated by the
two-step approach, which can make use of both the visibility
and the high-frequency illumination information and shows
better convergence rates even at high sampling rates. The
results suggest that it is highly beneficial to incorporate the
proposed visibility sweeps and joint sampling in the two-
step approach for stochastic MC volume rendering.

Qualitative Evaluation for Dynamic Scenes: We tested
the lazy update strategies on two four-second-long ani-
mated sequences at ~ 25 frames per second. The Smoke
sequence (Fig. 14 top) has homogeneous visibility, while the
Fluid sequence (Fig. 14 bottom) is one with discontinuous
visibility. For environment-guided and round-robin update,
we update four directions per frame, and for the static
update we recompute the full visibility grid after every 16
frames. Hereby, we reduce the number of total directional
updates by a factor of 16 in all cases. The update cost
per frame settles on 100-150 and 150-200ms in all our test
settings for the Fluid and Smoke animations, respectively.

In Fig. 15, we provide equal-time comparisons which
are adjusted to include render and update time for (a)
the full animation, as well as the (b) first and (c) last 20
frames of each of the two. The update times for the static
update are incorporated by averaging them over the frames
from the current to the next visibility recomputation. As a
reference and neglecting the computational overhead, we
provide a Full Update plot, for which the full visibility
grid is recomputed in each frame. Additionally, we also
show standard environment importance sampling executed
during the rendering phase, avoiding any preprocessing.
Nevertheless, for all tested strategies the update cost already
amortizes compared to environment importance sampling
for a time budget of 250ms.

Interestingly, the environment-guided update performs
much worse than the other two tested strategies. The reason
is that certain directions are almost never sampled when
using a non-deterministic strategy. While the static update
performs on average as well as the round-robin strategy, the
error increases over the course of the animation, the more
frames lie between the current frame and the last update.
For the Smoke sequence in Fig. 14, the last update of the
visibility data in Frame 62 (resp. 77) was 14 (resp. 13) frames
ago. Here, the approach performs much worse than on
the other two depicted frames. In contrast, the round-robin
approach does not suffer from temporal artifacts. Further,
in a practical scenario, the static approach would show a
very inconsistent performance. Additionally, the two-step
approach ensures that the round-robin scheme still inte-
grates the environment map information very successfully,
which makes it the most robust approach in our tests.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 10

SPP

MSE: 1,10.79e-3 | MSE: 106.77e-3:-§ MSE: 1D8:51e-3 MSE: 100.72¢-3

I ;"_r'-. 0 E - = S T

32
SPP

MSE: 8.18e-3

64
SPP

MSE: 5.63e-3
Combined

Uniform Environment Visibility Two-step

16
SPP

128
SPP

512
SPP

Uniform Environment Visibility Combined Two-step

SPP

32
SPP

MSE: 10.65e-3

128
SPP

B e ot ma;; BaCkpaCk MSE: 8.53¢-3 | MSE: 3.92e-3 | MSE:7.81e-3 || MSE: 7.78¢-3 | MSE: 2.88¢-3
Uniform Environment Visibility Combined Two-step

Fig. 10: Equal sample comparison: We compare our proposed two-step importance sampling technique (magenta) using
different sample sizes to uniform sampling (red) and importance sampling of the environment map only (yellow), the
visibility only (green), and the combined low-resolution product (cyan). All images are unbiased and a reference, as well
as the environment map are shown on the left.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015 11

—— Uniform
—— Environment
—&— Visibility

#— Combined

1071 —+— Two-step

Mean-Squared Error

L L L L
0 50 100 150 200 250
Samples per pixel

Fig. 11: Convergence graphs for the Beetle scene (Fig. 10).

—— Uniform
—— Environment
—8— Visibility

~— Combined
W —+— Two-step

Mean-Squared Error
=

0 50 100 150 200 250
Samples per pixel

Fig. 12: Convergence graphs for the Statue scene (Fig. 10).

—— Uniform
—v— Environment
—8— Visibility
Combined
107 i —+— Two-step

Mean-Squared Error

0 50 100 150 200 250
Samples per pixel

Fig. 13: Convergence graphs for the Backpack scene (Fig. 10).

Overall, the results demonstrate that the stategies for
exploiting the temporal coherence in animated data can
easily be incorporated into the framework and that they are
an attractive choice for streamed data.

11 CONCLUSION

We presented a joint sampling approach relying on visibility
and lighting information within an interactive unbiased
stochastic volume renderer. The core of our solution is
an efficiently-computed visibility approximation based on
a sweeping-plane algorithm. Its performance allows us to
change environmental lighting and transfer functions dy-
namically. We carefully designed our algorithms for GPU
execution and have demonstrated its applicability to differ-
ent volume data sets, including animated representations.

