
DOI: 10.1111/j.1467-8659.2012.03075.x COMPUTER GRAPHICS forum
Volume 31 (2012), number 8 pp. 2378–2408

Temporal Coherence Methods in Real-Time Rendering

Daniel Scherzer1, Lei Yang2, Oliver Mattausch3,4, Diego Nehab5, Pedro V. Sander2, Michael Wimmer3 and Elmar Eisemann6

1MPI Informatik, 2Hong Kong UST, 3TU Vienna, 4U Zurich, 5IMPA, and 6Delft University of Technology/Telecom ParisTech
scherzer@mpi-inf.mpg.de, yanglei@alumni.ust.hk, psander@cse.ust.hk, {matt, wimmer}@cg.tuwien.ac.at, diego@impa.br,

elmar.eisemann@telecom-paristech.fr

Abstract
Nowadays, there is a strong trend towards rendering to higher-resolution displays and at high frame rates. This
development aims at delivering more detail and better accuracy, but it also comes at a significant cost. Although
graphics cards continue to evolve with an ever-increasing amount of computational power, the speed gain is easily
counteracted by increasingly complex and sophisticated shading computations. For real-time applications, the
direct consequence is that image resolution and temporal resolution are often the first candidates to bow to the
performance constraints (e.g. although full HD is possible, PS3 and XBox often render at lower resolutions).

In order to achieve high-quality rendering at a lower cost, one can exploit temporal coherence (TC). The underlying
observation is that a higher resolution and frame rate do not necessarily imply a much higher workload, but a
larger amount of redundancy and a higher potential for amortizing rendering over several frames. In this survey, we
investigate methods that make use of this principle and provide practical and theoretical advice on how to exploit
TC for performance optimization. These methods not only allow incorporating more computationally intensive
shading effects into many existing applications, but also offer exciting opportunities for extending high-end graphics
applications to lower-spec consumer-level hardware. To this end, we first introduce the notion and main concepts of
TC, including an overview of historical methods. We then describe a general approach, image-space reprojection,
with several implementation algorithms that facilitate reusing shading information across adjacent frames. We
also discuss data-reuse quality and performance related to reprojection techniques. Finally, in the second half of
this survey, we demonstrate various applications that exploit TC in real-time rendering.

Keywords: anti-aliasing, frame interpolation, global illumination, image-based rendering, large data visual-
ization, level-of-detail, non-photo-realistic rendering, occlusion culling, perception-based rendering, remote
rendering, sampling, shadows, streaming, temporal coherence, upsampling

ACM CCS: I.3.3 [Computer Graphics]: Picture/Image Generation—Display Algorithms; Viewing Algorithms;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing and texture

1. Introduction

In order to satisfy the ever-increasing market demand for
richer gaming experiences, developers of real-time rendering
applications are constantly looking for creative ways to fit in-
creased photo-realism, frame rates and resolution within the
computational budget offered by each new graphics hardware
generation. Although graphics hardware evolved remarkably

in the past decade, the general sense is that at least in the fore-
seeable future, any hardware improvement will be readily put
to use towards one of these goals.

The immense computational power required to render a
single frame with desirable effects such as physically correct
shadows, depth-of-field, motion-blur and global illumination
(or even an effective ambient-occlusion approximation) is

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics
Association and Blackwell Publishing Ltd. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA. 2378

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2379

Figure 1: Real-time rendering applications exhibit a considerable amount of spatio-temporal coherence. This is true for camera
motion, as in the Parthenon sequence (left), as well as animated scenes such as the Heroine (middle) and Ninja (right) sequences.
Diagrams to the right of each rendering show disoccluded points in red, in contrast to points that were visible in the previous
frame, which are shown in green (i.e. green points are available for reuse). [Images courtesy of Advanced Micro Devices, Inc.,
Sunnyvale, California, USA]

multiplied by the demands of high-resolution displays, which
require large scene descriptions to be manipulated (geometry
and textures). The difficulty is compounded further by the
need to generate such frames continuously, as part of real-
time animation.

Although rendering at 30 Hz (NTSC) is already consid-
ered real-time, most modern liquid crystal display (LCD)
monitors and TVs can refresh at least at 60 Hz. Naturally,
developers strive to meet this standard. Given that there is still
a measurable task-performance improvement in interactive
applications as frame rates increase up to 120 Hz [DER*10b],
there is justification to target such high frame rates. In this
case, as little as 8 ms are available to produce each complete
photo-realistic image, and all involved calculations (includ-
ing physical simulations and other tasks unrelated to render-
ing itself) have to fit within this time budget. Needless to say,
this poses a difficult task.

The traditional approach to optimization in the context of
real-time rendering is to focus on improving the performance
of individual rendering tasks, one at a time. In this survey, we
present results that are connected by a more general approach
to optimization: exploiting temporal coherence (TC).

Consider the examples shown in Figure 1. When frame
rates are high, there are only very small changes from one
frame to the next. Each visible surface point tends to remain
visible across the interval of several frames. Furthermore,
point attributes (including colour) tend to maintain their val-
ues almost unchanged throughout. To measure the amount of
TC in these animation sequences, Figure 2 plots the fraction
of points that remain visible from one frame to the next. We
can see that fractions of 90% and higher are typical.

Since an ever-increasing slice of the rendering budget is
dedicated to shading surface points, such a high level of
TC presents a great opportunity for optimization. Rather
than wastefully recomputing every frame in its entirety
from scratch, we can reuse information computed during
the course of one frame (intermediate results, or even final
colours) to help render the following frames. The resulting

Figure 2: Plot shows the percentage of surface points that
remain visible from one frame to the next for the animations
of Figure 1 Coherence in excess of 90% is typical of many
game-like scenes.

reduction in the average cost of rendering a frame can be
used in a variety of ways: from simply increasing the frame
rate to improving the quality of each rendered frame.

Naturally, TC has been exploited since the early days of
computer graphics. We describe a variety of early applica-
tions in Section 2. In Section 3, we move to methods that
can be used to take advantage of TC in real-time rendering
scenarios. Special attention is given to techniques based on
reprojection. Reprojection allows us to map a surface point
in one frame to the same surface point in a previously ren-
dered frame. This mapping plays a key role in the reuse
of information across frames. Reusing information involves
certain quality/performance trade-offs that are analyzed in
Section 4. Since the selection of a proper target for reuse
can modulate this trade-off, the same section discusses the
most important factors influencing this choice. In Section 5,
we then categorize and discuss a number of applications that
take advantage of TC in real-time rendering, including both
the ones that use reprojection, and the ones that exploit TC
in other spaces. Finally, in Section 6, we provide a summary
of the presentation.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2380 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

2. Early Approaches

TC has been around for almost as long as computer graphics
itself. For example, the term frame-to-frame coherence was
first introduced by Sutherland et al. [SSS74] in his seminal
paper ‘Characterization of Ten Hidden-Surface Algorithms’.
Therefore, we will summarize early developments in which
TC was already used in similar ways.

In particular, we will cover the use of TC in ray-tracing,
image-based rendering, and image and render caches.

2.1. Ray-tracing

TC was already used for the classical ray-tracing algorithm
in order to speed up the calculation of animation sequences.
While these techniques are for offline rendering, most of
them already make use of forward reprojection (Section 3.2)
for reusing information.

Badt [BJ88] developed a forward reprojection algorithm
that uses object space information stored from the previ-
ous frame. This allows approximating ray-traced animation
frames of diffuse polygons. Adelson and Hodges [AH95]
later extended the approach to ray-tracing of arbitrary scenes.
Havran et al. [HBS03] reused ray/object intersections in ray-
casted walkthroughs. They do this by reprojecting and splat-
ting visible point samples from the last frame into the current,
thereby avoiding the costly ray traversal for more than 78%
of the pixels in their test scenes.

Leaving the concept of frame-based rendering behind,
Bishop et al. [BFMZ94] introduced frameless rendering,
which heavily relies upon TC for sensible output. Here, each
pixel is rendered independently based on the most recent in-
put, thereby minimizing lag. There is no wait period until
all pixels of a frame are drawn, but individual pixels stay
visible for a random time span, until they are replaced with
an updated pixel. Note that this approach does not use the
object coherence that is an integral part of many polygon
renderers. To avoid image tearing, pixels are rendered in a
random order. Dayal et al. [DWWL05] combined this with
temporal reprojection and adaptive reconstruction, focusing
on edges and dynamic parts of the scene.

2.2. Image-based rendering

In a general sense, TC is also related to methods that replace
parts of a scene with image-based proxy representations.
This can be interpreted as a form of reverse reprojection
(Section 3.1) applied to individual parts of a scene. This idea
was used most prominently in the so-called hierarchical im-
age cache and its variations [Sch96, SLS*96], where images
(called impostors) of complex distant geometry are generated
on the fly and reused in subsequent frames, thus reducing
rendering times. The geometric error for such systems has
also been formally analyzed [ED07a]. Frame-to-frame coher-
ence is further exploited in various systems that partition the

scene into different layers [RP94, LS97], while others aug-
ment the image-based representation with depth information
[SGHS98]. In this report, however, we will focus on meth-
ods that do not use proxy geometry to cache information, but
directly reuse rendered information from the previous frame
buffers.

2.3. Image and render caches

Image and render caches store the information generated in
previous frames in a data structure, and reuse this informa-
tion for the generation of the current frame, using different
reconstruction and mostly forward reprojection techniques
(Section 3.2).

Wimmer et al. [WGS99] proposed a technique that accel-
erates the rendering of complex environments by splitting
the scene into a near field and a far field: The near field is
rendered using the traditional rendering pipeline, while ray
casting is used for the far field. To minimize the number of
rays cast, they use a panoramic image cache and only re-
compute rays if a cache entry is not valid anymore, where
validity is based on the distance to the original observer po-
sition where the pixel was generated. The panoramic image
cache avoids reprojection altogether, but quickly becomes
inaccurate for translational motion.

Qu et al. [QWQK00] proposed using image warping to
accelerate ray-casting. The idea is to warp the output image
of the previous frame into the current frame using forward
projection. Due to the warping, pixels may fall between the
grid positions of the pixels of the current frame; therefore,
an offset buffer is used to store the exact positions. Due to
disocclusions, holes can occur at some pixels. Here, ray-
casting is used to generate these missing pixels. The authors
proposed to use an age stored with each pixel, which is
increased with each warping step to account for the lower
quality of pixels that have been warped (repeatedly). Upon
rendering a new output frame, this age can be used to decide
if a pixel should be re-rendered or reused.

Walter et al. [WDP99] introduced the render cache. It is
intended as an acceleration data structure for renderers that
are too slow for interactive use. In contrast to the previously
mentioned approaches, which store pixel colours, the render
cache is a point-based structure, which stores the complete
3D coordinates of rendered points and shading information.
By using reverse reprojection, these results can be reused
in the current frame. Progressive refinement allows decou-
pling the rendering and display frame rates, enabling high
interactivity. Walter et al. [WDG02] extended this approach
with predictive sampling and interpolation filters, while later
work accelerated the render cache on the GPU [VALBW06,
ZWL05].

Ward and Simmons [WS99] described the Holodeck ray
cache, which converts rendered samples into a spherical 4D

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2381

mesh centred at the viewpoint. The mesh can then be dis-
played for different viewpoints. Based on this method, Sim-
mons and Séquin [SS00] proposed the Tapestry representa-
tion by introducing incremental re-centring of the spherical
mesh, as well as other enhancements such as prioritized sam-
pling and automatic sample invalidation.

3. Reprojection and Data Reuse

An important decision when utilizing TC is how the previ-
ously computed data are stored, tracked, retrieved and reused.
On modern graphics hardware, the most common way is to
store the desired data at visible surface points in viewport-
sized off-screen buffers at each rendered frame, usually re-
ferred to as history buffer, payload buffer or cache. When
generating the following frames, the data in the buffer are re-
projected to their new locations based on scene motion. Even
with hardware support, reprojection can still be a computa-
tionally challenging task. In this section, we first describe
two reprojection strategies that are commonly used in nu-
merous applications and can sometimes be interchanged to
suit special needs. In disoccluded regions where the previous
data are not available, we show how to fill in approximate
results that are visually plausible. Finally, we describe amor-
tized sampling, which is a basis used in various applications
described in Section 5.

3.1. Reverse reprojection

A basic scenario of using TC is to generate a new frame
using data from a previously shaded frame. For each pixel in
the new frame, we can trace back to its position in the ear-
lier cached frame to determine if it was previously visible.
If available, this cached value can be reused in place of per-
forming an expensive computation. Otherwise it must be re-
computed from scratch. This technique is called the Reverse
Reprojection Cache (RRC). It was proposed independently
by Nehab et al. [NSL*07] and Scherzer et al. [SJW07], and
serves as a framework for a number of applications described
in Section 5.

Formally, let ft denote the cache generated at time t , which
is a framebuffer holding the pixel data visible at that frame.
In addition to ft , we keep an accompanying buffer dt which
holds the scene depth in screen space. Let ft (p) and dt (p)
denote the buffer values at pixel p ∈ Z

2. For each pixel
p = (x, y) at time t , we determine the 3D clip-space posi-
tion of its generating scene point at frame t − 1, denoted by
(x ′, y ′, z′) = πt−1(p). Here, the reprojection operator πt−1(p)
maps a point p to its previous position at frame t − 1. Note
that with this reprojection operation, we also obtain the depth
of the generating scene point z′ at frame t − 1. This depth
is used to test whether the current point was visible in the
previous frame. If the reprojected depth z′ equals dt−1(x ′, y ′)
(within a given tolerance), we conclude that the current pixel

Figure 3: The reverse reprojection operator. The shading re-
sult and pixel depths of time t − 1 are stored in screen-space
framebuffers (left). For each pixel p at time t (right), its
reprojected position πt−1(p) is computed to locate the cor-
responding position at frame t − 1. The recomputed scene
depth is compared to the stored pixel depth. A pair of match-
ing depths indicate a cache hit (p2), whereas inconsistent
depths indicate a cache miss (p1).

p and the reprojected pixel ft−1(x ′, y ′) are indeed generated
by the same surface point. In this case, the previous value
can be reused. Otherwise no correspondence exists and we
denote this by πt−1(p) = ∅, which we refer to as a cache
miss. Additional tests such as object-ID equality can also be
employed to reinforce this cache miss decision. The reverse
reprojection operation is illustrated in Figure 3.

