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ABSTRACT

The full-width at half-max (FWHM) criterion is often used for both manual and automatic quantification of the
vessel diameter in medical images. The FWHM criterion is easy to understand and it can be implemented with low
computational cost. However, it is well known that the FWHM criterion can give an over- and underestimation
of the vessel diameter. In this paper, we propose a simple and original method to create an unbiased estimation
of the vessel diameter based on the FWHM criterion and we compared the robustness to noise of several edge
detectors. The quantitative results of our experiments show that the proposed method is more accurate and
precise than other (more complex) edge detectors, even for small vessels.
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1. INTRODUCTION

Quantification of the local vessel diameter, or the cross-sectional vessel area, is essential for the correct diagnosis
of vascular diseases. For example, the relative decrease in diameter of a stenosis is an important factor in
determining the treatment therapy.1 However, inherent to image acquisition is a blurring effect, which can be
modelled by the convolution with a point-spread function (PSF). This blurring function causes conventional
methods2–4 to inaccurately locate the vessel boundary, leading to a bias in most vessel-diameter quantification
methods.5–7

Recently, Manniesing8 proposed a method to reduce the average bias over vessels with different diameters.
However, the bias – which depends on the diameter – was not shown for each of the vessels separately. Mendonça9

and Bouma10 proposed a method to remove the bias caused by derivative-based edge detectors. However, the
computation of nine image derivatives is expensive in comparison to intensity based methods, such as the FWHM
criterion.11–13 The FWHM criterion is often used because it gives a reproducible and precise – although not
accurate due to bias – estimation of the vessel diameter.

In this paper, we propose a simple method based on FWHM that removes the bias for vessels at low com-
putational cost. We will analyze the signal-to-noise ratio of several edge detectors and show that the FWHM
is not only cheaper but also more robust to noise than the derivative-based edge detectors. Finally, the pro-
posed method will be compared with the edge-detection methods – such as the maximum gradient magnitude,
Marr-Hildreth14 and Canny3 – on synthetic data and on computed-tomography (CT) data of a phantom.

2. METHOD

Grey-level thresholding is a fast operation that is still widely used for image segmentation.15 A bright object
with a high intensity IH can be separated from a dark background with a low intensity IL by using a threshold
at Ithr = (IH + IL)/2. For large objects with straight edges, this intensity indicates the correct location of the
separation between two objects.

Some methods use one iso-value – which is fixed at half the intensity of the object before blurring – for
segmentation and visualization16 of vessels. However, a global threshold based on this value shows a large
underestimation of the diameter for small vessels, and the vessel boundary may even be missed while it is still
clearly visible in the images.
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Other methods use the FWHM criterion to determine the vessel diameter. This criterion adapts the threshold
to the local maximum and minimum intensity on the edge transition. As the maximum intensity of a small vessel
decreases due to blurring, the threshold will also decrease. However, this method also shows a large dislocation
for small vessels.

In this paper, we propose an unbiased vessel-diameter quantification method based on FWHM. Figure 1 shows
the dislocation (r0 − R) of the vessel with true radius R and a detected radius r0 for the thresholding methods
based on an iso-value or on the FWHM criterion. The analysis is based on the assumptions that the vessel has a
circular cross-section and that it was Gaussian blurred with standard deviation σ during acquisition. Although
the point-spread function (PSF) is not completely Gaussian, this approximation can be made for several imaging
modalities, including CT.17 White Gaussian noise was used to analyze the robustness of the method. To verify
the validity of the assumptions, the method was used on CT data.
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Figure 1. The dislocation (r0 −R) of the vessel boundary for two threshold-based methods. The fixed iso-value segmen-
tation shows an underestimation, and the FWHM criterion shows both an under- and overestimation of the vessel with
radius R and Gaussian blur with standard deviation σ.

