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Figure 1: We simulate the change of image appearance between photopic conditions (left) and appearance in scotopic conditions
close to the absolute threshold (right), where consistent vision fades into temporally varying (not reproducible in print) noise.

Abstract
When human luminance perception operates close to its absolute threshold, i. e., the lowest perceivable absolute
values, appearance changes substantially compared to common photopic or scotopic vision. In particular, most
observers report perceiving temporally-varying noise. Two reasons are physiologically plausible; quantum noise
(due to the low absolute number of photons) and spontaneous photochemical reactions. Previously, static noise with
a normal distribution and no account for absolute values was combined with blue hue shift and blur to simulate
scotopic appearance on a photopic display for movies and interactive applications (e.g., games). We present a
computational model to reproduce the specific distribution and dynamics of “scotopic noise” for specific absolute
values. It automatically introduces a perceptually-calibrated amount of noise for a specific luminance level and
supports animated imagery. Our simulation runs in milliseconds at HD resolution using graphics hardware and
favorably compares to simpler alternatives in a perceptual experiment.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Viewing algorithms

1. Introduction

The human visual system (HVS) adapts to absolute lumi-
nance through several orders of magnitude; we can perceive
a bright daylight scene as well as a moonless night. Appear-
ance drastically changes for different absolute levels: at night
(scotopic) color and acuity are reduced and a shift towards
blue tones is perceived, when compared to the same scene in
daylight (photopic) conditions.

In visual arts, cinematography or interactive applications

(e.g., games), the change of appearance is often simulated to
convey the illusion of a certain adaptation level despite being
in a different display condition. A skillful painter is able to
depict a scene shown on a photopic canvas as if it actually
was scotopic. The same holds for movies, where the so-called
“Day-for-night” effect is used since the early days of cinema.
For computer applications, techniques like tone mapping can
convey a scotopic impression. In all cases, it is important to
point out that adaptation effects are qualitatively reproduced
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and might differ in quantity: night scenes are blurred only
enough to become noticeable and not as much as a strict HVS
simulation would require, which would lead to an unpleasant
viewing experience.

Computer graphics has now routinely modeled the shift
from photopic over in-between mesopic to scotopic con-
ditions [FPSG96, PFFG98, DD00, PTYG00, TSF02, KP04,
KO11, WM14] but the scotopic regime (vision close to its
absolute threshold, e. g., a moonless night), has received little
attention. Remarkably, the absolute threshold is close to the
physical limitations of light itself; most dark-adapted sub-
jects reliably detect flashes of light resulting in as little as 5
to 10 photons total on the retina during an integration time of
100 ms [HSP42]. Appearance under such conditions is sub-
stantially different from all other conditions. While scotopic
vision can still rely on the retina as a classic noise-free sensor
described by scalar ray optics, for close to absolute threshold,
receptor noise due to the particle nature of light becomes
apparent and requires accounting for quantum statistics.

In this paper, we complement day-for-night tone mapping
to account for the effects encountered close to the absolute
threshold. After explaining the background in physics, neuro-
science, and human vision (Sec. 2), as well as reviewing the
state of the art in modeling human scotopic perception in com-
puter graphics (Sec. 3), we propose a neurophysiologically-
motivated model of rod receptor noise which adds temporal
variations to the image, as expected to be experienced in
scotopic conditions close to the absolute threshold (Sec. 4).
We then present the related computational aspects, involving
a photon-accurate retinal image representation, an efficient
rod noise generation drawn from image content-dependent
distributions, and a temporal rod-signal integration (refSec-
OurApproach). Using graphics hardware, our model requires
18 ms for an HD image and we compare our results to differ-
ent alternatives in a perceptual evaluation (Sec. 6).

2. Background

Human vision is based on translating light into nerve signals.
Light can be modeled as rays, waves, individual particles, or
as their quantum statistics. In this article, different from a
commonly taken viewpoint in computer graphics and vision,
we choose the quantum-statistics point of view. Here, “light”
for a space-time interval is not a single value anymore, but
modeled as a distribution of probabilities to observe a certain
number of quanta.