3.1.1. Implementation

The RRC algorithm can be conveniently mapped to the
modern programmable rendering pipeline. A major task
of this is to compute the reprojection operator πt−1(p),
which maps each pixel p to its corresponding clip-space
position in the previous frame t − 1. At frame t , the ho-
mogeneous projection space coordinates (xt , yt , zt , wt)vert
of each vertex v are calculated in the vertex shader, to
which the application has provided the world, view and
projection matrices and any animation parameters. To per-
form correct reprojection, the application also has to pro-
vide these matrices and animation parameters at t − 1
to the vertex shading stage. In addition to transforming
the vertex at frame t , the vertex shader also transforms
the vertex using the matrices and parameters from frame
t − 1, thereby computing the projection-space coordinates
(xt−1, yt−1, zt−1, wt−1)vert of the same vertex at frame t − 1.
These coordinates are stored as vertex attributes and are au-
tomatically interpolated by the hardware before reaching the
pixel stage. This gives each pixel p access to the previous
projection-space coordinates (xt−1, yt−1, zt−1, wt−1)pix . The
final cache coordinate πt−1(p) is obtained with a simple di-
vision by (wt−1)pix within the pixel shader. Note that the
transformation need only be computed at the vertex level,
thereby significantly reducing the computational overhead in
most scenes.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2382 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

Because of arbitrary scene motion and animation, the pre-
vious position πt−1(p) usually lies somewhere between the
set of discrete samples in the cache ft−1, and thus some form
of resampling is required. Nehab et al. [NSL*07] suggested
using hardware-assisted bilinear texture fetch for resampling.
In most situations, this suffices for practical use. It is also used
to reconstruct the previous depth value so that a more robust
cache-miss detection can be achieved.

3.2. Forward reprojection

Alternatively, instead of starting from every pixel in the tar-
get frame, we can directly process the cache and map every
pixel in the cache to its new position. This has the advan-
tage that it does not require processing the scene geometry
for the new frame, which is desirable in some applications.
Still, it requires a forward motion vector (or disparity vector)
generated for each pixel, which is equivalent to the inverse
mapping of πt−1(p).

On the other hand, per-pixel forward projection can be dif-
ficult and costly to implement on conventional graphics hard-
ware (prior to DirectX 11) because it involves a scattering
operation, which does not map well to the traditional graphics
pipeline. For example, splatting each pixel from the previ-
ous frame to its reprojected position in the current frame can
be slow and leave holes. It may also require applying com-
plex filtering strategies in order to obtain pixel-accurate re-
sults. A way around these problems was described by Didyk
et al. [DER*10b]: they proposed an image-warping tech-
nique, which is efficient on conventional GPUs. The warping
is achieved by approximating the motion vector field with a
coarse grid representation, assuming that the vector field is
piecewise linear. An initial uniform grid is snapped to large
motion vector discontinuities in the previous frame. Then,
the grid geometry is rendered to its new position dictated
by the motion vector field so that its associated texture is
automatically warped. Occlusion and disocclusion are nat-
urally handled with grid folding and stretching. Note that
depth testing must be enabled in order to correctly resolve
occlusions and fold-overs.

A regular grid used by Didyk et al. [DER*10b] can have
difficulties warping images with finely detailed geometry.
They later proposed an improved algorithm using adaptive
grids [DRE*10]. Their new approach starts with a regular grid
(32× 32). Then a geometry shader traverses all the quads in
the grid in parallel. Every quad that contains a discontinuity
is further partitioned in four. This process is iterated until
no quads need to be further partitioned. At that point, the
grid geometry is rendered as in the regular grid case. Due
to the adaptive grid, this new approach has better utilization
of computational resources, thereby significantly improving
the quality.

Yu et al. [YWY10] proposed a forward reprojection
method that leverages the parallel data scattering function-

ality on the GPU (available through CUDA or DirectX 11
Compute Shader). For each pixel in the cache, they deter-
mine its new position in the target frame by offsetting its
current position using the forward motion vector (disparity
vector). Then, the depth of the current pixel is tested against
the target pixel for resolving visibility. This operation is per-
formed using the atomic min functionality to avoid parallel
write conflicts. Note that since there is no one-to-one map-
ping between the source and the target pixels, holes can be
present after reprojection. To resolve this, Yu et al. [YWY10]
proposed to increase the support size of the reprojected pixel,
i.e. to write to all four neighbours of each reprojected frac-
tional position. This works with near-view warping for their
application of light-field generation, but may be insufficient
for other applications where non-uniform motion is involved.

Recently, Yang et al. [YTS*11] proposed an image-based
approach for forward reprojection using conventional GPU
pixel-shading functionality, i.e. pixel gathering as opposed
to scattering. The essence of the approach is an iterative
image-space search performed independently at each pixel
in the target frame, in order to find the motion vector that
leads to the corresponding pixels in the rendered frames.
This approach effectively inverts the reprojection operator
πt−1(p) based on the assumption that πt−1(p) is piecewise
smooth over the image. Discontinuity is handled by several
additional search initialization heuristics. The entire process
fits in a pixel shader and produces convincing results within
a small time budget.

3.3. Handling disocclusion

The process of reprojection is essentially a non-linear warp-
ing and may leave the newly disoccluded regions incorrectly
shaded or blank. With reverse reprojection, we may have the
option to reshade these regions whenever a cache miss oc-
curs. However, this is not always desirable due to limited time
budget or other constraints imposed by the application. With
forward reprojection, there is usually no such option since
the shading input may not be available. Therefore, some form
of approximate hole filling needs to be performed in order to
reduce visual artefacts.

Andreev [And10] suggested an inpainting strategy that du-
plicates and offsets neighbouring image patches into the hole
area from the four sides. This is efficiently implemented in a
pixel shader and can be performed iteratively until the hole
is completely filled. For a more robust solution, one can con-
sider using pull–push interpolation [MKC07]. The pull–push
algorithm consists of a pull phase and a subsequent push
phase. The pull phase iteratively computes coarser levels of
the image containing holes, forming an image pyramid. Each
pixel in a coarser level is the average of the valid pixels in
the corresponding four pixels from the finer level. The push
phase then operates in the inverse order and interpolates the
hole pixels from the coarser levels. This works best for the

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2383

Load/Reuse

Lookup Hit? Update

Recompute

yes

no

Figure 4: Schematic diagram of applying the RRC to avoid
pixel shading whenever possible [NSL*07].

small holes caused by per-pixel forward reprojection. With
larger holes, the interpolated pixels may appear blurred and
can be a source of artefacts as well.

3.4. Cache refresh

A straightforward usage of data reprojection is to avoid shad-
ing pixels that are visible in the previous frame. This can
apply to either part or the entire pixel shading computation.
For example, if we use RRC, the original pixel shader can
be modified to add a cache load and reuse branch, as shown
in Figure 4. When each pixel p is generated, the reprojection
shader fetches the value at πt−1(p) in the cache and tests if the
result is valid (i.e. a cache hit). If so, the shader can reuse this
value in the calculation of the final pixel colour. Otherwise,
the shader executes the normal pixel shading. Whichever
route the shader follows, it always stores the cacheable value
for potential reuse during the following frame.

Although a cached value can be continuously reused
throughout many frames, it may quickly become stale be-
cause of either shading changes or resampling error. Nehab
et al. [NSL*07] proposed to refresh (i.e. recompute) the value
periodically in order to counteract this effect. For a fixed re-
fresh rate, the screen can be divided into �n groups and
updated in a round-robin fashion in each frame by testing the
following condition for each pixel:

(t + i) mod�n = 0, (1)

where i is the group ID of the pixel and t is a global clock.
They suggest two simple ways of dividing the screen:

• The screen is partitioned into a grid of �n non-
overlapping tiles, with pixels in a tile sharing the same
ID.

• The screen pixels are equally partitioned into �n groups
with each pixel assigned a random group ID.

• The updated screen pixels are uniformly distributed on a
regular grid. For a static scene and camera, interleaving
n such images leads to an accurate high-resolution image
of the scene.

With the tiled refresh strategy, pixels within a tile are re-
freshed at the same time. This leads to excellent refresh coher-

Figure 5: Three control flow strategies for accelerating pixel
shading using the RRC.

ence, but may lead to visible discontinuity at tile boundaries.
The randomly distributed refresh strategy updates pixels in a
random pattern. It exchanges sharp discontinuities for high-
frequency noise, which is usually less objectionable. Note
that it is recommended to assign the same ID to each 2× 2
or larger quad of pixels, because modern GPUs perform
lock-step shading computation on such quads. The inter-
leaved refresh regions are easy to achieve by rendering low-
resolution frames and applying a distance-dependent offset
on the geometry. For temporal integration, such schemes are
interesting, as the combination of these samples leads to a
high-resolution shot.

In addition, care must be taken in order to maximize the
performance when implementing this scheme with RRC. The
fact that there are two distinct paths in Figure 4, cache hit
and cache miss, allows for several implementation alterna-
tives. The most straightforward approach is to branch be-
tween the two paths (Figure 5a). This allows all the tasks
to be performed in a single rendering pass, but may suf-
fer from dynamic branching inefficiency particularly when
the refreshed region is not coherent and the branches are
unbalanced. To achieve better performance, Nehab et al.
[NSL*07] defer the expensive recomputation and put it into
a separate pass so that the branches are more balanced
(Figure 5b). By relying on early-Z culling, the miss shader
is only executed on the cache-miss pixels that are auto-
matically grouped to avoid any performance penalty. If
the hit shader (green block in Figure 5) is also non-trivial

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2384 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

to compute, the branches in the first pass may still not be
balanced. Sitthi-amorn et al. [SaLY*08a] proposed a method
that further separates this part of the computation into a third
pass (Figure 5c) in order to reduce dynamic branching cost.
This three-pass implementation also has the advantage that
it does not require multiple render-target support, but incurs
more geometry processing cost. The choice of strategy there-
fore depends on the relative cost between vertex and pixel
shading in the target scene. Sitthi-amorn et al. [SaLY*08a]
presented some empirical performance analysis of these three
implementations in practice.

3.5. Amortized sampling

Another common strategy of data reuse is to combine previ-
ous shading results with those from the current frame. Grad-
ual phase-out can then be used to avoid explicitly refreshing
pixels. This strategy is usually applied to amortize the ex-
pensive task of computing a Monte-Carlo integral, in which
multiple spatial samples are combined for each pixel. With
data from the past, each frame then only needs to compute a
lot less samples (typically only one) for each pixel in order to
achieve a similar image quality. This is beneficial for many
high-quality rendering effects described later, such as spatial
anti-aliasing, soft shadows and global illumination.

In order to efficiently reuse and combine previously com-
puted samples of a signal without increasing storage over-
head, Nehab et al. [NSL*07] and Scherzer et al. [SJW07]
proposed to combine and store all previously computed sam-
ples associated with a surface point using a single running
average. In each frame, only one sample st (p) is computed
for each pixel p and is combined with this running average
using a recursive exponential smoothing filter:

ft (p)← (α)st (p)+ (1− α)ft−1

(
πt−1(p)

)
. (2)

Here, the running estimate of frame t is represented by ft and
is stored in the RRC, and st denotes the shading contribution
from the current frame. If we expand this recursive formula-
tion, we can see that the running estimate is equivalent to the
weighted sum of all the previous samples at the same surface
point. The weight of a single sample decreases exponentially
over time, and the smoothing factor α regulates the trade-off
between the degree of variance reduction and responsive-
ness to changes in the sampled signal. For example, a small
value of α leads to a relatively slow decrease of the sample
weights, which effectively accumulates more samples in the
past and therefore produces a smoother result at the expense
of additional lag in the shaded signal.

The precise degree of variance reduction is given by

lim
t→∞

Var (ft (p))

Var (st (p))
= α

2− α . (3)

For example, choosing a value of α = 2/5 reduces the vari-
ance to 1/4 the original. This is roughly equivalent to increas-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

 100

R
at

io

Fr
am

es

α

Variance
Total fall-off

Figure 6: Trade-off between the amount of variance reduc-
tion (the variance ratio curve), and the maximum frames
of lag that may exist in the current estimate (the total
falloff curve) [NSL*07]. This trade-off is controlled by the
parameter α.

ing the sampling rate by a factor of 4. On the other hand, the
actual number of frames contributing to ft with non-trivial
weights (i.e. larger than 8-bit precision 1/256) is 10, which
indicates that the contribution of any obsolete sample will
be smoothed out after 10 frames. This trade-off between
smoothness and lag is illustrated in Figure 6. In practice, α
must be carefully set to obtain the best trade-off.

4. Data-Reuse Quality and Performance

The ideal scenario for taking advantage of coherence is when
the value of interest obtained from a previous frame is exactly
the same as the desired one. In reality, when considering a
target for reuse, we often find that its value depends on in-
puts that are beyond our control. These may include chang-
ing viewing parameters, lighting conditions, time itself, and
most importantly, user interactions. Good targets for reuse
are those that change little under the range of expected input
variation. Nevertheless, even slowly varying attributes must
be eventually updated, and we must also identify appropriate
refresh periods.

Another important consideration is the cost of recomputing
each reused value. This is because the overhead associated
with obtaining previously computed values is not negligible
(see Section 3.1.1). If recomputing a value is cheap, reusing
it may not bring any performance advantage.

In summary, developers must identify computationally ex-
pensive intermediate computations that vary little under the
range of expected input changes, and determine the appro-
priate number of frames between updates. Given the large
number of different effects and input parameters involved
in a modern real-time rendering application, this task can
quickly become overwhelming. Recent efforts have there-
fore focused on automating parts of this process.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2385

4.1. Semi-automatic target identification

The system proposed by Sitthi-amorn et al. [SaLY*08b]
starts by analyzing the source-code of shaders and identi-
fying possible intermediate computations for reuse. During a
training session, the system automatically renders animation
sequences while gathering error and performance data on
shaders that have been automatically modified to cache and
reuse each candidate. The rendering sessions are designed to
encompass the range of typical input variation, and are run
under a variety of different refresh periods.

Assuming that the input variation is stationary, the authors
found empirical models for both the amount of error and the
rendering cost associated to reusing each possible interme-
diate value. These models were later shown to closely match
measured data.

The expected error caused by reusing the value fm of
a given intermediate computation m over a period of �n
frames can be modelled by a parametric equation:

ε̂(fm,�n) = αm
(
1− e−λm(�n−1)

)
. (4)

Parameters αm and λm can be obtained by fitting the model
to data gathered in the training session.