Further, we found that visibility sweeps are even benefi-
cial for traditional boundary representations, resulting from
steep transfer functions. Our approach usually significantly
lowers the amount of necessary samples when compared to
previous solutions at equal quality. This result is important
as sample evaluations are a very costly element in most
production and rendering contexts.

Though not yet implemented, interactive clipping (slic-
ing) of the volume is naturally supported in our approach,
as it simply requires disregarding the intensity values in
front of the slicing plane during the visibility computation.
A remaining challenge is the extension to support also the
triple product of lighting, visibility and phase-function. An
interesting direction could be to investigate the usage of
models such as the Henyey-Greenstein function [10], which
can be efficiently integrated across solid angles.

The sparse visibility map proposed in this article could
also be seen as an undersampled light field [18]. This would
open up the possibility of using frequency analysis to derive
appropriate filter kernels to reduce aliasing.

ACKNOWLEDGEMENTS

This work was partially supported by the FP7 European
Project Harvest4D and the IVCI at Saarland University.

We thank Pablo Bauszat for sharing the optimized box
filter code and Niels de Hoon for providing us with the
Fluid sequence.

REFERENCES

[1] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen.
Structured importance sampling of environment maps. ACM
Trans. Graph., 22(3):605-612, 2003.

[2] K. M. Beason, J. Grant, D. C. Banks, B. Futch, and M. Y. Hussaini.
Pre-computed illumination for isosurfaces. In Conference on Visu-
alization and Data Analysis, pages 1-11, 2006.

[3] D. Burke, A. Ghosh, and W. Heidrich. Bidirectional importance
sampling for direct illumination. In Proceedings of the Sixteenth
Eurographics Conference on Rendering Techniques, EGSR 05, pages
147-156, 2005.

[4] P. Clarberg and T. Akenine-Moller. Practical product importance
sampling for direct illumination. Computer Graphics Forum (Pro-
ceedings of Eurographics), 27(2), 2008.

[5] P. Clarberg, W. Jarosz, T. Akenine-Moller, and H. W. Jensen.
Wavelet importance sampling: Efficiently evaluating products of
complex functions. ACM Trans. Graph., 24(3):1166-1175, 2005.

[6] D. Cline, P. K. Egbert, J. F Talbot, and D. L. Cardon. Two
Stage Importance Sampling for Direct Lighting. In Eurographics
Symposium on Rendering, 2006.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

, VOL. XXX, NO. XXX, DECEMBER 2015 12

= Rendertime Only — Rendertime + Visibility Updates
Smoke, 23 L i g 2
\ " & N Frame
: i * 23
0,797 U)BB5E) 0459924
Frame
38
Frame
62
, & - Frame
e o " . W § | 77
B o = . . .
im-a,_._. Environment Full Static Environment Round-
Environment map Importance Update Update Guided Robin
= Rendertime Only ~ Rendertime + Visibility Updates
Fluid, 15 Fluid, 25
Frame
_ ; 15
10.941e-3 | 9.323e-3 9.995¢-3 9.064e-3
Frame
25
12.726e-3 | 8.347¢-3 8.179e-3 12.68¢-3 | 8.743e-3
Fluid, 38 Fluid, 71
Frame
38
10.91e-3 6.409¢-3 7.492¢-3 | 11.856e-3 | 7.156e-3
Frame
. 71
- 13.977e-3 | 8.133e-3 8.896e-3 | 11.276e-3 | 8.621e-3
-\m—-.-l R . 0
Environment Full Static Environment Round-
Environment map Importance Update Update Guided Robin

Fig. 14: Adjusted equal time comparison of animation: We compare our evaluated lazy update strategies (green) to
importance sampling of the environment map only (first column). The Full Update column acts as a reference for the
efficiency of the lazy updates; the full visibility grid is recomputed, but the computational effort neglected. All insets
except environment importance sampling use the two-step approach in the render phase and a time budget of 4s (Smoke)

/ 0.5s (Fluid) on an NVIDIA GeForce GTX Titan.

[7] P. Debevec. Rendering synthetic objects into real scenes: Bridging
traditional and image-based graphics with global illumination
and high dynamic range photography. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 98, pages 189-198. ACM, 1998.

L. Georgiev, J. K¥ivanek, T. Hachisuka, D. Nowrouzezahrai, and
W. Jarosz. Joint importance sampling of low-order volumetric
scattering. ACM Transactions on Graphics (TOG), 32(6):164, 2013.
M. Hadwiger, A. Kratz, C. Sigg, and K. Biihler. GPU-accelerated
deep shadow maps for direct volume rendering. In Proceedings of
the 21st ACM SIGGRAPH/EUROGRAPHICS Symposium on Graph-
ics Hardware, GH "06, pages 49-52. ACM, 2006.

