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Abstract: This report introduces new drawing tools for controlling color dif-
fusion in an image. It builds on the Di�usion-Curve algorithm, which computes
images by di�using colors from user-de�ned constraint curves. However, con-
trol of the di�usion process was limited in signi�cant ways. In this report, we
adapt the representation of Di�usion Curves by allowing artists to specify color
strength, di�usion directions, and non-di�using barriers. We also describe the
algorithmic changes necessary for their e�cient implementation. We demon-
strate how these extensions give artists more control, and streamline the editing
process in common situations.
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Courbes de di�usion contrôlables

Résumé : Dans cet rapport nous présentons plusieurs outils de controle de la
di�usion de couleurs dans une image. Ces outils sont mis en oeuvre sous forme
d'extensions de l'approche �courbes de di�usions� qui consiste à calculer une
image à partir de contraintes placées le long de courbes.

Nous proposons ici d'étendre la représentation par courbes de di�usion pour
permettre à un artiste de dé�nir localement la puissance de la di�usion, sa
direction ainsi que des courbes barrières qui peuvent stopper la di�usion. Nous
décrivons de plus les modi�cations algorithimiques nécessaires pour une implémentation
e�cace.

Mots-clés : Équation de Poisson, di�usion de couleur, rendu expressif.
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1 Introduction

The process of producing traditional 2D freehand drawings can be roughly di-
vided into two major stages: the drawing process and the painting process.
Once drawings are traced onto the canvas, colors are applied in the resulting
areas of the image. Although �lling regions with solid colors can be very ex-
pressive, complex color gradients more e�ectively convey the illusion of volume
and illumination, enabling the depiction of a broad range of e�ects.

Raster images are a very suitable means to encode images depicting color
gradients since all the color information is explicitly stored per pixel. Although
they are very �exible, they require a large amount of storage and considerable
e�ort to be edited. On the other hand, vector graphics images perform better
in terms of manipulation and storage. In particular, the recent introduction
of Di�usion-Curve images by Orzan et al [OBW∗] allows for the creation of
expressive color gradients. This work extends the Di�usion Curve approach
with richer color gradients and streamlined color constraints.

Figure 1: Left: Image encoded by curve primitives. Right: Image after di�usion
process.

Technically, a Di�usion-Curve image is de�ned by a set of Bézier curves.
For each curve, the user speci�es colors along each of its sides (Figure 1 left).
These colors are di�used outwards to de�ne the �nal image (Figure 1 right).
By specifying a blur value along the curve, an artist can also create smooth
color transitions across curve boundaries. The di�usion curves themselves hold
an intuitive meaning and are very compact since the colors and blur values are
only speci�ed at the control points of the curves.

Despite many advantages, Di�usion Curves also have some drawbacks. One
problem relates to the di�usion process itself. Inherently, Di�usion Curves are
bound to the standard Poisson equation, producing linear color gradients that
arise from the di�usion process. In many situations, perfect symmetry and
linearity are not desired, such as for the sunset in Figure 2. In this example,
the dark brown color at the bottom of the image is di�used through nearly half
of the image until it blends with the bright beige line under the mountains.
Being able to express this and many other color gradients requires an approach
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4 Bezerra et al.

that provides the user with control over how strongly a given color must be
spread. In the same spirit, it is very common in illustrations to de�ne an
anisotropic di�usion along some preferred direction, whereas Di�usion Curves
always propagate colors in all directions equally. In our work, we o�er this
possibility, which allows designers to achieve images that otherwise would have
been very laborious to produce with standard di�usion.

Figure 2: Complex color gradient in a sunset image. ©Bobbigmac | Dream-
stime.com

Another important issue addressed in this report relates to the in�exibility
of the relation between curves and colors. As explained above, for each Di�usion
Curve, one needs to de�ne color values for both sides of the curve. These double-
sided constraints often oblige users to select colors at awkward locations, which
produces unwanted side-e�ects as shown in Figure 3. In this example, the black
line de�ned on the exterior side of the hat impacts the color of the ribbons
at that location. In order to avoid such artifacts, the user must select colors
along the intersection between hat and ribbons. Furthermore, the choice of the
right colors is di�cult, since they need to match the di�used region accordingly.
A better solution would enable the di�usion process to determine some of the
colors directly. In other words, the curve in question would, on one side, de�ne
colors in the interior of the hat, but, on the other side, simply be used as a
barrier to prevent the ribbon and hat colors from mixing. In this way, the
application of color would approach again the traditional method of coloring,
and give the appearance that one part of an object is in front of another.