Modelling the cost of rendering each pixel requires more
work. First, the system solves for an estimate of the average
time taken to render a pixel under both cache-hit and cache-
miss conditions. Denote these by �hit(fm) and �miss(fm),
respectively. These values are obtained by solving an over-
constrained linear system for �hit(fm) and �miss(fm):

Hi �hit(fm)+Mi �miss(fm)+ c = �ti. (5)

Each equation comes from measurements of different frames
i in the training sequence. Here, c is a constant rendering
overhead, Hi is the number of hits,Mi the number of misses
and �ti the time to render frame i.

The average cost of rendering a single pixel can then be
modelled as

r̂(fm,�n)= λ(�n)�hit(fm)+ (1−λ(�n))�miss(fm), (6)

where λ(�n) = μ(1− 1/�n) is an empirical model for the
cache hit-rate as a function of�n, andμ is obtained by fitting
this model to the training data.

Using these models, the system allows the developer to
specify a target average pixel error. It then automatically
selects the shader component that provides the greatest
improvement in performance without exceeding the error
threshold.

Figure 7 shows the error/performance behaviour associ-
ated with caching several different intermediate computa-
tions performed by a marble shader. This shader combines a
marble-like albedo modelled as five octaves of a 3D Perlin
noise function, with a simple Blinn–Phong specular layer.

Figure 7: Trade-off between error and performance asso-
ciated to caching different intermediate results in a marble
shader. Each line shows the effect of varying the refresh pe-
riod �n between 2 and 50 frames on each choice of cached
intermediate computation. Interesting error thresholds εi are
marked, and the results of which are shown in Figure 8. Orig-
inal shader runs at 29FPS, as indicated by the dashed line.

Figure 8 shows the results of rendering under each choice of
error tolerance, in terms of both quality and performance. As
the user selects larger error thresholds, the system reacts by
selecting larger portions of the computation for caching (see
the payload), eventually including even the view-dependent
lighting, at which point undesirable artefacts appear. Never-
theless, substantial performance improvements are possible
below an acceptable error threshold (see e3 running at a 2.8×
improvement).

4.2. Reprojection errors and their accumulation

The strategies we use to obtain the values of previous com-
putations (see Section 3) can themselves inject unwanted
errors. Although such errors are indirectly modelled by the
automatic method described above, here we present a sim-
plified analysis of this specific issue (see [YNS*09] for an
alternative, more detailed presentation).

Due to camera and object motions, the corresponding po-
sitions of any given surface point in two consecutive frames
generally involve non-integer coordinates in at least one of
them. Reprojection strategies must therefore resample any
data that are moved between frames. Bilinear filtering is, by
far, the most commonly used resampling strategy in real-
time reprojection applications. Mappings between consec-
utive real-time frames tend to exclude large minifications,
making trilinear filtering unnecessary. It is therefore impor-
tant to understand the impact of bilinear filtering on the qual-
ity of reprojected data.

Although analyzing the effect of general motion across
multiple frames is impractical, the special case of con-
stant panning motion is easy to describe mathematically,

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2386 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

Figure 8: Results of selecting different error thresholds in Figure 7. The intermediate value selected for caching (payload) is
shown next to the final rendered results (final shading). Higher error thresholds allow for substantial parts of the computation
to be cached, leading to better performance at the expense of quality.

particularly in one dimension (other types of motion can
be approximated by translation, at least locally).

Assume we have information stored in a frame ft that we
want to resample to time t + 1. Constant panning motion with
velocity v can be described by πt+1(p) = p − v, for every
point p and time t . Without loss of generality, assume that
the velocity is in [−0.5, 0.5]. The entire resampling operation
can be rephrased in terms of the discrete convolution

ft→t+1 = ft ∗
[
v (1− v)

]
(7)

= ft ∗ kv, (8)

where we used the notation ft→t+1 to represent the new
frame containing only reprojected data. Under our assump-
tions, the behaviour of reprojection is therefore controlled by
the effect of the convolution kernel kv = [v (1− v)].

For each different velocity v, and for each frequency ω,
we compute the amplitude attenuation and the phase error in-
troduced by kv . Resulting plots are shown in Figure 9, where
shaded regions represent values between the extremes. As
can be seen from the plots, reprojection through bilinear re-
sampling tends to attenuate and misplace high frequencies.
Not visible from the plot is the fact that the problem is partic-
ularly extreme when v = ±0.5 and that it disappears when
v = 0 (as expected from the interpolation property).

The effect of repeated resampling can also be analyzed:

ft→t+n = ft→t+n−1 ∗ kv (9)

= ft ∗
n in total︷ ︸︸ ︷

(kv ∗ · · · ∗ kv) . (10)

The trick is to interpret kv as the probability mass func-
tion of a Bernoulli distribution with success probability v.

Figure 9: Amplitude response and phase error associated
with translation by linear re-sampling. Note that largest
amplitude attenuation and phase error happen for high
frequencies.

The distribution has a variance of σ 2 = v (1− v). Repeat-
edly convolving kv with itself amounts to computing the sum
distribution. By the Central Limit Theorem, this quickly con-
verges to a Gaussian. By the sum property of variance, we
have σ 2

n = n v (1− v). The progressively low-pass nature of
repeated resampling then becomes obvious in the formula
for the variance.

There are several alternatives to prevent the excessive blur
introduced by repeated resampling from causing objection-
able rendering artefacts. For example, we can periodically
recompute values instead of relying on reprojection. This
is, in fact, the approach followed by Sitthi-amorn et al.
[SaLY*08b] (Section 3.4). Another alternative is to replace
bilinear resampling with an alternative strategy that has bet-
ter frequency properties, such as the one proposed by Yang
et al. [YNS*09] (Section 5.3). Finally, in the context of com-
putation amortization described in Section 3.5, we can also
progressively attenuate the contribution of older frames,
thereby limiting the maximum amount of visible blur.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2387

Table 1: Existing approaches that exploit TC in real-time rendering, indexed by applications (rows) and the types of techniques applied
(columns), with section numbers of this survey if applicable.

Reverse Forward Handling Cache Amortized TC target Reprojection
reprojection reprojection disocclusion refresh sampling identification error

Application (3.1) (3.2) (3.3) (3.4) (3.5) (4.1) (4.2) Object-space Post-processing

Pixel shader [NSL*07] [SaLY*08b] [SaLY*08b]
acceleration (5.1)

Multi-pass [NSL*07] [AH93] [NSL*07] [HDMS03]
effects (5.2) [CW93]

[YWY10]
[DRE*10]

Shading [YNS*09] [YNS*09] [YNS*09] [YNS*09]
anti-aliasing (5.3)

Shadows (5.4) [SJW07] [SJW07]
[SSMW09]

Global [KTM*10] [MSW10] [LSK*07]
Illumination (5.5) [MSW10] [REH*11]

Spatio-temporal [HEMS10]
upsampling (5.6)

Frame [YTS*11] [DER*10b] [And10]
interpolation (5.7) [And10] [YTS*11]

Non-photorealistic [LSF10] [BFP*11]
rendering (5.8) [LSF10] [BFP*11]

Level-of-detail (5.9) [SW08] [HREB11]

Streaming (5.10) [PHE*11] [FE09] [FB08]
Online visibility [GKM93]

culling (5.11) [ZMHI97]
[BWPP04]
[MBW08]

Temporal [DER*10a]
perception (5.12) [TDR*11]

5. Applications

There are numerous applications in real-time rendering
where TC can be exploited to improve the performance and
quality. In this section, we aim to summarize the available
techniques that follow this direction. Table 1 lists all the
relevant approaches that we describe, categorized by the ap-
plication and the type of techniques applied. Many of these
applications are based on image-based reprojection and re-
lated approaches (Section 3). Performance and quality stud-
ies (Section 4), which were originally discussed in the con-
text of pixel shading acceleration and anti-aliasing, can also
be helpful in optimizing RRC-based techniques. In addition,
there are several methods that employ an object space or a
post-processing type of data reuse, which are also relevant to
the topic and discussed in this survey.

5.1. Pixel shader acceleration

One of the direct uses of the RRC is to accelerate ex-
pensive pixel-shading computations [NSL*07, SaLY*08a,
SaLY*08b]. The basic idea is to bypass part or all of the
computation of the original pixel shader whenever there are
previous shading results available in the cache, as described
in Section 3.4. Figure 4 shows the flow chart of this type of
shading acceleration.

Figure 10: Additional examples of shading acceleration us-
ing RRC. Each image compares (top) an input pixel shader
to (bottom) a version modified to cache some partial shading
computations over consecutive frames. The shading error
after applying the cache is illustrated in the inset images.

In addition to the marble shader described in Section 4.1,
we show two more results of accelerating expensive pixel
shaders using the RRC [SaLY*08b]. The first shader is
a Trashcan environmental reflection shader from ATI’s
Toyshop demo, which combines a simple base geometry
with a high-resolution normal map and environment map
to reproduce the appearance of a shiny trashcan. The shader
combines 25 stratified samples of an environment map us-
ing a Gaussian kernel to attenuate aliasing artefacts. In this
example, we found that caching the sum of 24 samples of
the possible 25 gives the most effective speedup without

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2388 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

introducing too many visible artefacts (see Figure 10 (left)
for a comparison). In other words, the modified shader evalu-
ates 24 samples every fourth frame (on average) and evaluates
the single sample with the greatest reconstruction weight at
every frame. Indeed, this shader is not particularly suited
for using TC to accelerate, because all of the calculations
depend strongly on the camera position and cached values
quickly become stale. Nevertheless, RRC provides a 2.1×
performance improvement at an acceptable level of error.

The second shader computes approximate object-space
ambient occlusion at each pixel for a chessboard scene with
the king piece moving and the remaining pieces static. The
basic idea is to approximate the scene geometry as a collec-
tion of discs organized in a hierarchical data structure and
stored as a texture. As each pixel is shaded, this data structure
is traversed to compute the percentage of the hemisphere that
is occluded. This calculation is combined with a diffuse tex-
ture and a Blinn–Phong specular layer to produce the final
colour. In this particular scene, the ambient-occlusion cal-
culation is carried out by summing the contribution of the
king chess piece separately from the other pieces. We found
that caching the portion of the ambient-occlusion calcula-
tion that accounts for only the static pieces gives the best
result. In other words, the contribution of the moving king
and the remaining shading are recomputed at every frame.
This provides an 8× speedup for a marginal amount error
and is demonstrated in Figure 10 (right). Caching more com-
putations, such as the entire ambient-occlusion calculation,
will lead to visible error in the result, although the speedup
factor will also be larger (15× or more).

5.2. Multi-pass effects

Effects such as motion blur and depth-of-field are most eas-
ily understood and implemented as the accumulation of a se-
ries of frames, respectively, rendered under slight variations
in animation time or camera position, relative to a central
frame [HA90]. Although rendering and accumulating mul-
tiple frames in order to produce a single output frame may
seem prohibitively expensive, the small magnitude of vari-
ation in input parameters between each accumulated frame
leads to large amounts of coherence between them. This
coherence has been successfully exploited in the context
of image-based rendering [CW93], ray-traced animation se-
quences [HDMS03], and more recently in real-time render-
ing [NSL*07, YWY10]. Imperfections tend to be hidden by
the low-pass nature of these effects, leading to images that
are virtually indistinguishable from the brute-force results.
The savings in rendering cost can be used to either increase
quality by raising the number of accumulated frames, or to
increase the frame rate for a fixed-quality setting.

The real-time approach proposed in [NSL*07] starts by
completely rendering a central frame into a buffer. Then,
when rendering the accumulated frames, shading information
is obtained from the central frame by reverse reprojection.

The extent to which performance is improved depends on the
relative cost between rendering the central frame (geometry +
shading) and rendering each accumulated frame (geometry +
cache-lookup). This is because reverse reprojection requires
rasterizing the geometry of each accumulated frame (see
Section 3.1). Improvements are therefore limited when ge-
ometry is complex and shading is relatively simple. Yu et al.
[YWY10] proposed to use forward reprojection (Section 3.2)
in order to decouple this overhead from geometry complex-
ity. They also apply a blurring pass to the reprojected frames
before accumulation so that the undersampling and disocclu-
sion artefacts are attenuated.

Another rendering scenario that is closely related to depth-
of-field is stereographic rendering. Two views are rendered
from the same scene, one from the viewpoint of each eye of
a virtual observer. Then, one of many different methods is
used to expose each of the user’s eyes to the corresponding
image (e.g. shutter glasses and polarization filters), leading
to the perception of depth. Stereographic rendering has re-
cently gained increased attention given the success of 3D
cinematographic productions as well as the increased avail-
ability of 3D-capable consumer hardware (TV sets, portable
video-game consoles, etc.).

One way to avoid the doubling of cost-per-frame that
would result from the brute-force approach to stereographic
rendering is to instead render only one frame from the stereo
pair and then warp it to produce the other frame. This is a
well-established idea that was successfully used in the con-
text of stereographic ray-tracing [AH93] (where rendering
cost was extremely high) and in stereographic head-tracked
displays [MB95] (where warping was used to efficiently up-
date a previously rendered stereo pair to compensate for user
head movements).

Since per-pixel depth information is a natural by-product
of real-time rendering, generating the mapping between two
stereo views is particularly easy. The challenges are in the
design of an efficient warping procedure that adapts to sharp
features and attenuates any artefact resulting from surface
points that are only visible from one of the viewpoints.

One way to perform this operation is to rely on an adaptive
warping grid [DRE*10] (see Section 3.2) to transform one
view into another. Didyk et al. further proposed to exploit TC
by analyzing the camera movement from one frame to the
next. Depending on the camera movement and the previously
computed frame, it can be more advantageous to render and
then warp either the left or the right eye view. For exam-
ple, imagine a panning motion from left to right. Here, a
right-eye view in frame i might be very close to a left-
eye view in frame i + 1. Consequently, it makes sense to
render the right eye view in frame i + 1. The rendered
frame and the previous are then warped to produce a left-
eye view for frame i + 1. In particular, for a static camera
and scene, the result is indistinguishable from a two-view
rendering.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2389

Figure 11: Sampling from multiple sub-pixel buffers. To
properly reconstruct the quadrant value, Yang et al.
[YNS*09] use non-uniform blending weights defined by a
tent function centred on the quadrant being updated. (a) In
the absence of local motion, only the correct pixel has non-
zero weight in the tent, so no re-sampling blur is introduced.
(b) For a moving scene, the samples are weighted using the
tent function, and higher weights are given to samples closer
to the desired quadrant centre to limit the amount of blur.