L. C. Henyey and J. L. Greenstein. Diffuse radiation in the galaxy.
Astrophysical Journal, 93:70-83, 1941.

(8]

(9]

[10]

[11] D. Jonsson, E. Sundén, A. Ynnerman, and T. Ropinski. A Survey
of Volumetric Illumination Techniques for Interactive Volume
Rendering. Computer Graphics Forum, 33(1):27-51, 2014.

T.-Y. Kim and U. Neumann. Opacity shadow maps. In In Pro-
ceedings of the 12th Eurographics Workshop on Rendering Techniques,
pages 177-182. Springer-Verlag, 2001.

T. Kollig and A. Keller. Efficient illumination by high dynamic
range images. In Rendering Techniques, volume 44, pages 45-51.
Eurographics Association, 2003.

T. Kroes, M. Eisemann, and E. Eisemann. Visibility sweeps
for joint-hierarchical importance sampling of direct lighting for
stochastic volume rendering. In Proceedings of the 41st Graphics
Interface Conference, pages 97-104, 2015.

[15] T. Kroes, E. H. Post, and C. P. Botha. Exposure render: an interac-

(12]

[13]

(14]

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015

Mean-Squared Error

Mean-Squared Error

13

[= Rendertime Only

= Rendertime + Visibility Updates |

Fluid 0 - 99 Fluid 0 - 20 Fluid 79 - 99
i —E— Environment Importance i —E— Environment Importance ! —E— Environment Importance
—3¥— Full Update —¥— Full Update —¥— Full Update
3 —— static Update B —&— Static Update 3 —— Static Update
—+— Environment Guided Random —+— Environment Guided Random —+— Environment Guided Random
—>¢— Round Robin Update —>— Round Robin Update —>— Round Robin Update
107 107 107
8 8
i I
° °
2 3
5 <
E El
=3 =3
] @
< &
I I3
3 3
= =
10° 10° ; 10°
500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Time per Frame (ms) Time per Frame (ms) Time per Frame (ms)
Smoke 0 - 100 Smoke 0 - 20 Smoke 80 - 100
r
i —E— Environment Importance —E— Environment Importance —E— Environment Importance
—¥— Full Update —¥— Full Update —¥— Full Update
107 —&— Static Update 107 —E— Static Update 107 —&— Static Update
—}— Environment Guided Random —+}— Environment Guided Random 3 —}— Environment Guided Random
o —>— Round Robin Update —>¢— Round Robin Update —>— Round Robin Update
i
8 8
i i
= o
3 3
3 5
s E]
s [@ s
10 L 10 L 10
< ©
Q 9
= =
1]
10" 10" 10"

500 1000 1500 2000 2500

Time per Frame (ms)

3000 3500 4000 500 1000 1500

2000

2500 3000
Time per Frame (ms)

3500 4000 500 1000 1500 2000 2500 3000 3500 4000

Time per Frame (ms)

Fig. 15: Adjusted equal time comparison for the animated Fluid and Smoke sequences (Fig. 14) for different frame
intervals: The additional update of the visibility grid is quickly amortized by the tested update methods (green). The first
computation of visibility is not included, which accounts for about 1% of the total computation time for ~ 2 seconds per
frame in these 100 (101) frame sequence.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

tive photo-realistic volume rendering framework. PLoS ONE, 7(7),
2012.

T. Kroes, D. Schut, and E. Eisemann. A smooth probability-based
ambient occlusion approximation for volume rendering, chapter VI - 3,
pages 475-486. GPU Pro, 2015.

J. Kronander, D. Jonsson, J. Low, P. Ljung, A. Ynnerman, and
J. Unger. Efficient Visibility Encoding for Dynamic Illumination
in Direct Volume Rendering. IEEE TVCG, 18(3):447-462, 2012.

M. Levoy and P. Hanrahan. Light field rendering. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 96, pages 31-42, 1996.

F. Lindemann and T. Ropinski. Advanced light material interac-
tion for direct volume rendering. In IEEE/EG International Sympo-
sium on Volume Graphics, pages 101-108. Eurographics Association,
2010.

P. Ljung, C. Lundstrom, and A. Ynnerman. Multiresolution
interblock interpolation in direct volume rendering. In Proc. of
EuroVis, pages 259-266. Eurographics Association, 2006.

T. Lokovic and E. Veach. Deep shadow maps. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SSIGGRAPH ’00, pages 385-392. ACM Press/Addison-
Wesley Publishing Co., 2000.

G. M. Morton. A computer oriented geodetic data base and a new
technique in file sequencing. Technical report, IBM Ltd., 1966.

H. Niederreiter. Random Number Generation and quasi-Monte
Carlo Methods. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1992.