In this report, we propose several important extensions to the Di�usion
Curves approach in which we address the aforementioned problems. Our solu-
tion provides the user with a more �exible and expressive tool. More precisely,
we introduce:

� color strength which translates into a dominance during the di�usion
process and enables colors to expand more strongly across the image;

� di�usion barrier curves block di�usion across the curve without de�n-
ing the color�this provides the user with more �exibility;

INRIA



Controllable Di�usion Curves 5

Figure 3: Side-e�ects of double-sided constraints: the black line de�ned in the
exterior side of the hat has a clear impact on the color of the ribbons.

� di�usion directions to e�ect anisotropic di�usion.

This report is organized as follows: we start by reviewing related work in
Section 2. Our algorithm, and our extensions to Di�usion Curves, will be de-
tailed in Section 3. Implementation details and results are presented in Sec-
tion 4. Finally, we conclude and point out directions for future improvements
in Section 5.

2 Previous Work

In an image context, lines are often important features and encode much of
the initial scene information, which is exploited by many vision-related algo-
rithms [Eld99]. Further, it is possible to compress images [EZ98] and manipulate
photographs [EZ, OBBT]. These task often underly the principle of the Poisson
equation which has found applications in many contexts of computer graphics,
e.g., image editing, where it enables seamless cut-and-paste operations [PGB].

The Poisson equation also laid the groundwork for Di�usion Curves [OBW∗]
and real-time gradient domain painting [MP], where colors are sparsely de�ned
over the image and interpolated everywhere else. Although both implemen-
tations were very e�cient, few control over the di�usion is giver to the user.
In addition to that, the �nal convergence of the solution was not always guar-
anteed and spurious artifacts could remain for an insu�cient number of itera-
tions. A better convergence behavior is achieved with the approach by Jeschke
et al. [JCWa] which introduces a faster and more accurate solver by exploiting
the fact that the constraints are very sparse. Our work is strongly inspired by
the aforementioned approaches. Nevertheless, we aim for a more �exible tool to
provide the user with useful controlling over the content creation.

Di�usion processes also can be bene�cial to interpolate other values such as
normals [Joh] (to enable relighting), or even general surface details [JCWb] (for
real-time contexts). These approaches can bene�t from the extensions proposed
in this report to achieve a stronger control over the interpolation.

Finally, reconstructing images by di�usion can be seen as a way to opt for
resolution independence. This aspect is shared by Gradient Meshes [SLWS07,
LHM09] and Ardeco [LL], which derive vector graphics from a 2D image, but
often prove less user-friendly than Di�usion Curves.
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6 Bezerra et al.

3 Our Algorithm

In the following, we address the identi�ed Di�usion-Curve shortcomings of Sec-
tion 1. We familiarize the reader with the mathematical background in Sec-
tion 3.1. Section 3.2 introduces our �rst contribution, which is an e�cient
mechanism to allow colors to be expanded according to a strength parameter.
We then show the well-known formulation of the Poisson equation as a min-
imization problem (Section 3.3). This facilitates understanding the di�usion
process interactions, di�usion barriers and anisotropic di�usion, in Sections 3.4
and 3.5 respectively.

3.1 Di�usion Process

Our work builds upon the Poisson equation framework previously applied in
many contexts [TT, PGB, OBW∗]. Consider an image I with n pixels, {Ik | k ∈
1 . . . n} (colors are addressed individually as Ik or as a grid simply as Ii,j). For
Di�usion Curves, colors are speci�ed along each side of the curve serve as hard
constraints. This yields a set of constrained pixel colors {Ck | k ∈ I}, where
I ⊆ {1 . . . n} are the indices of pixels with constrained colors. The remaining
parts of the image are �lled by solving the Poisson equation resulting in the
�nal image I, where

4 I = divw,
and Ik = Ck, ∀k ∈ I, (1)

where 4 is the Laplace operator, div is the divergence operator, and w =
{wk | k ∈ 1 . . . n} a vector �eld (its values are also stored in pixels and addressed,
just like for I with wk := (wx

k , w
y
k)). In the case of Di�usion Curves, the vector

�eld w is zero everywhere except across constraint curves [OBW∗]. In other
words, the solution will show a continuous, smooth change of colors except
across the curves. The solution is found by solving a discretized version of
Equation 1 for each color channel separately. A Gauss-Seidel solver could be
used, but more e�cient conjugate gradient or multi-grid solvers (as used for
Di�usion Curves) are an option. In the case of Gauss-Seidel iterations, a value
xi,j needs to be updated by adding (Ii+1,j+Ii−1,j+Ii,j+1+Ii+1,j+1+divwi,j)/4.