5.3. Shading anti-aliasing

One of the direct applications of amortized sampling
(Section 3.5) is to supersample procedural shading effects,
which usually contain high-frequency components that are
prone to aliasing artefacts. By accumulating jittered sam-
ples generated in previous frames using amortized sampling,
the extra frequency bands can be effectively suppressed.
However, supersampling usually requires a small exponen-
tial smoothing factor α in order to gather sufficient samples.
This has the undesired side effect that the running estimate
can be overblurred because of excessive repeated resampling
of the cache (Section 4.2).

Yang et al. [YNS*09] proposed to keep a higher resolution
(2× 2) running average in order to counteract this overblur-
ring artefact. To reduce the overhead of maintaining such a
high-resolution buffer, they store the 2× 2 quadrant samples
of each pixel into four sub-pixel buffers {bk}, k ∈ {0, 1, 2, 3}
using the interleaved sampling scheme. Each sub-pixel buffer
is screen sized and manages one quadrant of a pixel. These
sub-pixel buffers are updated in a round-robin fashion, i.e.
only one per frame.

Reconstructing a sub-pixel value from the four sub-pixel
buffers involves more work. Note that in the absence of scene
motion, these four sub-pixel buffers effectively form a higher
resolution framebuffer. However, under scene motion, the
sub-pixel samples computed in earlier frames reproject to
offset locations. Conceptually, Yang et al. [YNS*09] forward
reproject all the previous samples into the current frame and
compute a weighted sum of these samples using a tent ker-
nel, as indicated in Figure 11. This effectively reduces the
contribution of distant samples and limits the amount of blur

Figure 12: Comparison between no anti-aliasing, amortized
supersampling with viewport size cache (Amort1×), amor-
tized supersampling with improved 2× 2 sub-pixel buffers
(Amort4×) and the ground-truth reference result for a horse-
checkerboard scene [YNS*09]. The 4× ‘still’ image (without
animation) approaches the quality of the reference result,
whereas the animated result provides an acceptable approx-
imation without overblurring.

introduced. It also correctly handles both static and moving
scenes simultaneously.

In addition to the higher resolution buffer, empirical meth-
ods are used to estimate reconstruction errors as well as the
amount of signal change in real time, and limit α accordingly
such that a minimum amount of refresh is guaranteed. The
reconstruction error is estimated by deriving an empirical
relationship between the fractional pixel velocity v, α and
the error. Signal change, on the other hand, is estimated by
a smoothed residual between the aliased sample and the his-
tory value. The user sets thresholds for both errors, and the
bounds for α are computed based on the error values.

Figure 12 shows the result of applying amortized sampling
to anti-aliasing a horse-checkboard scene, which includes an
animated wooden horse galloping over a marble checkered
floor. The result using 2× 2 sub-pixel buffers shows sig-
nificant improvement over regular amortized sampling (1×
viewport-sized cache), with only a minor sacrifice of speed.
In fact, the PSNR shows that this technique offers better qual-
ity than conventional 4× 4 stratified supersampling, which
runs at a six times lower frame rate.

5.4. Shadows

Shadows are widely acknowledged to be one of the global
lighting effects with the most impact on scene perception.
They are perceived as a natural part of a scene and give impor-
tant cues about the spatial relationship of objects. The field
of shadow algorithms is vast and many different methods

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2390 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

Figure 13: If the rasterization of the shadow map changes
(here represented by a right shift), the shadowing results
may also change. On the left, three fragments are in shadow,
while on the right, five fragments are in shadow. This results
in flickering or swimming artefacts in animations.

exist. Several surveys [HLHS03, SWP11], courses
[EASW09, EASW10], and books [ESAW11] illustrate nu-
merous approaches to address this important problem.

Due to its speed and versatility, shadow mapping is one of
the most used real-time shadowing approaches. The idea is to
first create a depth image of the scene from the point of view
of the light source (shadow map). This image encodes the
front between lit and unlit parts of the scene. On rendering
the scene from the point of view of the camera, each frag-
ment is transformed into this space. Here, the depth of each
transformed camera fragment is compared to the respective
depth in the shadow map. If the depth of the camera fragment
is nearer, it is considered lit, otherwise it is in shadow (see
Figure 13).

5.4.1. Pixel-correct shadows

The most concerning visual artefacts of shadow mapping
originate from aliasing due to undersampling. The cause for
undersampling is, in turn, closely related to the rasterization
that is used to create the shadow map itself. Rasterization
samples primitives on a regular grid. Each fragment is centred
on one of these samples, but is only correct exactly at its
centre. If the viewpoint changes from one frame to the next,
the regular grid sampling of the new frame is likely to be
completely different than the previous one. This frequently
results in artefacts, especially noticeable for thin geometry
and the undersampled portions of the scene called temporal
aliasing.

This is especially true for shadow maps. Due to shadow
map focusing, a change in the viewpoint from one frame
to the next also changes the regular grid sampling of the
shadow map. Additionally, the rasterized information is not
accessed in the original light space where it was created, but
in eye space, which worsens these artefacts. This frequently

Figure 14: Shadow adaption over time of an undersam-
pled uniform shadow map after 0 (top-left), 1 (top-middle),
10 (top-right), 20 (bottom-left), 30 (bottom-middle) and 60
(bottom-right) frames.

Figure 15: Light-space perspective shadow mapping
[WSP04] (left) gives good results for a shadow map resolu-
tion of 10242 and a view port of 1680× 1050, but temporal
reprojection (middle) can still give superior results because
it uses shadow test confidence, defined by the maximum norm
of shadow map texel centre and current pixel (right).

results in temporal aliasing artefacts, mainly flickering (See
Figure 13).

The main idea in [SJW07] is to jitter the viewport of the
shadow map differently in each frame and to combine the
results over several frames, leading to a higher effective res-
olution. Figure 14 shows the gradual refinement after accu-
mulating results from multiple frames.

Exponential smoothing as described in Section 3.5 is em-
ployed here on the shadow map tests st [p]. This serves a dual
purpose. On the one hand, temporal aliasing can be reduced
by using a small smoothing factor α. On the other hand,
the shadow quality can actually be made to converge to a
pixel-perfect result by optimizing the choice of the smooth-
ing factor.

The smoothing factor α allows balancing fast adaption
on changing input parameters against temporal noise. With
a larger smoothing factor, the result depends more on the
new shadow results from the current frame and less on older
frames and vice versa. To this end, the smoothing factor
is determined per-pixel according to the confidence of the
shadow lookup. This confidence is defined to be higher if
the lookup falls near the centre of a shadow map texel, since
only near the centre of shadow map texels, it is very likely
that the sample actually represents the scene geometry (see
Figure 15). In this paper, the maximum norm of the current

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2391

Figure 16: Light sampling with 1, 2, 3 and 256 shadow maps
(left to right).

pixel p and the shadow map texel centre c is used to account
for this

conf = (
1−max

(|px − cx | ,
∣∣py − cy

∣∣) · 2)m
, (11)

but other norms could be used as well. The parameter m de-
fines how strict this confidence is applied. m < 4 results
in fast updates where most shadow map lookups of the
current frame have a big weight and the resulting shadow
has noisy edges. m > 12 results in accurate but slow up-
dates where most lookups from the current frame have small
weight.

The authors found out that m should be balanced with
camera movement. When the camera moves fast, m can be
small because noise at the shadow borders is not noticed.
Only for a slowly moving camera or a still image are higher
values of m necessary. This is motivated by the human vi-
sual system, which tends to integrate over motion, thereby
allowing for noisier edges when strong movement is present.
This confidence can now be directly used in the exponential
smoothing formula (see Section 3.5)

ft [p]← (conf)st [p]+ (1− conf)ft−1(πt−1(p)). (12)

5.4.2. Soft shadows

In reality, most light sources are area light sources, and hence
most shadows exhibit soft borders. Light-source sampling
[HH97] creates a shadow map for every sample (each on
a different position on the light source) and calculates the
average (= soft shadow) of the shadow map test results si for
each pixel (see Figure 16). Therefore, the soft shadow result
from n shadow maps for a given pixel p can be calculated
by

ψn(p) = 1

n

n∑
i=1

si(p). (13)

The primary problem here is that the number of samples
(and therefore shadow maps) to produce smooth penum-
brae is huge. Therefore, this approach is inefficient in prac-
tice. Typical methods for real-time applications approximate

Figure 17: Left side: PCSS 16/16; Overlapping occlud-
ers (upper row) and bands in big penumbras (lower row)
are known problematic cases for single-sample approaches.
Right side: soft shadows exploiting TC.

an area light by a point light located at its centre and use
heuristics to estimate penumbrae, which leads to soft shad-
ows that are not physically correct (see Figure 17, left).
Overlapping occluders can lead to unnatural-looking shadow
edges, or large penumbrae can cause single-sample soft-
shadow approaches to either break down or become very
slow.

One observation is that the shadow sampling can be ex-
tended over time. It is, for example, possible to change the
sampling pattern on the source in each frame, thereby trading
aliasing artefacts with less objectionable random noise. This
is particularly easy to achieve for symmetric light sources
[ED07b, SEA08]. More generally, light source area sampling
can be formulated in an iterative manner by evaluating only
a single shadow map per frame [SSMW09]. Reformulating
Equation (13) gives

ψ(p) = s(p)+
(p)

n(p)+ 1

(p) =

n(p)∑
i=1

si(p), (14)

where s(p) is the hard shadow-map result for the current
frame and pixel and n(p) is the number of shadow maps
evaluated until the previous frame for this pixel. Note that
now n depends on the current pixel because depending on
how long this pixel has been visible, a different number of
shadow maps may have been evaluated for this pixel. The
calculation of this formula is straightforward if n(p) and

(p) are stored in a buffer (another instance of the RRC: see
Section 3.1). With this approach, the soft shadow improves
from frame to frame and converges to the true soft shadow
result if pixels stay visible ‘long enough’ (see Figure 18,
upper row).

In practice, this can result in temporal aliasing for small
n. Care has to be taken in order to properly manage those

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2392 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

Figure 18: Convergence after 1,3,7,20 and 256 frames; up-
per row: sampling of the light source one sample per frame;
lower row: soft shadows with TC.

Figure 19: Structure of the soft shadows with TC algorithm.

cases. When a pixel becomes newly visible and therefore no
previous information is available in the RRC, a fast single-
sample approach (PCSS with a fixed 4×4 kernel) is employed
to generate an initial soft shadow estimation for this pixel.
For all other n, the expected standard error is calculated
and if it is above a certain threshold (expected fluctuation
in the soft shadow result in consecutive frames), a depth-
aware spatial filter is employed to take information from the
neighbourhood in the RRC into account (see Figure 19). This
approach largely avoids temporal aliasing and can be nearly
as fast as hard shadow mapping if all pixels have been visible
for some time and the expected standard error is small enough
(see Figures 18 and 17).

5.5. Global illumination

It is a major goal of real-time research to achieve plausible
(and in the long run, physically correct) global illumination.
In this section, we present several techniques that explore
TC in an attempt to approximate global illumination effects
in real time. Many techniques can be found in the excellent
survey by Damez et al. [DDM03]. Nonetheless, the focus is
often on offline solutions or it is assumed that knowledge of
subsequent keyframes is available. For interactive rendering,
this is not always achievable and specialized solutions are
needed. In this context, it is difficult to exploit TC on current
GPUs, which is in the focus of our overview.

The radiance emitted from point p into direction ω can be
described by the rendering equation [Kaj86, ATS94]

L(p, ω) = Le(p, ω)

+ 1

π

∫
�

fr (p, ω′, ω)Li(p,ω
′)(np · ω′)dω′. (15)

� denotes the space of all hemispherical directions, Le is the
self emission, fr is the bidirectional reflectance distribution
function (BRDF), Li is the incident light from direction ω′

and np is the surface normal.

Global illumination algorithms often use Monte-Carlo
sampling to evaluate this multi-dimensional integral in a fea-
sible way. We can exploit TC between consecutive frames,
e.g. by spreading the evaluation of the integral over time.

5.5.1. Screen-space ambient occlusion

Ambient occlusion [CT81] is a cheap but effective approx-
imation of global illumination which shades a pixel with
the percentage of the hemisphere that is blocked. It can be
seen as the diffuse illumination of the sky [Lan02]. Ambient
occlusion of a surface point p is computed as

AO(p,np) = 1

π

∫
�

V (p, ω′)
(
np · ω′

)
dω′. (16)

The (inverse) visibility function V was originally defined as
a binary function where V (p, ω′) = 1 if the visibility in this
direction is blocked by an obstacle, 0 otherwise. However,
other choices for V (e.g. an exponential falloff based on
distance) give visually more pleasing (i.e. smoother) results.

Screen-space ambient occlusion (SSAO) methods [Mit07]
sample the frame buffer as a discretization of the scene ge-
ometry. These methods are of particular interest for real-
time applications due to the fact that the shading overhead
is mostly independent of scene complexity, and several vari-
ants of SSAO have been proposed since [FC08, BSD08,
SKUT*10]. We assume that any SSAO method can be writ-
ten as an average over contributions C depending on a series

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2393

of samples si:

SSAOn(p) = 1

n

n∑
i=1

C(p, si), (17)

where a typical contribution function for a single SSAO sam-
ple can be

C(p, si) = V (p, si) max(cos(si − p, np), 0). (18)

si is an actual sample point around p, and V (p, si) is now a
binary visibility function that is resolved by evaluating the
depth test for si.

Reverse reprojection allows us to cache and reuse pre-
viously computed SSAO samples. The properties of SSAO
(relatively low-frequency, independence from light-source,
local support of the sampling kernel) are beneficial for using
TC, as it was already demonstrated in commercial games
[SW09]. In the following, we discuss the temporal SSAO
(TSSAO) method of Mattausch et al. [MSW10], who fo-
cus on improving the accuracy and visual quality of SSAO
for a given number of samples per frame, and introduce an
invalidation scheme that handles moving objects well.

A comparison of conventional SSAO with TSSAO is
shown in Figure 20. The noisy appearance of a coarse SSAO
solution that uses only a few samples (image a) can be im-
proved with a screen-space spatial discontinuity filter. How-
ever, the result of this operation can be quite blurry (image b).
As long as there is a sufficient history for a pixel, TSSAO pro-
duces smooth but crisp SSAO without depending on heavy
post-processing (image c).

Integration over time. In frame t , a new contribution Ct
is calculated from k new SSAO samples.