2.1. Method for Unbiased Quantification based on FWHM

The gradient magnitude (Lw) of a disk, with intensity IH = 1.0 inside and IL = 0.0 outside the disk, at distance
r from the center is:10

Lw(r,R, σ) =
R

σ2
exp

(
−r2 + R2

2σ2

)
I1

(
r R

σ2

)
(1)

Where I1 is the modified Bessel function of the first kind. With this equation, we can compute numerically the
intensity L, the location of the thresholds and the relation between the detected radius r0 and the true radius
R of a cylindrical vessel. The relation in Figure 2 allows a correction by mapping the dislocated ‘input’ to the
corrected ‘output’ radius, and it can be implemented as a look-up-table operation. Diminishing the bias leads
to a more accurate measurement.

The stability of this mapping is analyzed by looking at the effects on the output of a perturbation on the
input. Figure 3 shows that a perturbation of 2% on the detected input radius will lead to a small perturbation
on the output (less than 10%), when R > 0.7σ (r0 > 1.23σ). This is small in comparison to the error of the
uncorrected radius (Fig. 3b: dashed). For very small vessels (e.g., R < 0.7σ), the precision can be increased by
averaging multiple measurements along the vessel.

2.2. Analysis of the Robustness to Noise

To analyze the robustness to noise of several edge detectors, the signal-to-noise ratio (SNR) is derived for a
Gaussian blurred image (L, which is used for FWHM), gradient magnitude (Lw), the Laplacian (∆L, which is
used by Marr-Hildreth) and the second-order derivative in the gradient direction (Lww, which is used by Canny).
Our analysis will focus on an image with zero-mean white Gaussian noise on the input with standard deviation
σni. The SNR in decibel is defined as:

SNR[dB] = 20 log10

(
µs

σn

)
(2)
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Figure 2. (a) The relation between the true radius R of the vessel and the radius detected with FWHM r0 after Gaussian
blur with standard deviation σ and (b) the relation between the true radius and the threshold Ithr for a corrected
segmentation of the vessel. These corrections of the FWHM criterion diminish the bias from the radius estimation.
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Figure 3. The effects of 2% perturbation on the radius detected with the FWHM r0 on the corrected radius R′. (a) The
two curves indicate the perturbation on the estimated radius R′. (b) dashed : The sum of systematic and stochastic errors
in the uncorrected FWHM radius and (b) solid: the stochastic error in the estimation of the corrected method.
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where µs is the signal amplitude and σn is the standard deviation of the noise. First, the computation of σn will
be discussed for several edge detectors, and after that the computation of µs.

2.2.1. Noise Distribution of Edge Detectors in 2D

The relation between the standard deviation of the noise before (σni) and after (σno) filtering with a FIR-based
kernel K is:18

(
σno

σni

)2

=
∫ ∞

−∞
(K)2 d�x (3)

Four FIR-based kernels that will be used in our analysis of noise in a two-dimensional (2D) image are the
zeroth-, first- and second-order Gaussian derivatives in the x-direction (L, Lx and Lxx) and the Laplacian
(∆L = Lxx + Lyy). The relation between input and output noise is:

σ2
L =

1
4πσ2

op

σ2
ni σ2

Lx =
1

8πσ4
op

σ2
ni

σ2
Lxx =

3
16πσ6

op

σ2
ni σ2

∆L =
1

2πσ6
op

σ2
ni

(4)

where σop is the standard deviation of the Gaussian operator.

The gradient magnitude Lw =
√

L2
x + L2

y cannot be computed as a finite-impulse response (FIR) filtering
operation. Although, Lw is a rotated version of Lx, we cannot simply assume that the distribution of Lw is equal
to that of Lx, because the rotation of Lw is dependent on Lx. Therefore, we will first compute the distributions
of L2

x and L2
w (the distribution of L2

y is of course identical to L2
x). The probability density function (P) of L2

x can
be computed through the cumulative distribution function (C):

CLx2(x) =
∫ √

x

−√
x

G(y − 0, σLx) dy

PLx2(x) =

⎧⎨
⎩

∂CLx2(x)
∂x

=
1

σLx

√
2π x

exp
(
− x

2σ2
Lx

)
, x ≥ 0

0, x < 0

(5)

We assume that the covariance between L2
x and L2

y can be neglected on an image with white Gaussian noise.
The density PLw2 can be computed as a convolution between PLx2 and PLy2.