3.2 Color Strength

Our �rst extension to Di�usion Curves is the control of the strength with which
a color dominates the di�usion process. Figure 4 depicts a simple example
with two color constraints, yellow on the top and purple at the bottom. The
result of a standard Poisson di�usion leads, as expected, to a linear gradient
that connects both color constraints (Figure 4, left). By manipulating the color
strength, the artist can make the yellow color become more dominant over the
purple, thus pushing the di�usion further in this direction (Figure 4, center). A
variety of e�ects can be obtained if di�erent values of color strength are de�ned
along lines as, for example, the diagonal di�usion e�ect in Figure 4, right.

One way of controlling the strength of colors during di�usion is to formulate
this problem as an interpolation process. Intuitively, if we have two colors c1, c2
with respective strengths a1 and a2, then we would like the interpolation T of

INRIA



Controllable Di�usion Curves 7

Figure 4: Left: Standard Poisson di�usion (equal strengths, e�ectively). Cen-
ter: Yellow has a greater strength than purple. Right: Varying the strength
along the curve.

the two to yield:

T ((c1, a1), (c2, a2)) =
a1c1 + a2c2
a1 + a2

.

As we can see, the equation results in ci for ai → ∞, and if a1 = 0, the
equation simpli�es to a2. Therefore, the values a1, a2 can be used to control the
dominance of one color over the other. The result is a linear combination of the
initial color values that naturally favors colors with a higher alpha value. This
generalizes

T ((c1, a1), . . . , (ck, ak)) =
∑

(ri, gi, bi)ai∑
ai

,

In some sense, when thinking of a blending process, the strength value will
indicate the mixing coe�cients. Due to the normalization, such a weighted
blending is non-linear and, hence, would not �t into the di�usion framework.
Nevertheless, it is possible to linearize the computations using homogenous col-
ors.

A homogenous color is de�ned by a RGB-tuple (r, g, b) and an alpha value
a. Algebraically they resemble homogeneous coordinates, widely used in pro-
jective geometry calculations [Wil]. Two homogenous colors (r1, g1, b1, a1) and
(r2, g2, b2, a2) describe the same actual color when a2(r1, g1, b1) = a1(r2, g2, b2).
If ai is not zero, the actual color is obtained via a projection mapping P (r, g, b, a) =
(r/a, g/a, b/a). It is easy to verify that the projection of the sum of homoge-
nous coordinates correspond to the weighted sum above. When ai equals zero
it corresponds to an absence of color, and equivalence is irrelevant.

The key idea of our extension is that the alpha value of a color will de�ne
the color strength. In the interface, the user only speci�es a standard color
c = (r, g, b) and a color strength a. This input is then transformed into a
homogenous color by mapping it to (ar, ag, ab, a). Each channel (including the
alpha channel) is thus di�used separately, exactly as in the Di�usion-Curves
approach. At the end of the di�usion process, we perform the projection to
obtain the �nal result. The correctness of this solution becomes clear when
inspecting the way that the Gauss-Seidel iterations would update the values in
the solver, where an average is computed in each step. The �nal projection
then transforms the result into a weighted sum and the di�usion will re�ect the
weight.

Figure 5 shows a direct application of the color strength extension. In this
example, complex color gradients can be achieved by manipulating the strength
of the colors in the interior and exterior of the eye, which are expanded through
nearby regions (Figure 5, right). Compared with the standard result (Figure 5,
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8 Bezerra et al.

left), we show that the color strength extension can lead to interesting results
with no additional curves.