J. Novék, A. Selle, and W. Jarosz. Residual ratio tracking for
estimating attenuation in participating media. ACM Transactions
on Graphics (TOG), 33(6):179, 2014.

V. Ostromoukhov, C. Donohue, and P.-M. Jodoin. Fast hierarchical
importance sampling with blue noise properties. ACM Trans.
Graph., 23(3):488-495, 2004.

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

(34]

[35]

D. Patel, V. Soltészova, J. M. Nordbotten, and S. Bruckner. Instant
convolution shadows for volumetric detail mapping. ACM Trans-
actions on Graphics (TOG), 32(5):154, 2013.

M. Pharr and G. Humphreys. Physically Based Rendering, Second
Edition: From Theory To Implementation. Morgan Kaufmann Pub-
lishers Inc., 2nd edition, 2010.

E. Praun and H. Hoppe. Spherical parametrization and remeshing.
ACM Trans. Graph., 22(3):340-349, 2003.

C. Rezk Salama. GPU-based monte-carlo volume raycasting. In
Proc. Pacific Graphics, pages 411-414, 2007.

T. Ritschel. Fast GPU-based Visibility Computation for Natural
[lumination of Volume Data Sets. In P. Cignoni and]. Sochor,
editors, Short Paper Proceedings of Eurographics 2007, pages 17-20,
2007.

T. Ropinski, J. Kasten, and K. H. Hinrichs. Efficient shadows
for GPU-based volume raycasting. In Proceedings of the 16th
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG 2008), pages 17-24, 2008.
T. Ropinski,]. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and
K. Hinrichs. Interactive volume rendering with dynamic ambient
occlusion and color bleeding. Comput. Graph. Forum, 27(2):567-576,
2008.

F. Rousselle, P. Clarberg, L. Leblanc, V. Ostromoukhov, and
P. Poulin. Efficient product sampling using hierarchical thresh-
olding. The Visual Computer, 24(7-9):465-474, 2008.

P-P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting en-
vironments. ACM Transactions on Graphics (TOG), 21(3):527-536,
2002.

E. Sundén, A. Ynnerman, and T. Ropinski. Image Plane Sweep
Volume Ilumination. IEEE TVCG(Vis Proceedings), 17(12):2125-
2134, 2011.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, DECEMBER 2015

[36] E. Veach and L. J. Guibas. Optimally combining sampling tech-
niques for monte carlo rendering. In Proceedings of the 22Nd
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, pages 419-428. ACM, 1995.

[37] L. Williams. Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph., 12(3):270-274, 1978.

[38] S.Zhukov, A. Iones, and G. Kronin. An ambient light illumination
model. In Rendering Techniques, Proceedings of the Eurographics
Workshop, pages 45-56. Springer, 1998.

Philipp von Radziewsky was born in Hamburg,
Germany, in 1988. He received the B.Sc. from
University of Libeck, Libeck, Germany, and the
M.Sc. from Saarland University, Saarbriicken,
Germany, in 2012 and 2015, respectively.

He is currently a Ph.D. candidate at Delft Uni-
versity of Technology. His main research inter-
ests cover realistic image synthesis, real-time
rendering, and geometry processing.

Thomas Kroes has a Doctorate in Computer
Science at Delft University of Technology (TU
Delft). He has a bachelor degree in mechanical
engineering and a master in industrial design
engineering.

He is interested in medical visualization, and
in particular real-time photorealistic volume-
visualization. He is the author of Exposure Ren-
der, an interactive photorealistic volume render-
ing framework.

Martin Eisemann is a professor at the TH Koln
since 2015. He holds a Diploma degree in Com-
putational Visualistics (2006) from the Univer-
sity of Koblenz-Landau, Germany, and a Ph.D.
degree in Computer Graphics (2011) from the
TU Braunschweig, Germany, From 2011 until
2015 he was Akademischer Rat (Postdoctoral
Researcher) at the Computer Graphics Lab at
the TU Braunschweig. Between 2007 and 2014
he was a visiting researcher at several insti-
tutions including TU Delft, Saarland University,
EDM Hasselt and the Max-Planck Institut fir Informatik.

His main research interests include image- and video-based render-
ing and editing, visual analytics, and realistic and interactive rendering.

Elmar Eisemann is a professor at Delft Uni-
versity of Technology, heading the Computer
Graphics and Visualization group. Before, he
was an associate professor at Télécom Paris-
Tech and senior researcher in the Cluster of
Excellence at MPIl/Saarland University. He was
Normalien at the Ecole Normale Supérieure and
received his Ph.D. from Grenoble Universities at
INRIA Rhéne-Alpes. His interests include real-
time and perceptual rendering, alternative repre-
sentations, shadow algorithms, global illumina-
tion, and GPU acceleration techniques. In 2011, he was honored with
the Eurographics Young Researcher Award.