Light enters the human eye through the pupil, and is sub-
ject to different scattering and absorption events, before it
reaches the retina, which is covered by receptors converting
incoming light to electric signals. Two types of receptors,
cones and rods, exist, whose performance varies drastically
with absolute luminance [Shl37, KWK09]. We have to distin-
guish photopic (108 to 3 cd / m2), mesopic, (3 to 0.1 cd / m2),
scotopic (0.1 to 10−6 cd / m2) vision, and scotopic vision
close to absolute threshold (less than 10−3 cd / m2).

In photopic conditions, cones are active. They have an
uneven distribution with a strong peak in the fovea and con-
tribute to color vision. They are inactive at night [Pal99], and
we will assume they do not contribute to the scotopic effects
modeled in this work. We also do not consider the mesopic
range, in which both rods and cones are active.

In scotopic night vision, only rods are active. They have a
different response to light of different wavelengths [Wal45]
and do not contribute to color vision. Their peak density is
lower than for cones, but their distribution over the retina
is more uniform and shows a slower falloff with the retinal
eccentricity. Modelling these differences is the foundation of
many day-for-night tone mappers [DD00, PTYG00, TSF02,
KP04, KO11, WM14].

Rods convert light into nerve signals using a photo-
chemical cascade. Each rod contains rhodopsin, that is isomer-
ized by exposure to light, resulting in a small change of poten-
tial to become a nerve signal [Alp71]. In each following step
of the cascade, non-linear functions amplify the signal, while
at the same time suppressing noise. The temporal aspects of
photo-transduction are the cause of afterimages [RE12].

Not all photons hitting a receptor are actually transduced
into an electrical signal (false negative) because it might hap-
pen that the photon does not hit a rhodopsin molecule. The ra-
tio of transduction (ca. 0.06–0.2, [HSP42]) is called quantum
efficiency. At the same time, it happens that rhodopsin is trans-
duced in the absence of light (false positive) [Bar56]. These
aspects will be detailed in our treatment of near-absolute-
threshold light levels in Sec. 4.

Finally, other entoptic phenomena, which are not di-
rectly caused by light in the common way, such as floaters,
phosphenes, visual snow, the blue-field entoptic effect [RP80],
or afterimages [RE12], can occur under specific conditions
but are not related to scotopic vision and will not be modelled
in this work.

3. Previous work

In this section, we discuss tone-mapping solutions for night
scenes. In particular, we focus on the role of perceived noise
in scotopic vision and, in this context, we overview other
sources of noise in images such as sensor noise, film grain,
and synthetically generated noise, which under certain con-
ditions can improve perceived realism and quality. Finally,
we discuss photon-accurate eye modeling as is required near
absolute threshold, which is central for this work.

Tone mapping: Night scene depiction A key goal of tone
mapping operators (TMO) is to reproduce scotopic scene
appearance on a photopic display [RWD∗10] by simulat-
ing a blue-shift and the loss of color vision, visual acu-
ity, contrast and brightness characteristic for night vision
[FPSG96, PFFG98, KP04, KO11, WM14]. Typically, such
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simulations cover higher levels of scotopic luminance (0.001–
0.1 cd / m2) including the transition to mesopic conditions,
while luminance levels near absolute thresholds are not specif-
ically addressed. Furthermore, the time-course of adaptation
[DD00, PTYG00], the bleaching phenomenon [GAMS05],
or stereovision in darkness [KRV∗14] were modeled in com-
puter graphics.

Nightly impressions have been convincingly reproduced
in painting [Liv02], digital arts, computer games, and feature
films without referring to any rigorous simulation of scotopic
vision. Empirical solutions inspired by “day-for-night” shoot-
ing have been proposed by Thompson et al. [TSF02]. The
success of empirical techniques indicates that rigorous sim-
ulations of scotopic vision not always lead to a subjectively
optimal night-like look, especially in photopic conditions.
Consequently, our strategy is to apply psychophysical data
when available, and otherwise refer to empirical techniques,
including the case when such data does not generalize to
images presented on photopic displays.