PLw2(x) =
∫ x

0

PLx2(y)PLy2(x − y) dy =
1

2σ2
Lx

exp
(
− x

2σ2
Lx

)
, x ≥ 0 (6)

Finally, the function PLw is computed through the distribution C,

CLw(x) =
∫ x2

0

PLw2(y) dy

PLw(x) =
x

σ2
Lx

exp
(
− x2

2σ2
Lx

)
, x ≥ 0 (7)

resulting in:

µLw =
∫

PLw(x)x dx =
√

π

2
σLx =

1
4σ2

op

σni

σ2
Lw =

∫
PLw(x) (x − µ)2 dx =

4 − π

2
σ2

Lx =
4 − π

16π σ4
op

σ2
ni (8)
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The second-order derivative in the gradient direction Lww is a rotated version of Lxx. Lww is rotated by Lx

and Ly, and it is independent of Lxx. Therefore, we can assume that its variance is equal to that of Lxx on white
Gaussian noise.

σ2
Lww =

3
16π σ6

op

σ2
ni (9)

These equations were experimentally verified (Sec. 3.1). As shown by the equations, the variance of noise σ2
no

can be made scale invariant with a factor σ2n+2
op , where n is the maximum order of the derivatives (so n can be

0 (L), 1 (Lw) or 2 (Lww,∆L)).

2.2.2. Noise distribution of edge detectors in 3D

The variance after filtering for three-dimensional (3D) images is computed in the same way, resulting in:

σ2
L =

1
8π3/2 σ3

op

σ2
ni σ2

∆L =
15

32π3/2 σ7
op

σ2
ni (10)

σ2
Lw

=
3π − 8

16π5/2 σ5
op

σ2
ni µLw

=
1√

2 π5/4 σ
5/2
op

σni (11)

σ2
Lww

=
3

32π3/2 σ7
op

σ2
ni (12)

The variance of noise σ2
no in 3D decreases faster than in 2D. To make σ2

no scale invariant, a factor σ2n+3
op is

needed, instead of σ2n+2
op .

2.2.3. Signal amplitude of edge detectors

A disk in a two-dimensional image with intensity IH = 1.0 inside and IL = 0.0 outside the disk has the following
equations10 for Lww and ∆L:

Lww(r,R, σ) = e−
r2+R2

2σ2

(
−R2

σ4
I0

(
rR

σ2

)
+ (

r R

σ4
+

R

rσ2
) I1

(
rR

σ2

))
(13)

∆L(r,R, σ) = e−
r2+R2

2σ2

(
−R2

σ4
I0

(
rR

σ2

)
+

r R

σ4
I1

(
rR

σ2

))
(14)

where R is the radius of the disk, r is the distance to the center, and In is the modified Bessel function of the
first kind. From Lw (Eq. 1), the intensity L can be computed.

The amplitude of a signal is defined as the distance between the maximum absolute peak value and the mean
of the signal (which is zero).

The amplitude of L on a disk is always located at the center of the disk.

L(0, R, σ) = 1 − exp
(
− R2

2σ2

)
(15)

For R < 2σ, the maximum of Lww and ∆L is also located at the center of the disk.

Lww(0, r, σ) = − R2

2σ4
exp

(
− R2

2σ2

)
(16)

∆L(0, r, σ) = −R2

σ4
exp

(
− R2

2σ2

)
(17)

Other amplitudes can be computed numerically with the Equations 1, 13 and 14.

Differential operators are not scale-invariant. This means that the slope of a blurred signal will decrease as
the amount of blurring increases. If we consider the transformation x/σ → x̃, then x̃ is dimensionless and the
operator is scale-invariant. The dimensionless coordinate is called the natural coordinate,19 which has a scaling
factor: ∂n

∂xn → σn ∂n

∂x̃n . The scaling factor avoids the decrease of the amplitude of the signal at a larger scale.
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2.2.4. SNR of edge detectors

As mentioned before, the signal amplitude µs can be made scale invariant with a factor σn
op and the standard

deviation of noise σno can be made scale invariant with a factor σn+1
op in 2D and σ

n+3/2
op in 3D. So, to make the

signal-to-noise ratio scale invariant a factor σop is needed in 2D, and σ
3/2
op in 3D.