Figure 5: Left: Standard Poisson Di�usion. Right: Controlled di�usion

3.3 Reformulating the Di�usion Process

To facilitate the understanding of how to in�uence the di�usion process, we need
to look a little closer at its properties. After solving Equation 1, the resulting
image I is the solution to the following constrained minimization:

I = argmin
J

n∑
i=0

|∇Ji − wi|2,

subject to Jk = Ck, ∀k ∈ I, (2)

where Ck are the color constraints at the pixel positions I, wi = (wx
i , w

y
i ) is

the vector �eld w at pixel position i. Once again, it should be pointed out
that w equals zero almost everywhere. In fact, for Di�usion Curves, the result
is the same for w = 0 everywhere. For a better convergence though, it is of
interest to initialize the vector �eld at neighboring color constraints by storing
a divergence.

The solution is, thus, the result of a minimization process that searches for
the image whose gradient is the best �t to a given vector �eld, while respecting
the color constraints. In our work, we want to guide the di�usion process in
various ways. Consequently, we cannot always rely on the original Poisson
equation, but have to set up our own constraint system. To give a better
intuition of how we will incorporate changes, we will rely on a formulation that
describes our solution via a system of hard and soft constraints. The hard
constraints (Ik = Ck) are the colors stored at pixel positions I and de�ned by
the initial color curves chosen by the user. The soft constraints will enforce a
smoothness property on the image, that will implicitly de�ne the color of the
remaining pixels.

INRIA
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The Poisson-equation soft constraints can be written as follows:

(
∇x

∇y

)I1...
In

 =



wx
1
...
wx

n

wy
1
...
wy

n


, (3)

where ∇x is a simple matrix that encodes the derivative along the axis x,
(wx

k , w
y
k) is the vector �eld w's value at pixel k ∈ 1 . . . n. Each line of ∇x is

of the form (0, . . . , 0,−1, 1, 0, . . . , 0). ∇y is de�ned accordingly. This matrix is
the one that allows us to choose what properties we want our solution to have.

In general, the Equation system 3 is over-constrained. To �nd the least-
squares �t, we use the pseudo-inverse. For this, the equation needs to be mul-
tiplied by (∇t

x,∇t
y). The result of doing so is:

(∇t
x,∇t

y)
(
∇x

∇y

)I1...
In

 = (∇t
x,∇t

y)



wx
1
...
wx

n

wy
1
...
wy

n


(∇t

x∇x +∇t
y∇y)

I1...
In

 = ∇t
x

w
x
1
...
wx

n

+∇t
y

w
y
1
...
wy

n

 , (4)

where n is the number of pixels in the image.
The operator (∇t

x∇x + ∇t
y∇y) is the discrete version of the Laplace op-

erator and, similarly, (∇t
xw

x + ∇t
yw

y) is the divergence. The lines in ∇t
x∇x

have the form (0, . . . , 0, 1,−2, 1, 0, . . . , 0) which corresponds to a discrete sec-
ond derivative. The similar structure of ∇t

y∇y implies that the lines in matrix
(∇t

x∇x +∇t
y∇y) have the form:

4Ii,j − Ii+1,j − Ii−1,j − Ii,j+1 − Ii+1,j+1 = divwi,j ,

which readily corresponds to the discrete Poisson equation.

3.4 Di�usion Barriers

When we remove all constraints along a curve from the pixels underneath (hard,
as well as soft constraints), the e�ect is that the di�usion is blocked at that
location. Because no soft constraint is de�ned along these pixels, no value can
be computed at these locations and also, no other pixel in the image will refer to
their values. Therefore, no color can cross these pixels during the di�usion and,
no color is actively emitted. This kind of curve is useful when the user desires to
restrain the di�usion to reach a certain region without having to actually de�ne
any color at that location.
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10 Bezerra et al.

Figure 6 shows an example of the use of such a curve. Yellow and a pink color
strokes are placed on the image (a). If no other curve is added, the pink and
yellow strokes will be di�used and mix at certain locations (b). Nevertheless, if
we place the circle curve as barrier curve (c), the di�usion of the yellow stroke
will be restrained to its interior; analogous the pink to its exterior (d).

d)a) b) c)

Figure 6: a) Pink and yellow strokes. b) Di�usion of pink and yellow strokes.
d) Circle curve de�nes a di�usion barrier. d) Di�usion blocked in the interior
and exterior of the circle (di�usion barrier).