Most importantly, Thompson et al. [TSF02] observed that
adding noise to day-for-night tone mapping can improve the
scotopic impression. They add static, zero-mean, uncorre-
lated Gaussian noise with a fixed standard deviation to each
pixel, to achieve subjectively optimal visual results. Still, it is
not clear how to apply their approach for animated content
where calibration in absolute luminance is crucial such as
close to absolute thresholds. An example of a video showing
a transition (Fig. 1, left to right) from photopic over mesopic
conditions down to scotopic conditions near the absolute
threshold illustrates the two remaining main challenges: First,
a transition from a noise-free image over subtle noise to a
state in which only grey noise is expected to remain. To
this extent, we introduce a calibration by absolute luminance
not available from previous work. Second, changing image
content, e. g., a simple camera pan, will require the noise to
change. A simple overlay would result in a “shower door
effect” [KP11]. Instead, we model accurate change dynam-
ics, principled by physiological data to feature additive and
multiplicative components (Sec. 4).

Image noise Noisy images are often undesirable in image
synthesis and imaging applications, where denoising tech-
niques are common. However, noise can be explicitly added
to enhance perceived image sharpness [JF00]. Fairchild and
Johnson [FJ05] have hypothesized that noise as a repetitive
pattern tends to be suppressed by the HVS, which might
subjectively enhance image saliency. In general, procedural
noise is often used in image synthesis to enhance the visual
richness of rendered images [LLC∗10].

Sensors in digital cameras are prone to different temporal
and spatial sources of noise [Jan01]. In particular, temporal
photon and dark current shot noise show similarities to the
nature of noise in rods (refer to Sec. 4) and are also modeled
via Poisson distributions. Readout noise could be considered

as an analog of retinal circuitry processing beyond rods and
cones, which we ignore in this work.

The exposure and development of silver-halide crystals
dispersed in the emulsion of analog films results in forming
tiny blobs of metallic silver or dye clouds, which creates the
familiar film grain effect whose density tends to follow a
Gaussian distribution [Alt77]. Film grain as a form of noise
might be manipulated or even intentionally added for tech-
nical or artistic reasons in movie post-production [Sey11]
and can be acquired through film-stock scanning or synthe-
sized following its noise-power spectrum [SS07, GLC13].
Stereoscopic processing of film grain was recently described
by Templin et al. [TDMS14]. Similarly, in digital photog-
raphy, the suppression of a synthetic look and masking of
digital sensor noise are desirable [KMAK08]. Simulating the
complete photographic process, including important charac-
teristics of photographic materials, such as its response to
radiant energy, spectral sensitivity, emulsion resolution, and
graininess [GM97] can render results very realistic. While
some analogies to our work are apparent, we refer to photon-
accurate simulation, extremely low light levels are not sup-
ported in [GM97].

Photon-accurate eye modeling Deering [Dee05] models in-
dividual cones and accounts for photon events to generate
per-cone photon counts that have been photoisomerized by
unbleached photopigments. Hereby, cone-level rendering can
be simulated for any physical display configuration and pho-
topic image content. Our goals are similar but we focus on
rods in scotopic vision near absolute threshold conditions,
which has a strong impact but can be ignored in photopic
conditions. We also share the limitation that retinal circuitry
beyond cones and rods is ignored.

4. Modeling rod noise close to absolute thresholds

While the source of scotopic noise is well understood in phys-
iology, it has not yet been considered in computer graphics,
where noise is added in an ad-hoc way. This section intro-
duces the reader with a computer-graphics background to
the physiology of luminance perception at levels close to the
absolute thresholds.

Absolute threshold On average, 60 % of flashes with
510 nm wavelength, a duration of 1 ms, emitting 54–148 pho-
tons in total towards a retinal area covering 500 receptors
located off the fovea (which has no rods) will be detected by
dark-adapted subjects [HSP42]. The fraction of photons that
actually reach the retina is then only 10%. The key result of
this experiment is that, close to absolute threshold, answers
can only be given with certain probabilities, not with abso-
lute certainty. In consequence, photon counts are related to
detection likelihoods via receiver operating curves (ROCs).

Quantization noise The seminal work of Hecht [HSP42]
has shown that the quantization of light into photons has
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actually a practical perceivable consequence. In conditions
close to the absolute threshold, photon count is important
as, for rare discrete random events, noise is to be expected.
Such noise can be modeled by a Poisson distribution, which
estimates the probability density function P of observing k
events given the expected number of such events µ:

P(k,µ) =
exp(−µ)µk

k!
.