Figure 4 shows the SNR for these methods near the edge of a cylindrical vessel when computed in 3D data
or in 2D cross sections. The figure shows that FWHM (L) can obtain a higher SNR at a blurring scale that is
(almost) twice as low (or fine) as that of the others. The low scale has the advantage that it avoids an extra bias
and the interference with neighboring objects. The high SNR leads to a precise measurement and it makes the
FWHM method more robust to noise than the other edge detectors.
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Figure 4. The signal-to-noise ratio (µs/σno) in decibel for several operators (L, Lw, Lww and ∆L) based on Gaussian
derivatives with standard deviation σop in an image with white Gaussian noise (σni) that contains a disk with radius R.

As an example, Figure 5 shows the response of FWHM, which is based on L, and the derivative-based edge
detectors to a disk in a noisy 2D image. The figure shows that FWHM has a stronger response than the others.

L Lw Lww ∆L

Figure 5. Example of cross-sectional responses of Gaussian-derivative operators (σ = 2.5 px) to a disk (R = 7.0 px) in
a noisy 2D image (SNRi = 0 dB). The figure shows that FWHM, which is based on L, has a stronger response than the
derivative-based edge detectors.

3. EXPERIMENTS AND RESULTS

Three experiments were performed to analyze the proposed method quantitatively. In the first experiment, we
used noisy synthetic data to verify the derivation of the noise distributions. In the second and third experiment,
the accuracy and precision of the corrected FWHM criterion was validated. In the second experiment we used
noisy synthetic data with cylindrical structures and in the third experiment we used computed-tomography (CT)
image of a phantom.

3.1. Noise Distributions on Synthetic Data

For the derivation of the noise distribution (Sec. 2.2), we assumed independence for some operations to estimate
the mean and the variance of an image after applying an edge detector. With this experiment we verified whether
the assumptions are valid for images that contain white Gaussian noise.

Proc. of SPIE Vol. 6512  65122N-6



The experiment was performed on a 2D image of 300x300 pixels and on a 3D image of 50x50x50 voxels. Both
images contained white Gaussian noise with zero mean and σni = 1. Gaussian operators were used, with an
exponentially sampled σop in the range from 2.0 to 16.0 pixels in 7 steps. For the operators L, Lw, Lww and ∆L
the output variance σ2

no was measured, and for Lw the mean µLw was also measured.

In 2D, the correlation between log(σop) and log(σ−1/n
no ) was larger than 0.999 for all operators. The correlation

between log(σop) and log(µ−1/n
Lw ) was also larger than 0.999. The root-mean-square (RMS) error in estimating

the values of Table 1 for 2D was on average 0.06.

In 3D, the correlation between log(σop) and log(σ−2/(2n+1)
no ) was larger than 0.999 for all operators, and the

correlation between log(σop) and log(µ−2/(2n+1)
Lw ) was also larger than 0.999. The RMS error in estimating the

values of Table 1 for 3D was on average 0.07.

These results show that the derived distributions accurately predict the measured distributions.

Table 1. The RMS error in estimating the distribution values that were predicted by the equations in Sec. 2.2.