It is also possible to only remove the constraints for one side of the curve. In
this case, one side emits colors, whereas the other serves as a barrier to prevent
colors from crossing the curve at that location. This is an important tool that
lets the user avoid de�ning colors at awkward locations, as previously shown on
Figure 3.

The proper way to realize such di�usion barriers is to rely on the linear
system in Section 3.1. As explained before, we can simply omit all a�ected
constraints along the curve. This will break the continuity between left and
right sides of the curve allowing the system to compute each side independently.

Figure 7 shows an example of how di�usion barriers can be used in order
to improve the result of standard Di�usion Curves presented on Figure 3. Fig-
ure 7 left indicates the lines where placing double-sided color constrained curves
is problematic. To solve this problem, we transform these lines into di�usion
barriers. For this, we keep the right side of the red line emitting colors to the
interior of the hat but, on its left side, we remove all constraints thus preventing
colors to cross the curve. Analogous, the interior side of the green line will
emit its original colors, while its exterior side will work as a barrier. The re-
sult of the di�usion is depicted on Figure 7 right. Notice that colors di�used
from the ribbons are now nicely expanded to the boundaries of the hat without
discontinuity artifacts.

There is a also simpler mechanism that is compatible with the well-established
and optimized algorithms for Di�usion Curves. We now demonstrate how to
use the color strength described in Section 3.2 to imitate a similar behavior by
setting it to zero. Indeed, a zero value indicates that the color is not participat-
ing in the �nal weighted sum, thus not appearing in the output image. Such a
constraint curve still ensures that colors from both sides will not mix, breaking
the connectivity between pixels on either side.

Figure 8 shows the use of color strength to imitate barrier di�usion curves
and solve the same problem shown in Figure 3. Again, we refer to the red and
green lines depicted on Figure 7. Giving a strength value of zero to left side
of the red line, results that the ribbon colors touch the hat's boundary, but no
colors cross the curve (see Figure 8 right). Notice that no color is emitted from

INRIA



Controllable Di�usion Curves 11

Figure 7: Left: Lines along which problems occurs. Center: Red and line curves
are transformed into barrier curves emitting colors from only one of its sides.
Right: Result of the di�usion.

this side of the red line (we can no longer see the black color in the di�usion).
In the way, the exterior side of the green line received a strength value of zero
preventing its black color from mixing at its intersection with the hat.

Although this is a simple solution, there is one subtlety. Using the di�usion
strength, the solution is unde�ned on the curve itself, as a division by alpha
would lead to a division by zero. Instead, we perform a simple pretest. The
�nal alpha value corresponds to the sum of the weights of surrounding pixels.
The larger the weight, the more con�dence we can have that numerical issues will
be avoided. Hence, our solution is to use a weighted sum in a window around
such a pixel whenever its actual weight is lower than 1/255, which ensures a
smooth transition.

Figure 8: Left: Original color constraints from Di�usion-Curves approach.
Right: Di�usion using zero values for weights.

3.5 Anisotropic Di�usion

We have seen in Section 3.3 that the di�usion process is the least squares solution
to a linear system. Each row of the equation matrix corresponds to a constraint.

RR n° 7175



12 Bezerra et al.

In contrast to a solvable system, a least squares �t is in�uenced by the norm
of each row. Scaling a line with a small number, will decrease its in�uence on
the �nal solution. In fact, it will participate less. This allows us to steer the
in�uence of the constraints in certain regions of the image.

Let's look at a simple example. The soft constraints ensured the smoothness
of the resulting di�usion surface. We have seen that each pixel has a row in the
matrices ∇x and ∇y which enforces a smoothness along the corresponding axes.
Leaving out the row in ∇x would lead to a di�usion along the y-axis. This is a
direct consequence of the fact that x-axis di�erences are no longer penalized.

In practice, to de�ne a general anisotropic di�usion, we enable the artist
to de�ne two orthogonal directions in which the di�usion should take place,
as well as the corresponding weight. Consequently, we can simply weight the
corresponding equations.

For a given direction ~d := (cos θ, sin θ), the gradient is de�ned as cos θ ∂
∂x +

sin θ ∂
∂y . Correspondingly, the discretized version would read:

cos θ(xi+1,j − xi,j)− sin θ(xi,j+1 − xi,j)

In the same way, we can de�ne the orthogonal direction. The discretized version
shows us how to setup the rows in the matrix. The row is then scaled by the user-
de�ned weight to indicate the strength of the di�usion along the corresponding
axis.