The probability of observing Θ or more events is P’s tail dis-
tribution (complementary cumulative distribution function)

F(Θ,µ) =
∞
∑

k>Θ

P(k,µ).

The probability of seeing a flash of N photons per unit time
(integration time) at the cornea is

FQuant = F(Θ,qN), (1)

where Θ is the minimal number of photons that can be per-
ceived and q is the quantum efficiency. Such noise is qual-
itatively multiplicative (i. e., its magnitude depends on the
image), as it depends on the actual number N of photons at
the cornea. Hecht et al. [HSP42] have fitted the parameters
of their ROC measurements against such a model and found
Θ ≈ 6 and q ≈ 0.06. Note, that for N = 0 the probability
is zero, which cannot explain seeing noise in the absence
of light. Furthermore, a quantum efficiency of q ≈ 0.06 is
judged to be too low with respect to other physiological
data [FSR05]. Consequently, the model needs to be extended.

Photon-like noise An alternative source of noise has been
identified in spontaneous photo-transduction [Bar56, BLY79,
AF77]. Once in two thousand years, a rhodopsin molecule
is isomerized without any reason, leading to false-positive
responses, which becomes important when explaining the
perception of noise in the absence of all light. There are
60,000,000 rods [JSN92] and given 2,000,000,000 rhodopsin
molecules in each [YMB79], results in 0.032 events per sec-
ond and rod. While this is little compared to the excitation
rates above absolute threshold (high N), it is perceivable close
to absolute threshold where N and the rate of such sponta-
neous photo-transductions become similar. The probability
of seeing a flash due to such photon-like chemical events is

FDark = F(Θ,D) (2)

where D is a dark-noise constant, which characterizes the
rate of spontaneous photo-transductions. This noise is quali-
tatively additive (it does not depend on the actual number N
of photons but on a constant D) and could explain perceived
noise in the practical absence of light. When fitting behav-
ioral data [TPV∗82] to such a model, one can find Θ ≈ 40
and D ≈ 50. The best fit however, is produced by a model
that accounts for both quantum and dark noise.

Combined noise Lillywhite [Lil81] has shown physiologi-
cal evidence that photo-transduction near absolute threshold

is in fact not a Poisson process. A Poisson process assumes
that events are statistically independent. This does not hold
as bleaching causes a non-linear response of the photore-
ceptors to consequent photons [GAMS05]. A better model
can be obtained if the noise is assumed to be a combination
of both quantization and photon-like noise. The probability
distribution of observing exactly k photons is given by

PAll(k,N) = P(k,qN +D)F(Θ,αk), (3)

where α is a constant of growth. Fitting to behavioral data
yields α = 0.5, q = 0.2, D = 19, and Θ = 15 [FSR05],
which is in good agreement with all physiological evidence
[TPV∗82].

5. Computational model

Overview The input to our system is a sequence of HDR
images [RWD∗10] storing “retinal” radiance, i. e., after in-
cluding the eye’s complete optical transfer. The simulated
noise is added to an LDR image, produced from the HDR
image by a day-for-night tone mapping of choice, leading to
changes in chroma, saturation and acuity. Decoupling noise
and tone mapping allows us to maintain full control over the
appearance.A modular design also leads to easy and efficient
integration into existing systems. For all results in this paper,
we used the tone mapping by Thompson et al. [TSF02]. The
output is an LDR image sequence to be displayed on an LDR
display at photopic levels, which is perceived as similar to a
scotopic experience close to absolute threshold.

Fig. 2 summarizes the computational pipeline from pho-
tons emitted by an HDR image to the triggered rod re-
sponses.First, the HDR input is converted into photon counts
per unit time and area (Sec. 5.1). Next, the according retinal
response is simulated (Sec. 5.2). As light perception depends
on an integration period, which is particularly long in night
vision (Bloch’s law [Blo85]), we also consider eye motion
(Sec. 5.3).