Ct (p) = 1

k

jt (p)+k∑
i=jt (p)+1

C(p, si), (19)

where jt (p) counts the number of unique samples that have
already been used in this solution. The new contribution is
combined with the previously computed solution

SSAOt (p) = wt−1(pt−1)SSAOt−1(pt−1)+ kCt (p)

wt−1(p− 1)+ k ,(20)

wt (p) = min(wt−1(pt−1)+ k,wmax). (21)

The weight wt−1 represents the number of samples that have
already been accumulated in the solution, until wmax has
been reached. The solution converges very quickly, and this
predefined maximum controls the refresh rate and ensures
that the influence of older contributions decays over time.

Note that for TSSAO, spatial filtering of the result to re-
duce noise only has to be applied in regions where the solu-
tion has not sufficiently converged. This is done by shrinking

Figure 20: SSAO without TC using 32 samples per pixel
with (a) a weak blur, (b) a strong blur (both 23 FPS) and
(c) temporal SSAO using 8–32 samples (initially 32, 8 in
a converged state) (45 FPS). (d) Reference solution using
480 samples (2.5 FPS). The scene has 7M vertices and runs
at 62 FPS without SSAO.

the screen-space filter support proportionally to the conver-
gence wn/wmax . The results of the filtering can be further
improved by making it convergence aware, i.e. assigning
higher weights to sufficiently converged filter samples.

Detecting changes. Special attention must be paid to the
detection of cache misses (i.e. pixels with an invalid SSAO
solution). A cached value of a pixel is invalid if either one of
the following three conditions has occurred: 1) a disocclu-
sion of the current pixel, 2) the pixel was previously outside
the frame buffer or 3) a change in the sample neighbourhood
of the pixel. Case 1) and case 2) can be handled like conven-
tional cache misses as described previously in Section 3.3.
However, it is important to additionally check for case 3), be-
cause nearby changes in the geometry can affect the shading
of the current pixel.

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2394 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

Figure 21: The distance of p to sample point s2 in the current
frame differs significantly from the distance of pt−1 to s2t−1

in the previous frame; hence, it can be savely assumed that a
local change of geometry occurred, which affects the shading
of p.

The authors use sampling to check the neighbourhood
of a pixel for changes in the AO value. In practice, this
neighbourhood test does not introduce additional lookups,
as the available set of samples used to compute Ct (p) can
be reused. It is an important observation that a contribution
C(p, si) only varies if the configuration of a sample position
si relative to p changes (e.g. the AO on a rotating object only
changes in the vicinity of other objects). Hence, as illustrated
in Figure 21, the algorithm uses the distance differences

δ(si) = ||si − p| − |sit−1 − pt−1|| (22)

as a measure of change. The change in the surface angle
between si and p could have been used additionally, but it
would have caused an additional overhead. It is sufficient to
use those samples that lie in front of the tangent plane of p
for the neighbourhood test, since only those samples actually
modify the shading.

Smooth invalidation. Consider, for example, a slowly
deforming surface, where the SSAO will also change slowly.
In such a case, it is not necessary to fully discard the previous
solution. Instead, the authors introduce a new continuous
definition of invalidation that takes a measure of change into
account. This measure of change is given by δ(si) at validation
sample position si, as defined in Equation (22). In particular,
the algorithm computes a confidence value conf(si) between
0 and 1. It expresses the degree to which the previous SSAO
solution is still valid:

conf(si) = 1− 1

1+ Sδ(si)
. (23)

Figure 22: Moving dragon model using no invalidation (left,
causing severe artefacts in the shadow), and using an inval-
idation factor set to a proper value (right, no artefacts).

The invalidation factor S is a parameter which controls
the smoothness of the invalidation. The overall confi-
dence conf(p) in the previous SSAO solution is given by
min(conf(s0), . . . , conf(sk)). This value is used to attenuate
the weight wt given to the solution of the previous frame in
Equation (21). Figure 22 shows the effect of the invalidation
and smooth invalidation factor on a scene with a moving
object.

5.5.2. Instant radiosity

Instant radiosity [Kel97] is a hardware-friendly global illu-
mination method that computes so-called virtual point lights
(VPLs) along the intersections of a light path with a surface
and uses them for indirect scene illumination. The visibil-
ity is resolved by computing an individual shadow map for
each VPL. The shadow-map computation is also the main
bottleneck of the algorithm, as it requires sampling the scene
many times for a reasonable number of VPLs. This draw-
back prevents real-time frame rates for the original version
of this algorithm. In the following, we will demonstrate how
to use object-level and pixel-level TC to improve the perfor-
mance and visual quality of this important global illumination
algorithm.

Incremental instant radiosity. By reusing VPL visibil-
ity over time, Laine et al. [LSK*07] proposed a method
that exploits object-level TC to reach real-time frame rates.
For the sake of performance, this algorithm only computes
first-bounce indirect illumination, which is sufficient in most
cases. Even so, hundreds of shadow maps are needed for con-
vincing global illumination. In order to keep the number of
VPL computations per frame feasible for real-time purposes,
this algorithms reuses the valid VPLs from the previous frame
and recomputes only a small budget of invalid shadow maps
in a frame. A VPL stays valid if it is within the light frustum
and is not occluded from the light source (which is tested
with a ray caster). The algorithm is visualized in Figure 23.

The main task of this algorithm is to incrementally main-
tain a good distribution of the VPLs during consecutive
frames. Assuming a 180◦ spotlight, the algorithm uses the
fact that a cosine-weighted distribution on a hemisphere

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2395

Figure 23: (Left) Instant radiosity shoots paths from the
light source, and creates VPLs at the intersection with geom-
etry. (Middle) Using shadow maps, the visibility of each VPL
and their contribution to the current image is determined.
(Right) TC: When the view point or light source moves, one
of the VPLs becomes invisible from the light source, and all
the others are reused. Image courtesy of Samuli Laine.

Figure 24: An uniform distribution on the unit disc corre-
sponds to a cosine-weighted distribution on a hemisphere.
The VPL management aims to keep the uniformity of the
VPLs on the unit disc while recomputing a budget of VPLs
per frame. Image courtesy of Samuli Laine.

corresponds to a uniform distribution on a disc (as shown
in Figure 24). In order to manage the VPL distribution on the
unit disc, the algorithm creates a 2D Delaunay triangulation.
To choose the best position for new VPLs, the algorithm
minimizes dispersion, which is computed as the radius of the
largest empty circle that contains no sample points. In case
of omni-directional light sources, the algorithm operates on
the unit sphere instead of the unit disc.

Note that the algorithm captures changes in the scene with
a certain latency, and shadows cast from dynamic objects are
not supported. The authors report a speedup from 1.4 to 6.8
for different scenes and resolutions. In their tests, they fixed
the number of VPLs to 256 and the recomputation budget to
4–8 VPLs.

Imperfect shadow maps. Based on the observation that
coarse visibility is sufficient for low-frequency global illumi-
nation, Ritschel et al. [RGK*08] significantly accelerate the
VPL generation for instant radiosity. They use a point-based
scene representation and distribute these points among the
VPLs to generate so-called imperfect shadow maps. While
each shadow map is sampled with only a coarse subset of
scene points, holes can be closed with a pull–push algo-

rithm. This method allows hundreds of shadow map-based
visibility queries per frame in at least interactive time.

However, even such a large number of queries is insuffi-
cient to avoid typical undersampling artefacts, e.g. resulting
in flickering between frames if the VPLs are recomputed. In
order to improve the visual quality and reduce these artefacts,
it is straightforward to combine the imperfect shadow map
approach with temporal reprojection.

Recently, the undersampling issues were addressed to
some extent by relying on a view-adaptive solution
[REH*11]. The idea is to update a part of the point-based
scene representation for each frame, thereby ensuring more
precision where surfaces visible to the observer are affected.
Also, the VPL selection and placement is optimized by
proposing a novel scheme. By selecting appropriate VPLs
from a large set of potential VPLs depending on their esti-
mated impact on the visible scene from the observer, much
higher fidelity is achieved. Further, by employing a novel
VPL-placement scheme for dynamic light sources, they tend
to move in a more continuous way over continuous surfaces.
Therefore, the temporal consistency of indirect illumination
is significantly improved.

The main problem of using TC for global illumination is
the global nature of changes of the lighting conditions and the
scene configuration—some trade-off between smoothing and
correctness is inevitable and a satisfactory general solution
is hard to find. Knecht et al. [KTM*10] chose to use a con-
fidence value instead of a binary threshold for invalidation.
In particular, the confidence in reusing a previous solution is
guided by the amount of change of a pixel between the pre-
vious and current frame. To this end, they introduce a couple
of parameters:

εpos = ||(xt − xt−1; yt − yt−1; dt − dt−1)wp||,
εnorm = (1− n · nprev)wn,
εill = saturate(||It − It−1||3)wi,

conf = saturate(1−max(εpos; εnorm; εill))cB.
(24)

The three ε terms compute three distance values of screen-
space position and depth, normal and illumination value,
respectively. The weights wp, wn and wi are highly scene-
dependent and require fine-tuning by the user. The final con-
fidence is computed as the maximum of these measures mul-
tiplied by some base confidence cB , and is then used as the
weight of a standard exponential smoothing operation (see
Section 3.5).

As can be seen in Figure 25, TC improves the quality and
reduces the noise caused by the undersampling. The qual-
ity improvement is most visible during animations, where
distracting flickering artefacts due to varying VPL positions
can be avoided using TC. Due to the low-frequency nature
of indirect illumination, the artefacts caused by moving light
sources and animated objects are not very distracting in the
general case (they are similar to motion blur).

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2396 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

Figure 25: Imperfect shadow maps still show some artefacts
with 256 VPLs, which can be smoothed out using TC. Image
courtesy of Martin Knecht.

5.6. Spatio-temporal upsampling

In addition to TC, also spatial coherence may exist within
shading signals (e.g. low-frequency diffuse shading). Her-
zog et al. [HEMS10] proposed a spatio-temporal upsam-
pling technique that exploits temporal and spatial redun-
dancy. Strong temporal changes (e.g. moving lights) are
handled with spatial upsampling, while coherency is ex-
ploited to ensure a high-quality convergence via temporal
upsampling. Such spatio-temporal filtering is often applied
for video restoration [Tek95, BM05] and can also be used to
suppress aliasing artefacts [Shi95].

The basic approach of spatio-temporal upsampling follows
a joint- or cross-bilateral upsampling [TM98, SB95, ED04,
PSA*04, KCLU07, YSL08] scheme:

ft (p) = 1∑
wswtwf

∑T

q=0

∑
j∈N {pq }

ws(pq , j) wt (pq , j) wf (q) f lt−q (ĵ),
(25)

where N describes a spatial neighbourhood around a pixel
and q is an index that indicates the frames over time. Hence,
the double summation takes space and time into account.
Weightws computes the world-space distance and similarity
of samples based on surface properties such as normals or ma-
terial indices. Weight wt is a binary occlusion test, checking
whether the reprojected pixel pq = πt−q (p) is actually visible
in the corresponding frame. Weight wf describes a temporal
fadeout that reduces the influence of older pixels. The term

1∑
wswtwf

normalizes the weighting coefficients. The term

f lt−q are low-resolution frames that were created using an

interleaved pixel refresh at time t − q and consequently, ĵ
is the index of the nearest pixel in the low-resolution image
that corresponds to pixel j . While, in theory, it seems that
many previous frames have to be kept in memory, choosing
exponential weights allows for an accumulation in a single
history buffer [HEMS10].

Nonetheless, when involving samples from previous
frames, it is important to detect which pixel shading val-
ues are still useful for the current frame. For a fast moving
light, for example, shadows might change their location and
easily pollute a temporal integration. In order to capture these

effects, Herzog et al. proposed to examine the temporal gra-
dient of the previously constructed frame and the only spa-
tially upsampled current frame. If the gradient is low, more
confidence is given to temporal weights, if not, the algo-
rithm favours spatial upsampling techniques to produce the
final high-quality version of the current frame. The intuition
is simple. If a region of an image changed little over time,
it is useful to exploit more samples from previous frames,
whereas if strong changes occurred, older values should be
considered unreliable. In order to make this solution more
robust to outliers, a temporal smoothing is applied to the
gradient.

Each low-resolution shading frame f lt−q is produced using
interleaved sampling, meaning that the camera is changed to
ensure that when putting all low-resolution images together,
one can actually produce a complete high-resolution render-
ing without artefacts. In practice, the temporal fadeout makes
it impossible to ensure a perfect match, but the quality is still
higher than for spatial or temporal upsampling alone.

5.7. Frame interpolation

Frame interpolation is widely applied in video encoding and
uses temporal redundancy to allow for a better compression
behaviour. We will investigate compression and streaming
briefly in Section 5.10. Here, we analyze a second reason to
employ frame interpolation strategies: hold-type blur.

Nowadays, hold-type displays, such as LCD screens, show
an image over a longer period of time instead of flashing it on
the screen. The resulting perceptual effects are very interest-
ing. In fact, moving content is perceived blurred because the
eye tracks the content over the screen. During the eye motion,
the image content stays partly constant (due to an insufficient
frame rate), which leads to an integration of the image on the
retina (not unlike motion blur) [KV04]. For a long time, a lot
of the blur perception was wrongly attributed to the display’s
response time, but Pan et al. [PFD05] showed that only 30%
of the perceived blur are a consequence of it. The remain-
ing 70% are mostly a result of hold-type blur. Especially
for low frame rates, this effect can have dramatic conse-
quences and reduce the image quality drastically [Jan01],
but even reaction times decrease and task performance is
reduced [DER*10b].

Modern TVs try to optimize image quality by employing
interpolation schemes [FPD08]. While an accurate interpo-
lation and matching of content over time can become very
difficult for a TV set because optical flow is challenging
to compute robustly, a rendering context offers many advan-
tages since the problem is actually much simpler. It is possible
to derive accurate velocity and geometric information from
a scene by simply rendering it into a buffer. Thereby, one
can avoid approximate image-based estimates. TV sets are
still successful in many cases because, at high frame rates,
the precision of our perception is reduced. Consequently,

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2397

intermediate images do not have to exhibit the same quality
as key frames.

Didyk et al. [DER*10b] introduced a method that builds
upon the observation that intermediate frames can be of lower
quality and exploit the effect algorithmically. Their approach
produces a high frame rate sequence that is then directly fed
unaltered to a high-refresh LCD screen. They rely on the
key observation that the human visual system spreads high
frequencies of one frame over succeeding blurred frames if
a sufficiently high frame rate is reached [TV05]. Therefore,
they can hide potential artefacts in warped frames. More pre-
cisely, they extrapolate a given image and blur all parts of
the warped image that might potentially exhibit a reduced
image quality. The frequencies that are lost by the blurring
process in the extrapolated frames can be compensated for
in the unwarped original frame. In the affected regions, the
amplitude of the high frequencies is increased according to
the blur that is applied to the successive frames. Because
artefacts are hidden by the blur, a very cost-effective grid
warping strategy can be used. This grid is deformed by ve-
locity vectors that are directly extracted from the scene, and
a snapping process ensures that the main discontinuities are
respected. The technique is successful enough to enable the
addition of two intermediate frames. In other words, a 40 Hz
sequence can be transformed into a 120 Hz output that is
almost indistinguishable from an actually rendered 120 Hz
sequence, which was confirmed by a user study.