The direction itself can be di�used over the image plane in order to de�ne in
each pixel its �nal direction. In practice, we di�use the cosine and sine values
of the direction, as well as the weights along the principal axes. Other schemes
could exist, but because the feedback is immediate, potential problems, such as
gradient reversals or poles can be �xed.

Figure 9 shows a simple example. The top of the image has been initialized to
the standard di�usion, whereas the bottom makes use of a directional di�usion
along the y-axis. In comparison to standard di�usion, the directional di�usion
clearly lets the color constraint at the bottom a�ect the scene much more. For
standard di�usion the relatively small mountain tops directly propagate their
color between each side giving it a �at appearance, whereas for directed di�usion,
the light ground propagates its values to the mountain tips, hence achieving a
richer appearance.

4 Implementation and Results

We implemented our solution in OpenGL 3.0 and executed the program on
various machines, ranging from laptops with a Geforce 8400M to a desktop with
a GTX260. Our solution achieves interactivity on all platforms for most tasks
(except higher-order constraints). For example, the use of di�usion strength
only adds a penalty of < 30% with respect to Di�usion Curves. This facilitates
the use of our software as a tool to produce convincing imagery.

To recapture our main contributions and illustrate the suitability of our solu-
tion, we illustrate its application on an example illustrated on Figure 10. Figure
(a) was obtained with standard Di�usion Curves. The given color constraints
are used to render the image of a cat (b), where each line of the drawing requires
the de�nition of colors on each side of the curves. The double-sided constraint

INRIA



Controllable Di�usion Curves 13

Figure 9: Left: Result with standard di�usion. Right: The image on the the
top of the dashed line makes use of standard di�usion, the bottom uses a vertical
direction.

curves required by this approach are due to the Di�usion Curve process. Indeed,
just leaving out the color constraint on one side, as shown on most lines of (c),
results in a blurred and artifact-�lled result (d). De�ning all these curves and
adjusting the colors can be very tedious for an artist.

In our solution, only very few color constraints need to be de�ned. Most
curves can be kept as a di�usion barrier, implying less e�ort for the artist.
With di�usion barriers, colors simply fuse at their boundary (e). To be obliged
to predict the fused colors and then adjust the boundary color itself is a di�cult
task. Further, one loses �exibility because the colors on the boundary are then
set and will not change, even if the actual color sources are moved. The result
using our solution looks very similar, even though only half the color constraints
had to be de�ned.

Controlling the di�usion strength is a key component and was used in almost
all images of this report. In the case of (f) the control allows us to produce a
much more delicate look, where the �ne details no longer blur out. This also
underlines one of our claims, which was that control over di�usion strength, in
combination with di�usion barriers, facilitates the creation of shaded looks.

5 Conclusions and Future Works

We presented several extensions to the original Di�usion-Curves approach. We
introduced a simple solution to control the di�usion strength that remains com-
patible with the original implementation and thus bene�ts from e�cient imple-
mentations. We introduced di�usion barriers that bring Di�usion Curves closer
to the traditional drawing framework and makes the interaction more intuitive
and more e�cient. We presented several results that would have been di�cult
to reproduce with Di�usion Curves. We illustrated that it is possible to control
the di�usion directions to achieve more control over the �nal result.

RR n° 7175



14 Bezerra et al.

a) b) c)

d) e) f )

Figure 10: a): Di�usion Curves requires colors constraints to be de�ned at
both sides of each curve. b): Di�usion performed by Di�usion Curves. When
most curves de�ne colors at only one of its sides (c), the result is a blurred and
artifact-�lled image (d). e) With di�usion barriers, colors simply fuse at their
boundary producing a continuous color gradient. f): The color strength allows
us to produce a much more delicate look, where the �ne details no longer blur
out.

The extensions presented in this report directly translate to a multigrid
solver. Nevertheless, we believe that the general linear solver framework gives
us more �exibility and might prove useful in the future. Currently, the com-
putational cost is too high (Figure 10 (d) required nearly 55 seconds per color
channel for a 512× 512 image with a GPU linear solver implemented in CUDA
on an NVIDIA 8400M graphics card). Obvious accelerations exist to improve
the performance by specializing the solver for our purposes and we see this as
one interesting avenue of future work.
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