5.1. Photon counts

Close to absolute thresholds, the actual number of photons is
important. Hence, we need to convert the image or the frames
of an image sequence into photon counts per time and recep-
tor. We follow the derivation of Deering [Dee05, Sec. 6].For
our case, we account for the increase in pupil size [WY12]
and the spectral shift in the HVS sensitivity when we derive
photometric quantities. Hereby, we can estimate the number
of photons that reach the retina through the pupil from a
given screen pixel under standard viewing conditions. Since
the data we use in Sec. 5.2 are acquired for the wavelength λ

= 507 nm [HSP42], we assume the whole multi-spectral radi-
ant power of the image to be concentrated at this wavelength.
Given the relatively small range of visible frequencies, the
effect on photon count and, thus, noise appearance is minor.
Especially, since spectral radiance is not always available, it
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Figure 2: Luminance perception at absolute thresholds (Left to right). Starting from the input HDR image, we compute the
number of photons reaching the retina per unit time. At a single receptor, a photon either contributes to luminance perception
(yellow) or is skipped (quantum efficiency) (white). Additionally, dark photon-like events (blue) contribute to the perceived sum,
here ten. Near absolute threshold, the probability distribution is wide (curve). Luminance samples drawn over time according
to this distribution are unstable and vary (grey squares). Well above absolute threshold, the probability distribution is peaky.
Samples drawn from this distribution are stable and very similar to the expected value.

is a reasonable approximation and represents the peak of the
scotopic luminous efficiency V ′(λ) [Wan95], which could
otherwise be used to compute wavelength-dependent lumi-
nous flux.

We then derive the approximate number of rod cells cov-
ered by a pixel’s projection on the retina. To this extent, we
assume a density of 100,000 rods / mm2. We chose this value
as a representative average density, since the rod acuity peak
has a density of 150,000 rods / mm2 at the eccentricity of
1.5 mm from the fovea center [JSN92, MKN84]. Combin-
ing the number of rod cells and photon count, we derive the
per-receptor estimate. The full derivation is detailed in the
supplemental material, leading to a single coefficient φ to
convert scotopic luminance L into photon count per retinal
region N and 100 ms integration time. Typically, φ≈ 1.2 ·105

for L = 10−3 cd / m2, hence N = φL≈ 120 photons.

Discussion The goal of this work is not a strict simulation
of a complete perceptual pipeline for night vision, although
our spatio-temporal model of handling photons at rods could
potentially serve as input for higher-order processes. Using a
photon-unit scale is a means to offer control over the day-for-
night processing.

5.2. Simulation

The simulation is performed independently for all pixels
in time steps matching the rendering framerate. Relying
on our analytical model, this choice is both practical and
performance-efficient. In the following, we will discuss the
simulation outcome for a single receptor.

Eq. 3 is used to sample the number N′ of photons perceived,
depending on the number N of photons. It is not a Poisson
process (contrary to simple shot-noise in Eq. 1, or dark noise-
model in Eq. 2) and analytically drawing samples is not
straightforward. As the evaluation is needed for all pixels per
frame, an efficient procedure is required. To make sampling
tractable, we use an inversion via a lookup table.

First, the values PAll(k,N) of Eq. 3 are tabulated for all

values 0 to k and all values 0 to N. From this table, a
complementary cumulative sum FAll(k,N) = ∑

N
i=1 PAll(k, i)

is created numerically. Note, that each row in Eq. 3 is al-
ready a PDF and its integral is 1. The inverse of each row,
F−1

All (ξ,N) = min{k|FAll(k,N) > ξ}, is stored as a look-up
table.

The lookup table is constructed offline, but we also provide
it in the supplemental material. To convert the physical photon
count N into a photo-transduced photon count N′, a random
number ξ ∈ [0,1] is generated and used to look up N′ =
F−1

All (ξ,N) in constant time.

As the values α = 0.5, q = 0.2, D = 19 and Θ = 15 were
derived for stimuli that covered 500 receptors, and a duration
of 100 ms [HSP42, Lil81], the number N′ computed above
is valid for 500 receptors and 100 ms. However, we would
need to apply a conversion to a single receptor, but computing
the response of every individual receptor is computationally
costly. Further, we actually should consider ρ receptors cov-
ered by a pixel (ρ≈ 5 for the display in our experiment). To
accelerate the computation, we assume that the probability
for an observation is uniform in a spatial neighborhood of
500 receptors in a time window of 100 ms and that obser-
vation events are independent between different receptors.
Under these conditions, the probability that a pixel observes
M events is given by the binomial distribution

PFinal(M,N′) =

(
M
N′

)
(ρ/500)M(1−ρ/500)N′−M .