Andreev [And10] also proposed a temporal upsampling
scheme, but makes use of an approximate image-based warp-
ing strategy. He targets only a single in-between frame to
successfully transform 30 Hz sequences to 60 Hz. The idea
is to rely again on a frame extrapolation, but to further sep-
arate static and dynamic content. Static elements are usu-
ally well handled by warping strategies, but dynamic objects
can hide—and when warped, unveil—important parts of the
scene. Consequently, holes can appear in the extrapolated
frames. Andreev proposes to copy static pixel patches from
the neighbourhood to fill up these holes. The dynamic content
is then added on top of the final shot. The algorithm is useful
and well-adapted for current game consoles (XBox, PS3). It
finds application in several shipping game titles, which shows
its practical relevance. Andreev also explores a solution that
interpolates between two frames for more accurate results.
He reports that it requires more computational resources and
adds an extra frame of latency, which is unsuitable to their
games.

Concurrent with Andreev’s talk [And10], Yang et al.
[YTS*11] introduced a method that interpolates a pair of
consecutive rendered frames. They proposed a new image-
based reprojection strategy as described in Section 3.2, which
is used to retrieve the information from both rendered frames
for each interpolated frame. The method avoids rasterizing
scene geometry altogether at these intermediate frames and
is very efficient. With their implementation, using the fu-

Figure 26: Examples of stylizing a frame from a rendered
3D animation of a tank scene (left) and a 3D animation of a
lizard with a still photograph in the background (right).

ture rendered frame only introduces a small amount of lag,
and their user studies show that the effect of this lag was
minor. The method yields substantial performance improve-
ments to both vertex-bound and pixel-bound scenes, as well
as multi-pass rendering techniques, such as deferred shading
and motion blur.

5.8. Non-photorealistic rendering

Real-time reprojection has also been used by a non-
photorealistic rendering (NPR) system that converts ani-
mated scenes to artistic brush-stroke renderings of different
styles [LSF10]. Computing a new set of NPR strokes from
scratch in each frame of an animation sequence results in sig-
nificant flickering artefacts. Instead, the algorithm maintains
TC by treating brush strokes as particles and advecting the
vast majority of them according to the scene motion.

In order to advect brush strokes, the algorithm generates a
buffer that stores per-pixel forward motion vectors for the an-
imated scene. This buffer can be efficiently computed on the
GPU by using reprojection to calculate the forward motion
vector from frame t − 1 to frame t in the vertex shader. The
motion vector is interpolated by the hardware and provided
as input to the pixel shader. Much like traditional reprojec-
tion, the pixel shader homogenizes the motion vector and
then outputs the result to the render target in the clip space
of frame t − 1. Finally, each brush stroke particle uses this
motion vector buffer to forward reproject its position from
frame t − 1 to frame t . Figure 26 shows examples of syn-
thetic scenes rendered with this system.

Recently, solutions also focused on different ways of at-
taching brush strokes to extracted feature curves. SLAM tex-
tures [BCGF10] (self-similar line artmaps) are a means to
produce a multi-resolution representation of a stylized line
pattern. Basically, the stylized pattern is self-similar on sev-
eral resolution levels. This property is assured by performing
a suitable texture synthesis algorithm that derives smooth
transitions from a simple pattern to a more detailed higher

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2398 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

resolution version. During rendering, the appropriate detail
level can be chosen from the SLAM representation. Unfor-
tunately, when moving elements over time, these strokes,
while maintaining a coherent look, may slide over the sur-
face as the extracted feature lines on the mesh, and hence,
their parametrization may change. The approach suggests to
keep similar texture coordinates over time by reprojecting
the parametrization when computing the next frame.

Kalnins et al. [KMM*02, KDMF03] avoid the use of
specialized line patterns and instead proposed to optimize
the line parametrization itself. They also focus on tempo-
rally consistent textured lines and aim at minimizing the
mentioned sliding or stretching that would occur for naive
parametrizations. By tracking particle-like curve elements
on the surface, they enable a certain continuity of the ren-
dering. Nonetheless, topological changes of the extracted
feature curves cannot be easily parametrized as they are in-
herently inconsistent. By analyzing a defined animation se-
quence, one can detect topological events using a space-time
contour surface [BFP*11]. By coupling cuts and merges, dis-
continuities are reduced and the final parametrization is opti-
mized via a least-squares fit that optimizes texture sliding and
stretch.

Kass and Pesare [KP11] introduced a method for gen-
erating coherent noise for NPR applications. Their method
achieves the illusion of random variation in the noise from
any given viewpoint in an animation sequence while remain-
ing temporally coherent. To preserve coherence, they employ
a recursive filter and handle disoclusion by comparing repro-
jected depth values much like in reverse reprojection caching.

Many other techniques take advantage of TC for stylized
animations. For a detailed treatment of all these techniques,
refer to the recent survey by Bérnard et al. [BBT11].

5.9. Level-of-detail

The idea behind discrete level-of-detail (LOD) techniques
is to use a set of representations with differing complexi-
ties (levels of detail) for one model and select the most ap-
propriate representation for rendering at runtime [LRC*02].
Complexity can, for instance, vary in the employed materials
or shaders or in the amount of triangles used. Due to memory
constraints and the effort involved in the creation process of
LODs, usually, only a small number is employed, which can
result in noticeable popping artefacts when switching from
one representation to another. A theoretical solution would be
to switch only when the respective pixel output of two repre-
sentations is indistinguishable. This so-called late switching
has practical problems. First, it is hard to guarantee equality
in pixel output for a given view scenario and lighting without
rendering both representations first, which, of course, defeats
the purpose. Second, the idea of switching as late as possible
counteracts the potential gain of employing LODs in the first
place. In practice, switching is done as soon as ‘acceptable’.

Figure 27: LOD interpolation combines two buffers con-
taining the discrete LODs to create smooth LOD transitions.
First and second column: buffers; last column: combina-
tion. The top row shows the two LODs in red and blue,
respectively.

5.9.1. Discrete LOD blending

A more practical solution to this problem proposed by
[GW06] is to include a transition phase during which both
LODs are rendered and then blended into the final image
[GW06]. Apart from other problems, this approach requires
that the geometry (and the shaders) of both LODs have to be
rendered in this transition phase, thereby generating a higher
rendering cost than the higher quality level alone would in-
cur. To circumvent this, Scherzer and Wimmer [SW08] in-
troduced a solution that performs LOD interpolation (see
Figure 27). The idea is that by using TC, the two LODs
required during an LOD transition can be rendered in subse-
quent frames. Two separate render passes are used to achieve
the transition phase between adjacent LOD representations:
Pass 1 renders the scene into an off-screen buffer (called LOD
buffer). For objects in transition, one of the two LOD repre-
sentations is used and only a certain amount of its fragments
are rendered (see Figure 28), depending on where in the tran-
sition (i.e. how visible) this object currently is. This is later
repeated in the next frame using the other LOD representa-
tion and rendering into a second LOD buffer. The second pass
combines these two LOD buffers (one from the current and
one from the previous frame) to create the desired smooth
transition effect.

5.9.2. LOD cuts

Another particular representation is the use of scene hierar-
chies for rendering purposes. The key idea is to represent
a scene in form of a tree where each node stores an ap-
proximate scene representation for the given precision level
corresponding to a level in the tree. While one could start
the search for an appropriate cut (selection of nodes) for a
given view from the top of the tree, this solution is often
wasteful. A cut from one frame to the next rarely changes

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2399

Figure 28: Transition phase from LODk to LODk+1: left:
LODk; middle: midway in the transition all fragments
of both LODs are drawn; right: LODk+1; Below: First
LODk+1 is gradually introduced until all its fragments are
drawn. Then,LODk is gradually removed by rendering fewer
and fewer fragments. The top two rows show the result of our
method and a false colour illustration.

significantly, as the view is very similar. Instead, a few local
refinements are usually enough. Consequently, many LOD
approaches rely on a cut from the previous frame to find the
new representation [XV96, Hop97]. Due to the coherence
from one frame to the next, it is sometimes even useful to
enforce a limited number of local changes in order to bound
the cost of each cut modification from one frame to the next.
Therefore, such refinement strategies allow for an efficient
GPU implementation on modern hardware [HREB11].

While we assumed here that the scene is entirely present in
memory, for large scenes, this can actually become impossi-
ble. Nonetheless, as indicated above, only a small part of the
tree is actually needed (a few nodes around the derived cut).
Consequently, it is possible to restrict memory usage to a
minimum by removing all unnecessary nodes. This principle
leads to streaming solutions that we will investigate next.

5.10. Streaming

5.10.1. Large-data visualization

Streaming is a particularly challenging problem when dealing
with large data sets. Efficiency is of paramount importance,
especially due to the wealth of scanned data that are often
tremendous in size. These difficult-to-render data sets exceed
available memory capacities by far.

Usually, data structures are used to decompose the original
data set in a hierarchical manner. The idea is to use structures
that can be selectively refined. Once the right refinement
scale is established for a view, only local modifications are
applied to update the structure for the next frame, as seen
previously for LODs. This lazy update scheme implicitly
exploits TC because the modifications from one frame to
the next can often be drastically limited. In some cases, even
movement prediction can prove successful [LKR*96]. In any
case, deriving an entirely new refinement would lead to a
huge performance overhead.

These hierarchical data structures are further designed in
a flexible way, in the sense that the actual geometric infor-
mation is only added to the data structure when there it is
requested during rendering. In fact, not all data are needed
at each point in time, as for a given viewpoint, unnecessary
details can be omitted using LOD schemes, as previously
mentioned. In particular, the use of occlusion culling leads
to a much smaller data subset that still produces a complete
image.

We cannot completely explore in-depth all solutions that
exist for the many different types of input data, varying from
geometric models [WDS04], over point clouds [WBB*07], to
recent volume-rendering approaches [GMAG08, CNLE09].

To illustrate the principle, we will base our discussion
on ray-tracing queries. The main observation is that ray-
tracing is a useful tool, not only to produce images, but
also to determine data fetches [WDS04]. Typically, scenes
are organized in form of a tree (Figure 29 illustrates several
levels of detail corresponding to levels in this tree). Rays
then traverse the tree and test geometry intersections in each
traversed node. The idea is that initially each node of the tree
can be empty and will only be filled progressively during
rendering. Whenever a ray reaches such an empty node, a
data request is triggered and the ray potentially stopped,
or traced against a simplified representation that fits into
memory. In this way, the rays themselves control the level
of detail, as well as frustum culling, or occlusion tests. No
special handling of acceleration techniques is needed and,
in particular, as rays tend to vary little from one view to the
next (e.g. for a small and purely rotational movement of the
camera, many rays remain almost unchanged), the temporal
redundancy is implicitly handled.

Such strategies have proven particularly efficient in the
context of volume rendering [GMAG08, CNLE09]. Here, a
multi-resolution data representation is arranged in the tree,
and whenever data are missing, rays do not need to be can-
celled, but can instead walk up the tree to access lower resolu-
tion versions of the data. To deal with the memory constraints,
such algorithms typically employ an LRU cache mechanism
(least-recently used), i.e. newly loaded elements will replace
those that have not been accessed for a longer time. As ele-
ments tend to be active over coherent periods of time, such
strategies prove particularly useful. They can be implemented

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2400 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

Figure 29: On the basis of volume-data streaming algorithms, it is a hierarchical scene representation. Here, several levels of
detail are illustrated. The resolution is switched automatically during the ray-tracing step, depending on the distance. Not all
data are in memory at once, only the parts that are actually currently under use reside in memory.

very efficiently on modern GPUs [CNSE10] and can even
serve in the context of global illumination [CNS*11].

5.10.2. Remote rendering

Remote rendering is trend that is now receiving increased
attention. Many companies such as OnLive, OTOY or Gaikai
focus on the particular topic of game streaming. In such a
scenario, it is vital to exploit TC in order to reduce bandwidth
and computational effort on the server side.

In most cases, the underlying technology for game stream-
ing is closely related to video compression, with a few
exceptions, which transfer API calls directly to the client
[NDS*08], but such an architecture assumes very advanced
client hardware that can deal with all rendering commands.

Video-encoded rendering does not require a powerful
client, but the bandwidth requirements can be high. Hence,
temporal redundancy and perceptual limitations are a crucial
component for such encoding algorithms. For example, it is
possible to exploit the reduced accuracy of the human visual
system to pre-filter in-between frames to reduce the required
bandwidth [FB08].

Usually, video encoding makes use of so-called I-frames
that are only internally encoded (i.e. do not rely on previous
or future frames) and produce precise movie information.
These I-frames are rare and completed by P-frames that rely
on previous, and B-frames that make use of previous and
following images. The latter type delivers quality-wise su-
perior results, but is difficult to exploit for real-time applica-
tions. Because of the dependency on future frames, a delay
is enforced, which can be particularly problematic for lower
frame rates. Furthermore, in the extreme case, if a frame drop
occurs, very noticeable artefacts can arise.

A complete survey of video encoding goes beyond the
scope of this document. Here, we will describe some partic-
ular insights that relate to 3D rendering. Video compression
for rendering should exploit the particularity of the content.
One example is that many attributes can be extracted from
the 3D scene itself, which can then be used to improve the
compression algorithms. One can accelerate the encoding

process through the use of object motion vectors [FE09] that
are applied to predict pixel motion. The TC of the animation
in the scene is directly exploited. This solution can be very
successful and enable higher compression [WKC94] than
standard matching techniques.

It is also possible to go further and rely on the scene
attributes for reconstruction purposes. In fact, the pre-
viously discussed spatio-temporal upsampling strategies
(Section 5.6) are very good candidates for application in
a streaming context [PHE*11]. Such a combination has sev-
eral advantages. Not only the bandwidth, but also the server
workload is tackled (only small-resolution images are pro-
duced and transferred). Furthermore, as the previous frame
is still present on the client when the new frame is supposed
to be reconstructed, the algorithm can exploit this knowledge
during compression and rely on these values as predictors for
statistics-based encoding schemes [PHE*11].