2D 3D
Eq. value RMS Eq. value RMS

σL 4 4π 0.11 10 8π3/2 0.11
σ∆L 4 2π 0.04 10 32π3/2/15 0.08
µLw 8 4 0.03 11

√
2π5/4 0.05

σLw 8 16π/(4 − π) 0.06 11 16π5/2/(3π − 8) 0.06
σLww 9 16π/3 0.04 12 32π3/2/3 0.04

3.2. Unbiased FWHM on Synthetic Data

To verify the theory presented in this paper and to analyze the robustness of our method, noisy synthetic data
was created that contained cylinders as a vessel model (Fig. 6a). The intensities in the synthetic images were
1.0 inside the unblurred cylinders and 0.0 outside, and the radii of the cylinders were in the range from 1.6 to
5.8 pixels. The standard deviation of the PSF σpsf was 1.5 and 2.2 pixels in xy- and z-directions respectively.
White Gaussian noise was added with standard deviation σnoise = 0.085 (which is equivalent to a signal-to-noise
ratio of 21 and 9.4 decibel for large and small vessels respectively). Some extra blurring σop was added in the

xy-direction to make the total blurring isotropic with σtot =
√

σ2
psf + σ2

op = 2.2 pixels.

The half-max radius was computed for each cross-section as an average of the radii in 32 directions. The
proposed method was applied for each cross section to remove the bias. For each vessel with a different radius,
the mean µ and standard deviation σ of both the uncorrected and corrected radius were computed over 100 cross
sections.

The dislocations are summarized in Figure 6b, where the dashed curves show the stochastic errors.

For the smallest cylinders of only 1.6 pixels, the error of the uncorrected FWHM method was larger than
three times the stochastic error of the unbiased method. From this we can conclude that, even for small cylinders,
the unbiased method is the most accurate in more than 99% of the measurements. The precision can easily be
increased by adding extra blur in the direction along the vessel or – as mentioned before – by averaging multiple
measurements along the vessel.

The results show that the proposed method diminishes the bias from the diameter estimation.

3.3. Unbiased FWHM on CT Data

In order to show that our method can be applied to CT data, and to perform quantitative measurements, a three-
dimensional cerebrovascular phantom20 was scanned of which the size is accurately known (Fig. 7a). The labels
and the diameters of the arteries represented in the phantom are: posterior communicating (PcomA, 1.0mm),
posterior-cerebral (PCA, 2.00mm), middle-cerebral (MCA, 2.78mm) and internal carotid (ICA, 3.50mm) arteries.
In the reconstructed volume, the voxel size was 0.3125 and 0.30 mm in xy- and z-directions respectively, with
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Figure 6. (a) Slice of a synthetic image that contains a cylinder with a radius of R = 1.8 pixels. (b) The dislocation
(r0 −R) of the vessel boundary for the biased and the corrected FWHM criterion for several vessels with radius R (mm).
The stochastic errors (µ − σ and µ + σ) are indicated with the dashed curves and the theoretic bias of the uncorrected
FWHM criterion is indicated by the solid curve.

a slice thickness of 1.5 mm. The standard deviation of the PSF was 0.47 and 0.66 mm in xy- and z-direction
respectively. Some extra blurring was added in the xy-direction to remove noise and to make the total blurring
isotropic.

The measurements were performed in the following way. Two points were selected manually on each of the
mentioned vessels. The points were centered with the center of mass of the FWHM region in a cross-sectional
plane. The orientation of the plane was based on the structure tensor.21 Each of the edge detectors was used
to detect the vessel boundary in this plane, and the area of the polygon through the contour points was used
to estimate the average diameter. The diameter was measured over 4.0 cm in 40 steps and these measurements
were used to compute the mean and the standard deviation.

The dislocations are summarized in Figure 7b. The results show that the proposed method is able to remove
the bias for all vessels in a 10% error range, while others obtain an overestimation of more than 100%.
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Figure 7. (a) Surface rendering of the CT data of the phantom. (b) The dislocation (d0 − D) of the vessel boundary
for Marr-Hildreth (∆L), FWHM, Canny (Lww) and corrected FWHM for several vessels with diameter D (mm). The
theoretical curves are shown in grey.

4. CONCLUSIONS

In this paper, we proposed a new method for unbiased vessel-diameter quantification based on the FWHM
criterion at low computational cost. We analyzed the SNR of several edge detectors on cylindrical structures and
we showed that the FWHM is more robust to noise than the derivative-based edge detectors. The quantitative
results obtained with synthetic and CT images showed that the proposed method is accurate and precise, even
for vessels with a radius smaller than the point-spread function.
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