Again, a single sample M′ is drawn from this distribution
using M′ = F−1

Final(ξ,N
′) using the inversion method and a

lookup table for each N′.

Finally, the number of transduced photons for this pixel
M′ is converted back to a displayable value. At this point,
we have to account for the factor φ that relates luminance L′

and photon counts, as well as for the quantum efficiency that
reduced the photon count due to the eye optics: L′ = φ

−1 ·
q−1 · (ρ/500)−1 ·M′. In order to preserve chroma, the tone-
mapped RGB values are first converted to YCrCb, the noise
is applied to the luminance Y and the resulting Y’CrCb is
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converted back to RGB. The noise is determined by the ratio
of the photon count M′ and the expected photon count given
by the HDR luminance L. It is applied to Y as a combination
of gain and bias, where the gain represents the multiplicative
noise from the light quantization and depends on the size of
qN, and the bias represents the additive photon-like noise
and depends on the dark-noise constant D, as well as a noise
baseline K

Y ′ =
M′

(qN +D)ρ/500

[(
qN

qN +D

)
Y +

(
1− qN

qN +D

)
K
]
.

Applying the noise to a toned-mapped image provides fine
appearance control, as we can choose the noise intensity K in
totally black regions, where no evidence about the absolute
scale is available. K = 0.06 was used in our results. Photopic
and mesopic conditions are practically noise-free and seam-
lessly covered by our simulation because L ≈ L′, as dark
noise can be neglected when N� D and the standard devi-
ation of quantum noise is small for N � 0. Because both,
Poisson and binomial distributions, converge to the normal
distribution for sufficiently large samples, we keep only up
to 1000 values in the lookup tables and samples from larger
distributions are drawn using the Box-Muller method.

5.3. Temporal integration

The temporal resolution at scotopic conditions is low [Wan95,
Fig. 7.23] and even lower close to absolute threshold [USB08,
Fig. 1] (unfortunately, in the range 10−6–10−5 cd / m2 we
were not able to find the relevant data for human vision). Con-
sequently, noise undergoes filtering of temporal frequencies
above 10 Hz. A simple solution would store the last 100 ms
and average them. Instead, we use a closed-form solution
routinely applied in graphics [KP11]: To simulate the current
frame, the old frame is blended with the new one weighted by
α = exp(−2π · fc/ fs), and 1−α [Smi97], where fc = 0.5 Hz
is the cutoff frequency and fs is the frame rate. The cutoff of
fc = 0.5 was tuned by manual inspection to achieve a result
most similar to averaging multiple frames.

As the noise process occurs on the retina, the noise pattern
is expected to move with the eye over the image. In the
absence of eye tracking, we make the assumption that the
eye follows the optical flow for given pixel [KP11] during
the integration-time period. We warp the noise pixel-by-pixel
along this flow, including a depth test if depth is available.

Pixel-by-pixel warping is used, as repeated warping of an
image at a high framer-rate would quickly blur out all high
spatial frequencies that are important for our noise. However,
this warping, as well as disocclusion (when depth is used),
results in holes.

To address this issue, we jitter the target position of ev-
ery pixel by a small random offset of one pixel. Doing so
reduces the regular structure, which would become apparent
in a smooth flow field. Further, we fill the remaining holes

with new noise values, but, as they did not undergo tempo-
ral integration, a careful choice is needed, otherwise, their
brightness statistics would differ from the warped pixels. One
approach would be to draw multiple samples over time and
average them over the integration period. A more efficient
solution is to directly change the distribution from which
these hole-filling samples are drawn to match the mean and
standard deviation of the temporally-integrated distribution.
Such a distribution can be obtained by properly scaling the
standard simulation time of 100 ms and the number of pho-
tons. Intuitively, larger time leads to higher mean values in
the simulation and therefore lower relative noise. As our in-
tegration procedure is an exponential smoothing filter and
our cumulative distribution behaves like a box filter, we can
find a proper scaling for the simulation time by looking for a
box filter length such that the corresponding exponential and
uniform distribution mean values and standard deviations are
equal. The resulting scaling factor is (1+α)/(1−α).