This field of research is still relatively young and is likely
to evolve significantly, but the mentioned recent advances
illustrate the importance of exploiting TC in this context.

5.11. Online visibility culling

Culling techniques like view-frustum culling [AM00] and
visibility culling are important acceleration techniques for
rasterization-based real-time rendering. While visibility is
often pre-processed in a lengthy offline step, online visi-
bility culling algorithms compute visibility on the fly for
the current viewpoint. Typically direct hardware queries are
used, so-called occlusion queries. A common use of occlu-
sion queries is to conservatively test the visibility of a simple
proxy geometry, e.g. the bounding box of a more complex
object.

5.11.1. Exploiting TC

The major challenge for any online culling algorithm is to
reduce the overhead caused by the visibility calculations (the
so-called occlusion queries), which can become unaccept-
able in situations when most objects in the scene are visible.
Hence, it is vital to exploit TC, assuming that objects that
are (in)visible in one frame are likely to remain (in)visible

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2401

in future frames. Using TC, we can substantially reduce the
number of issued occlusion queries, as well as hide their
latency.

The following general strategy is implemented in different
forms by all state-of-the-art occlusion culling algorithms:
First, an algorithm establishes a visible front by rendering
those objects that were visible in the previous frame. Then,
it queries the visibility of the previously invisible objects
against this visible front. Finally, to keep overdraw low, it
updates the visibility classifications of the objects from the
visible front. This can be done in a lazy manner, e.g. by
querying each object every n frames (assuming coherence
over several frames). The clever hierarchical z-buffer algo-
rithm proposed by [GKM93] uses both spatial hierarchies
and TC in the manner described above for maximal effi-
ciency. To accelerate visibility queries, it maintains a two-
fold hierarchy—an image pyramid over the z-buffer and an
octree hierarchy over the objects. The feasibility of this al-
gorithm suffers from the drawback that only parts of it are
supported by the hardware.

5.11.2. Coherent hierarchical culling (CHC)

Beginning with the NVIDIA GeForce 3 graphics card,
hardware-accelerated occlusion queries can be issued for
a batch of rendered geometry. While hardware occlusion
queries are fast, the queries still come with a non-negligible
cost, and they have a certain latency until the query result is
available on the CPU. Algorithms like the CHC algorithm
[BWPP04] utilize TC to avoid such CPU stalls and fill the
latency in a meaningful way.

The algorithm exploits temporal and spatial coherence by
identifying invisible subtrees. To avoid wasted interior node
queries, it starts issuing queries at the previous cut in the hier-
archy (i.e. it queries previously invisible subtrees and visible
leaves). Furthermore, CHC assumes that previously visible
leaves stay visible, and never waits for their query result. In-
stead, these nodes are always rendered in the current frame.
Their visibility classifications are updated for the next frame
once the result is available. For this purpose, the pending
queries are managed in a dedicated query queue. Fortunately,
hardware occlusion queries provide a cheap way to check if
a query result is available. This way, it is possible to do some
traversal and rendering on the CPU, while the GPU is busy
computing the query results, avoiding CPU stalls and GPU
starvation.

5.11.3. Making further use of TC

The original CHC algorithm works sufficiently well in many
situations, but still suffers from considerable overhead be-
cause of the large overall number of queries and the rela-
tively high cost of individual queries. The CHC++ algorithm
[MBW08] addresses these drawbacks by making better use

Figure 30: Comparison of view frustum culling (VFC), view
frustum culling and potentially visible sets (VFC+PVS), and
online visibility culling using CHC++ [BMW*09].

of temporal and spatial coherence. It extends the CHC algo-
rithm with a couple of simple but effective optimizations.

CHC++ issues batches of queries instead of individual
queries. This is based on the observation that a huge portion
of the individual query cost in CHC is caused by GPU state
changes due to the constant interleaving of render and query
mode (e.g. depth write on/off). The coherence among nodes
in a batch is exploited by assuming that mutual occlusion of
these nodes is not relevant.

CHC++ compiles multi-queries, which are able to cover
more nodes by a single occlusion query. This method is able
to reduce the number of queries for previously invisible nodes
up to an order of magnitude by making better use of TC. The
decision of including a node in a multi-query is based on its
history. Nodes that were invisible for a long time are likely to
stay invisible; hence, they can be handled by a single query.
A failed multi-query means that the nodes must be tested
individually, wasting one query while increasing the overall
number of queries by one. Hence, the authors introduced a
cost-benefit model (based on the likelihood of a node to stay
invisible) which minimizes the number of queries. Note that
the nodes can be spatially completely unrelated.

Lazily issuing queries for previously visible nodes every
n frames (which was an option in CHC) has the danger of
sudden frame rate drops. These happen because of many
queries being issued in the same frame due to simultaneous
visibility changes (e.g. all rooftops of a town become visible
in the same frame). To avoid this negative effect of coherence,
CHC++ applies a temporally jittered sampling pattern for
scheduling those queries.

Figure 30 shows timings in the Powerplant scene with
12M triangles (using a NVIDIA GeForce 280 GTX). In-
terestingly, online visibility culling with CHC++ is typi-
cally faster than rendering based on preprocessed poten-
tially visible sets (PVSs). This is because the computational

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2402 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

overhead of CHC++ is less than the rendering overhead due
to the more conservative preprocessed visibility solution (i.e.
it overestimates the objects visible from the current viewpoint
as visibility is stored per region).

5.12. Temporal perception

This report presented several algorithms that exploit TC of
data, leveraging the redundancy of information over time.
But, in fact, TC can also be used in an inverse manner to
produce richer content by exploiting elements of percep-
tion, which seems to be a very promising avenue for future
endeavours. Even physically incoherent signals of high vari-
ance can be perceived as temporally coherent under certain
circumstances. A simple example is a flash light strobing at
very high frequency. At some point, we will no longer be able
to see the flickering effect and perceive a coherent lighting.
In fact, CRT screens made direct use of these observations.
When working with such perceptual TC, many new possibil-
ities become available. Here, we will focus on two examples
(colour and resolution increase) that represent first steps in
this direction of research.

One of the oldest examples to enrich graphics by exploit-
ing temporal effects is to rely on flickering to increase the
computer’s colour palette. The most prominent representa-
tives of such a technique are DLP projectors, which display,
in a coherent way, the three colour channels of an image in
rapid succession. These separate signals are then integrated
by the eye so that an observer perceives a fully coloured
image.

Similar to the DLP principle, one can increase the available
colours of a screen or machine. Back when colour palettes
were limited, having darkened tints of colours (e.g. for shad-
ows) was not always possible. By flickering the correspond-
ing elements on the screen, a simple solution to extend the
palette was born. For an observer, these flickered colours
mix because at higher frame rates, the eye no longer dis-
tinguishes each frame individually. The same procedure is
often employed in LCD screens under the name of frame
rate control. In practice, the material is often limited to 6
bits per colour channel, whereas the graphics card produces
8-bit colour channels. The solution is to represent fractional
colours by displaying the immediate neighbours in quick suc-
cession over time [Art04]. Again, the eye integration delivers
the illusion that what was observed on the retina is actually
the fractional colour value.

Another way to influence colour perception involving the
temporal domain is to make use of adaptation. When looking
for a longer time at a bright source, the source imprints its
image on our retina in form of an afterimage in opponent
colours. This phenomenon relates to receptor bleaching. By
making use of a computational model of this effect, the mech-
anism can be simulated and can lead to a perceived increase
of brightness [RE12].

Besides more colours, resolution and details can also be
addressed. It is known that object discrimination is more suc-
cessful for sub-pixel camera panning than for corresponding
static frames [KDT05, BSH06]. Didyk et al. [DER*10a] fur-
ther explored this observation by taking into account the TC
of eye movement for apparent resolution enhancement. In
other words, they are able to produce the illusion of high
resolution on a low-resolution screen, and thereby, even sur-
pass the physical boundaries. More precisely, their setup is a
low-resolution screen on which moving content is displayed
at a high refresh rate. When the eye starts tracking the in-
formation on the screen, several frames will be successively
integrated on the retina. By predicting the eye movement, it
is possible to derive an image sequence such that the inte-
grated response on the retina approaches a high-resolution
image content. The accuracy of the tracking is assured by
the human visual system’s smooth-pursuit eye motion. This
mechanism leads to an almost perfect stabilization for steady
linear motion with velocities in the range of 0.625− 2.5◦

s−1 [LRP*06]. The low-resolution image sequence itself is
derived using an optimization framework that takes eye in-
tegration and flicker perception into account to ensure that
this sequence integrates properly on the retina. The solution
has recently been extended to general animation sequences
including arbitrary movements and general scenes by assum-
ing the eye movement to be related to the underlying optical
flow [TDR*11].

6. Summary

In this report, we have described real-time rendering tech-
niques that take advantage of TC by reusing expensive cal-
culations from previously rendered frames. As a result, both
performance and quality of many common real-time render-
ing tasks can be improved.

We started by showing that real-time rendering applica-
tions exhibit a significant amount of spatio-TC, thus moti-
vating data reuse in shading computations. We then briefly
surveyed the historical approaches focused on offline meth-
ods before describing the real-time techniques which consti-
tute the main focus of this report. We introduced the basic
algorithm for performing real-time reprojection on the GPU.
The approach allows the shader to efficiently query shad-
ing results from an earlier rendered frame (reverse repro-
jection), or similarly, map a shading result from the current
frame to the next frame (forward reprojection). We then ana-
lyzed the quality versus speed trade-offs associated with data
reuse.

We presented several applications that take advantage of
data reuse. We started with the basic application of directly
reusing results of an expensive shading computation, such
as the previous results of a procedural noise shader. For
applications that accumulate results from multiple render-
ings of the same scene, such as stereo, motion blur and
depth-of-field rendering, we showed how to reuse shading

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2403

results from a ‘central frame’ when rendering the remain-
ing accumulated frames, thereby reducing rendering times
considerably.

Some expensive per-pixel computations often require
approximating an integral by combining multiple spatial
samples, such as shadow computation. To address those sce-
narios, we described how to amortize computation by com-
bining results from multiple frames in order to achieve better
results for anti-aliasing, pixel-correct shadows and soft shad-
ows, among other applications. Using reprojection for these
techniques allows for a much larger number of samples for
the same rendering time budget. The amortized approach
also allows for a smoothly varying shading result instead of
the ‘all or nothing’ reuse strategy of the earlier applications
that either fully reuse the earlier results or compute it en-
tirely anew. We showed significant improvement in quality
and speed for these amortized approaches and analyzed the
trade-off between lag and aliasing in the rendered result. We
also showed how TC can be used to compute not only effi-
cient shadows from a light source, but also efficient global
illumination approximations through amortization. We then
presented techniques to combine both spatial and temporal
upsampling using a joint bilateral filter that considers sam-
ples from recently rendered frames, and how to increase
frame rates by generating new intermediate frames by taking
advantage of TC.

Finally, we showed how TC can be used to improve qual-
ity or accelerate a variety of tasks. Forward reprojection was
applied to smoothly advect brush strokes for NPR of ani-
mated scenes. TC was used to render transition phases for
discrete LOD blending, thereby avoiding popping artefacts
and creating a smooth transition between levels of detail. We
then showed how TC has also been explored for streaming
content, such as improved compression for remote rendering
of synthetic scenes (e.g. games), and large-data visualiza-
tion. Another area that has been explored is how to use TC to
accelerate occlusion culling. Finally, we showed techniques
that consider elements of perception of the human visual sys-
tem in order to increase the apparent number of colours and
apparent resolution of the image.

To summarize, this report surveyed strategies for reusing
shading computations during real-time rendering. These
strategies are very generally applicable as demonstrated
on a very large number of different application scenarios.
While relatively recent, this research trend has already found
uses in the gaming community. We hope that in this pro-
cess, we have convinced the reader that taking advantage
of TC can vastly reduce shading computation in a very
large number of rendering scenarios. With the continued in-
crease in complex shading effects, frame rates, screen reso-
lution and rendering hardware features, we expect that tech-
niques that take advantage of TC will become even more
prevalent.

Acknowledgements

We would like to thank the Intel Visual Computing In-
stitute (IVCI) at Saarland University, the French National
Research Agency (iSpace&Time), the People Programme
(Marie Curie Actions) of the FP7 (under REA Grant Agree-
ment no. 290227) and the Austrian Science Fund (FWF) for
partial funding of this work.

References

[AH93] ADELSON S. J., HODGES L. F.: Stereoscopic ray-
tracing. The Visual Computer 10, 3 (1993), 127–144.

[AH95] ADELSON S. J., HODGES L. F.: Generating exact ray-
traced animation frames by reprojection. IEEE Computer
Graphics and Applications 15, 3 (1995), 43–52.

[AM00] ASSARSSON U., MÖLLER T.: Optimized view frustum
culling algorithms for bounding boxes. Journal of graph-
ics, GPU, and game tools 5, 1 (2000), 9–22.

[And10] ANDREEV D.: Real-time frame rate up-conversion
for video games. In Proceedings of ACM SIGGRAPH 2010
Talks (2010).

[Art04] ARTAMONOV O.: X-bit’s guide: Contempo-
rary lcd monitor parameters and characteristics.
http://www.xbitlabs.com/articles/monitors/display/lcd-
guide_11.html. Accessed October 2004.

[ATS94] ARVO J., TORRANCE K., SMITS B.: A framework for
the analysis of error in global illumination algorithms. In
SIGGRAPH ’94: Proceedings of the 21st Annual Confer-
ence on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1994), ACM, pp. 75–84.

[BBT11] BÉNARD P., BOUSSEAU A., THOLLOT J.: State-of-
the-art report on temporal coherence for stylized anima-
tions. Computer Graphics Forum 30, 8 (December 2011),
2367–2386.

[BCGF10] BÉNARD P., COLE F., GOLOVINSKIY A., FINKELSTEIN

A.: Self-similar texture for coherent line stylization. In
NPAR 2010: Proceedings of the 8th International Sym-
posium on Non-photorealistic Animation and Rendering
(New York, NY, USA, 2010), ACM Press, pp. 91–97.

[BFMZ94] BISHOP G., FUCHS H., MCMILLAN L., ZAGIER E.
J. S.: Frameless rendering: Double buffering considered
harmful. In SIGGRAPH ’94: Proceedings of the 21st
Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1994), ACM, pp.
175–176.