6. Results

Acquiring a reference noise for comparison is impossible; it
exists solely as a neural representation, for which no imaging
technology is available. This section complements the quan-
titative fit to physiological data, which we have provided so
far, with performance evaluations, a qualitative assessment in
form of actual images, and a perceptual experiment.

Performance Our implementation computes an HD noise
frame from an input image in 18 ms on a Nvidia Geforce
660 GTX. Most time is spent on the image-warping with
respect to the estimated eye movement (9 ms). Producing
samples from the distribution is fast when using the lookup
tables (1.8 ms).

Images Fig. 1, Fig. 5 and Fig. 3 show typical results, com-
pared to other noise models at different scales of absolute
luminance. Gaussian noise follows the recommendation by
Thompson et al. [TSF02]; adding Gaussian noise with a small
standard deviation, independent of the luminance in the im-
age. We see that the noise does not adapt to the image content
and it is unclear how it should be scaled in respect to adapta-
tion. The quantum and dark noise show implementations of
Eq. 1 and Eq. 2 respectively. The quantum noise reacts to im-
age content but lacks noise in dark areas. The dark noise has
an inverted behavior. Only our model combines all properties
into a consistent omnipresent noise that reacts to luminance.
Note, that Fig. 1 and Fig. 3 span a range of adaptation levels
for didactic purposes, while images only have one dominant
adaptation level in practice. The supplemental video shows
animated versions of these two figures.

Perceptual experiment The key questions using our noise
model concern the nocturnal mood impression (realism),
viewing comfort, and the observer’s overall preference. To
this extent, we performed a perceptual experiment, which
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Figure 3: Gaussian [TSF02], quantum (Eq. 1), dark noise (Eq. 2) and our model (top to bottom), applied to an image that
contains different absolute scales of luminance (horizontal), including a condition close to absolute threshold. Insets show the
power distribution of the noise (black) and a Gaussian reference (grey) at four specific pixels together with their photon count N.

was precedented by a calibration phase where dark-adapted
subjects could possibly experience scotopic noise themselves.
Afterwards, subjects were shown videos with day-for-night
tone mapping applied, with either (1) white additive noise
as suggested by Thompson et al. [TSF02] or (2) our full
model of noise distribution temporarily simulated either as
(1) a static noise frame (a single white noise pattern or our
full model with a constant random seed), (2) a dynamically
changing phenomena. Subjects were shown pairs of videos
and asked, which one: (1) depicts the scene more realisti-
cally? (2) is more comfortable to look at? (3) is preferred in
general?

To explore the dynamic aspects of noise and its interac-
tion with the image content the video sequences exhibit
camera motion. In total four different short movies (10 s)
were used; two computer-generated (ARCHITECTURE, TUN-
NEL) and two captured (COUNTRYSIDE, CAR). The anima-
tion in CAR was produced by horizontally panning across
the teaser in Thompson et al. [TSF02]. Three of the videos
(ARCHITECTURE, COUNTRYSIDE, TUNNEL) contain tempo-
ral changes of absolute luminance (see supplemental video).

Ten subjects took part in the experiment comprising a cal-
ibration and a query phase. In the calibration phase, they
were instructed to adapt for 10 minutes in a dark room. It
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was done merely to let them investigate the appearance of
several presented objects and at the same time experience the
scotopic noise for themselves. While more time is typically re-
quired to achieve full scotopic adaptation [FPSG96,PTYG00],
we found scotopic noise to become apparent already after
ten minutes in our setting.Longer adaptation is expected to
produce an even stronger effect, but results in fatigue.The
query phase was performed in photopic conditions under
controlled dim office illumination. Subjects were shown all
of the 4×2×2 combinations of the above stimuli and noise
variants in a random order. Stimuli involving changes in dis-
tribution and temporal behavior simultaneously were skipped
to reduce fatigue. Videos were looped and after three repeti-
tions (30 s), subjects were asked to answer the three questions
stated above. The used display was a Dell U2412M with a
resolution of 1920×1200 pixels and stimuli were played at
30 Hz. They were shown next to each other at a resolution of
800×800 pixels in front of a dark background, at a distance of
60 cm, at which a pixel covers a visual angle of 1.45 arcmin.
Subjects were adapted to dim, photopic office-lighting condi-
tions.

a) b) c)
Realism
Comfort
Overall

50%

30%

10%

Figure 4: Study statistics for three different comparisons
a–c) and three qualities (colors). Each bar’s height denotes
preference compared to a reference. Notches denote 95 % con-
fidence intervals (CI). Comparison with a CI not intersecting
the 50 %-null hypothesis line are statistically significant.

First, we compare our full approach to a variant using static
instead of dynamic noise (Fig. 4, a). It is significantly pre-
ferred (all significant effects reported are, p < .05 binomial
test) overall (63.7%,CI [11.5,10.5]%) and, in particular, in
terms of realism (68.8%,CI [11.3,9.9]%), while no signifi-
cant effect on comfort was present (52.5%,CI [11.5,11.3]%).
The finding indicates that adding dynamic noise is useful
because static noise is perceived unnatural, in particular for
dynamic scene.

Second, we compare our full approach to dynamic white
noise (Fig. 4, b). Again it is found to be significantly bet-
ter overall (72.5%,CI [11.1,9.4]%) and in terms of comfort
(72.5%,CI [11.1,9.4]%), while the improvement in realism
is not significant (57.5%,CI [11.6,11.0]%). The finding indi-
cates that adding dynamics alone is not preferred over adding
it to the appropriate noise distribution. Probably, uncorrelated
white noise fluctuations are perceived unnatural as they not
adjust to the image content.

The comparison of a static variant of our noise
and static white noise (Fig. 4, c), leads to a signifi-
cant preference of the static variant of our approach in

terms of comfort (67.5%,CI [11.4,10.1]%) and preference
(65.0%,CI [11.5,10.3]%) with no significant effect on real-
ism (56.3%,CI [11.6,11.1]%). The finding indicates that be-
sides all dynamics, our choice of physiologically-principled
noise is an important factor; only a mix of additive and multi-
plicative noise, as well as adaption to the actual luminance
seems to appear plausible.

In summary, the experiments indicate, that previous work
adds to the nocturne mood in static images, but might be
incomplete for animated imagery. Further, the noise dynamics
as a function of scene content is not trivial and the type
of noise distribution leads to perceivable differences. Still,
extensive noise can reduce viewing comfort and, ultimately,
if an artist decides to use noise to depict scotopic conditions,
a tradeoff is possible.

7. Conclusion

We derived a physiologically-motivated model of noise per-
ception close to the absolute luminance threshold. The model
is practical and can be computed efficiently. Our specialized
warping maintains noise details and leads to temporal coher-
ence and might be useful in other contexts or other forms of
temporally-coherent high-frequency noise. The experimental
evaluation shows that our simulated noise is always overall
preferred, and more comfortable to watch than previous so-
lutions, which are based on white noise. Our dynamic-noise
solution can be potentially less comfortable than its static
counterpart, but it consistently improves realism. The artis-
tic intent should be the key factor when choosing between
apparent realism and viewing comfort. Our model does not
yet account for any higher-level effects. We assume that the
day-for-night tone mapping (chroma change, acuity loss) is
independent of and happens before the receptor noise. While
this is physiologically plausible, future work could account
for higher-level processes in order to reproduce all major sco-
topic phenomena, including also the Purkinje shift, and the
scotopic (temporal) contrast, as a consequence of the noisy
retinal signal processing itself.
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Figure 5: Results of our full model applied to different CG animations (Rows) with adaptation luminance changing over time
(Columns). The first row is a time-lapse architectural visualization from night over morning to daylight. The second row is a
driving simulation in a tunnel. The last row shows a time-lapse animation of a three-dimensional animated 3D scene with a
setting similar to the photography used by Thompson et al. [TSF02]. The pairs of insets (the left is ours, the right is Gaussian
noise) show a magnified part of the frames above. Our approach changes over time, adapts to luminance changes, and does not
suffer from the shower-door effect, which is typical of screen-space patterns, such as Gaussian noise, which only works well for a
photo with a fixed luminance level.
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