[BFP*11] BUCHHOLZ B., FARAJ N., PARIS S., EISEMANN

E., BOUBEKEUR T.: Spatio-temporal analysis for

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2404 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

parameterizing animated lines. In Proceedings of the In-
ternational Symposium on Non-Photorealistic Animation
and Rendering (NPAR) (2011).

[BJ88] BADT Jr. S.: Two algorithms for taking advantage of
temporal coherence in ray tracing. The Visual Computer
4 (1988), 123–132.

[BM05] BENNETT E. P., MCMILLAN L.: Video enhancement
using per-pixel virtual exposures. ACM Transactions on
Graphics 24, 3 (2005), 845–852.

[BMW*09] BITTNER J., MATTAUSCH O., WONKA P., HAVRAN

V., WIMMER M.: Adaptive global visibility sampling. In
SIGGRAPH ’09: Proceedings of the ACM SIGGRAPH
2009 Papers (New York, NY, USA, 2009), ACM.

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08:
Proceedings of the ACM SIGGRAPH 2008 talks (2008).

[BSH06] BIJL P., SCHUTTE K., HOGERVORST M. A.: Appli-
cability of TOD, MTDP, MRT and DMRT for dynamic
image enhancement techniques. In Proceedings of the So-
ciety of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series (2006), vol. 6207.

[BWPP04] BITTNER J., WIMMER M., PIRINGER H.,
PURGATHOFER W.: Coherent hierarchical culling: Hard-
ware occlusion queries made useful. Computer Graphics
Forum 23, 3 (September 2004), 615–624. [Proceedings
EUROGRAPHICS 2004.]

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN

E.: Gigavoxels : Ray-guided streaming for efficient and
detailed voxel rendering. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games (I3D) (Boston, MA, USA, February 2009), ACM
Press.

[CNS*11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,
EISEMANN E.: Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum 30, 7 (2011), pp.
1921–1930. doi: 10.1111/j.1467-8659.2011.02063.x.

[CNSE10] CRASSIN C., NEYRET F., SAINZ M., EISEMANN E.:
Efficient Rendering of Highly Detailed Volumetric Scenes
with GigaVoxels. In GPU Pro. A. K. Peters (Ed.), Natick,
MA, USA, (2010), ch. X.3, pp. 643–676.

[CT81] COOK R. L., TORRANCE K. E.: A reflectance model
for computer graphics. In SIGGRAPH ’81: Proceedings of
the 8th Annual Conference on Computer Graphics and In-
teractive Techniques (New York, NY, USA, 1981), ACM,
pp. 307–316.

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for im-
age synthesis. In SIGGRAPH ’93: Proceedings of the 20th

Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1993), ACM, pp.
279–288.

[DDM03] DAMEZ C., DMITRIEV K., MYSZKOWSKI K.: State of
the art in global illumination for interactive applications
and high-quality animations. Computer Graphics Forum
22, 1 (March 2003), 55–77.

[DER*10a] DIDYK P., EISEMANN E., RITSCHEL T., MYSZKOWSKI

K., SEIDEL H.-P.: Apparent display resolution enhancement
for moving images. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2010, Los Angeles) 29, 3 (2010).

[DER*10b] DIDYK P., EISEMANN E., RITSCHEL T., MYSZKOWSKI

K., SEIDEL H.-P.: Perceptually-motivated real-time tem-
poral upsampling of 3D content for high-refresh-rate
displays. Computer Graphics Forum 29, 2 (2010),
713–722.

[DRE*10] DIDYK P., RITSCHEL T., EISEMANN E., MYSZKOWSKI

K., SEIDEL H.-P.: Adaptive image-space stereo view syn-
thesis. In Proceedings of the Vision, Modeling and Visu-
alization Workshop (11 2010).

[DWWL05] DAYAL A., WOOLLEY C., WATSON B., LUEBKE

D. P.: Adaptive frameless rendering. In Proceedings of the
Eurographics Symposium on Rendering Techniques, Kon-
stanz, Germany, June 29–July 1, 2005 (2005), O. Deussen,
A. Keller, K. Bala, P. D. D. W. Fellner, S. N. Spencer
(Eds.). Eurographics Association, Konstanz, Germany, pp.
265–275.

[EASW09] EISEMANN E., ASSARSSON U., SCHWARZ M.,
WIMMER M.: Casting shadows in real time. In Proceed-
ings of the ACM SIGGRAPH Asia 2009 Courses (Dec.
2009).

[EASW10] EISEMANN E., ASSARSSON U., SCHWARZ M.,
WIMMER M.: Shadow algorithms for real-time rendering.
In Proceedings of the Eurographics Tutorial (Dec. 2010).

[ED04] EISEMANN E., DURAND F.: Flash photography en-
hancement via intrinsic relighting. ACM Transactions
on Graphics (Proceedings of Siggraph Conference) 23
(2004), 673–678.

[ED07a] EISEMANN E., DÉCORET X.: On exact error bounds
for view-dependent simplification. Computer Graphics
Forum 26, 2 (2007), 202–213.

[ED07b] EISEMANN E., DÉCORET X.: Visibility sampling on
gpu and applications. Computer Graphics Forum (Pro-
ceedings of Eurographics 2007) 26, 3 (2007), 535–544.

[ESAW11] EISEMANN E., SCHWARZ M., ASSARSSON U.,
WIMMER M.: Real-Time Shadows. A. K. Peters (Ed.). CRC
Press, Natick, MA, USA, (2011).

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2405

[FB08] FUJIBAYASHI A., BOON C. S.: A masking model for
motion sharpening phenomenon in video sequences. IE-
ICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences E91-A, 6 (2008),
1408–1415.

[FC08] FOX M., COMPTON S.: Ambient occlusive crease shad-
ing. Game Developer Magazine (March 2008).

[FE09] FECHTELER P., EISERT P.: Depth map enhanced mac-
roblock partitioning for H.264 video coding of computer
graphics content. In Proceedings of the International Con-
ference on Image Processing (2009), pp. 3441–3444.

[FPD08] FENG X.-F., PAN H., DALY S.: Comparisons of
motion-blur assessment strategies for newly emergent
LCD and backlight driving technologies. Journal of the
Society for Information Display 16 (2008), 981–988.

[GKM93] GREENE N., KASS M., MILLER G.: Hierarchical Z-
buffer visibility. Computer Graphics (Proceedings of SIG-
GRAPH ’93) (1993), 231–238.

[GMAG08] GOBBETTI E., MARTON F., ANTONIO J., GUITIAN I.:
A single-pass GPU ray casting framework for interactive
out-of-core rendering of massive volumetric datasets. The
Visual Computer 24, 7 (2008), 797–806.

[GW06] GIEGL M., WIMMER M.: Unpopping: Solving the
image-space blend problem for smooth discrete lod tran-
sitions. Computer Graphics Forum 26, 1 (Mar. 2006),
46–49.

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer:
Hardware support for high-quality rendering. In Proceed-
ings of SIGGRAPH ’90 (New York, NY, USA, 1990),
ACM, pp. 309–318.

[HBS03] HAVRAN V., BITTNER J., SEIDEL H.-P.: Exploiting
temporal coherence in ray casted walkthroughs. In SCCG
’03: Proceedings of the 19th Spring Conference on Com-
puter Graphics (New York, NY, USA, 2003), ACM Press,
pp. 149–155.

[HDMS03] HAVRAN V., DAMEZ C., MYSZKOWSKI K., SEIDEL

H.-P.: An efficient spatio-temporal architecture for
animation rendering. In EGRW ’03: Proceedings of the
14th Eurographics Workshop on Rendering (Aire-la-Ville,
Switzerland, 2003), Springer, pp. 106–117.

[HEMS10] HERZOG R., EISEMANN E., MYSZKOWSKI K., SEIDEL

H.-P.: Spatio-temporal upsampling on the GPU. In Pro-
ceedings of the Symposium on Interactive 3D Graphics
and Games (New York, NY, USA, 2010), ACM.

[HH97] HECKBERT P. S., HERF M.: Simulating Soft Shadows
with Graphics Hardware. Tech. Rep. CMU-CS-97-104,

CS Department, Carnegie Mellon University, Jan. 1997.
http://www.cs.cmu.edu/ ph.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH N.,
SILLION F.: A survey of real-time soft shadows algorithms.
Computer Graphics Forum 22, 4 (Dec. 2003), 753–774.
[State-of-the-Art Reviews.]

[Hop97] HOPPE H.: View-dependent refinement of progres-
sive meshes. In Proceedings of SIGGRAPH (1997).

[HREB11] HOLLÄNDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: Manylods: Parallel many-view level-of-
detail selection for real-time global illumination. Com-
puter Graphics Forum (Proc. of EGSR) (2011).

[Jan01] JANSSEN R.: Computational Image Quality. Spie
Press, Bellingham, Washington, DC, 2001.

[Kaj86] KAJIYA J. T.: The rendering equation. SIGGRAPH
Computer Graphics 20, 4 (1986), 143–150.

[KCLU07] KOPF J., COHEN M. F., LISCHINSKI D.,
UYTTENDAELE M.: Joint bilateral upsampling. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2007)
26, 3 (2007).

[KDMF03] KALNINS R. D., DAVIDSON P. L., MARKOSIAN

L., FINKELSTEIN A.: Coherent stylized silhouettes. ACM
Transactions on Graphics 22, 3 (July 2003), 856–
861.

[KDT05] KRAPELS K., DRIGGERS R. G., TEANEY B.: Target-
acquisition performance in undersampled infrared im-
agers: Static imagery to motion video. Applied Optics 44,
33 (2005), 7055–7061.

[Kel97] KELLER A.: Instant radiosity. In Proceedings of SIG-
GRAPH ’ 97 (Aug. 1997), Computer Graphics Proceed-
ings, Annual Conference Series, pp. 49–56.

[KMM*02] KALNINS R. D., MARKOSIAN L., MEIER B. J.,
KOWALSKI M. A., LEE J. C., DAVIDSON P. L., WEBB M.,
HUGHES J. F., FINKELSTEIN A.: WYSIWYG NPR: Draw-
ing strokes directly on 3D models. ACM Transactions on
Graphics 21, 3 (July 2002), 755–762.

[KP11] KASS M., PESARE D.: Coherent noise for non-
photorealistic rendering. ACM Transactions on Graphics
30, 4 (Aug. 2011), 30:1–30:6.

[KTM*10] KNECHT M., TRAXLER C., MATTAUSCH O.,
PURGATHOFER W., WIMMER M.: Differential instant ra-
diosity for mixed reality. In Proceedings of the Ninth
IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’10) (Seoul, Korea, October
2010).

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2406 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

[KV04] KLOMPENHOUWER M. A., VELTHOVEN L. J.: Mo-
tion blur reduction for liquid crystal displays: Motion-
compensated inverse filtering. In Proc. SPIE, 5308,
(2004), pp. 690–699.

[Lan02] LANDIS H.: Production-ready global illumination.
In Proceedings of the Conference on SIGGRAPH 2002
Course Notes 16 (2002), 2002.

[LKR*96] LINDSTROM P., KOLLER D., RIBARSKY W., HODGES

L. F., FAUST N., TURNER G. A.: Real-time, continuous level
of detail rendering of height fields. In Proceedings of SIG-
GRAPH (1996), pp. 109–118.

[LRC*02] LUEBKE D., REDDY, M., COHEN J., VARSHNEY A.,
WATSON B., HUEBNER R.: Level of Detail for 3D Graphics.
Morgan Kaufmann, New York, NY, USA, 2002.

[LRP*06] LAIRD J., ROSEN M., PELZ J., MONTAG E., DALY

S.: Spatio-velocity CSF as a function of retinal velocity
using unstabilized stimuli. In Proceedings of the Human
Vision and Electronic Imaging XI (2006), vol. 6057 of
SPIE Proceedings Series, pp. 32–43.

[LS97] LENGYEL J., SNYDER J.: Rendering with coherent lay-
ers. In SIGGRAPH ’97: Proceedings of the 24th An-
nual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 233–242.

[LSF10] LU J., SANDER P. V., FINKELSTEIN A.: Interactive
painterly stylization of images, videos and 3d anima-
tions. In Proceedings of the Symposium on Interactive
3D Graphics and Games (2010), pp. 127–134.

[LSK*07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTINEN

J., AILA T.: Incremental instant radiosity for real-time in-
direct illumination. In Proceedings of Eurographics Sym-
posium on Rendering 2007 (2007), Eurographics Associ-
ation, pp. 277–286.

[MB95] MCMILLAN L., BISHOP G.: Head-tracked stereoscopic
display using image warping. In Proceedings of SPIE
(1995), Vol. 2409, pp. 21–30.

[MBW08] MATTAUSCH O., BITTNER J., WIMMER M.:
Chc++: Coherent hierarchical culling revisited. Computer
Graphics Forum (Proceedings of Eurographics 2008) 27,
3 (Apr. 2008), 221–230.

[Mit07] MITTRING M.: Finding next gen - cryengine 2. In Pro-
ceedings of the Conference on SIGGRAPH 2007 Course
Notes, Course 28, Advanced Real-Time Rendering in 3D
Graphics and Games, (New York, NY, USA, 2007), ACM
Press, pp. 97–121.

[MKC07] MARROQUIM R., KRAUS M., CAVALCANTI P. R.: Ef-
ficient point-based rendering using image reconstruction.

In Proceedings of the Eurographics Symposium on Point-
Based Graphics (2007), pp. 101–108.

[MSW10] MATTAUSCH O., SCHERZER D., WIMMER M.: High-
quality screen-space ambient occlusion using tempo-
ral coherence. Computer Graphics Forum 29(8) (2010),
2492–2503.

[NDS*08] NAVE I., DAVID H., SHANI A., LAIKARI A., EISERT

P., FECHTELER P.: Games@Large graphics streaming archi-
tecture. In Proceedings of the Symposium on Consumer
Electronics (ISCE) (2008).

[NSL*07] NEHAB D., SANDER P. V., LAWRENCE J., TATARCHUK

N., ISIDORO J. R.: Accelerating real-time shading with
reverse reprojection caching. In Proceedings of the
22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware (2007), pp. 25–35.

[PFD05] PAN H., FENG X.-F., DALY S.: LCD motion blur
modeling and analysis. In Proceedings of ICIP (2005),
pp. 21–24.

[PHE*11] PAJAK D., HERZOG R., EISEMANN E., MYSZKOWSKI

K., SEIDEL H.-P.: Scalable remote rendering with depth and
motion-flow augmented streaming. Computer Graphics
Forum 30, 2 (2011). (Proc. of Eurographics.)

[PSA*04] PETSCHNIGG G., SZELISKI R., AGRAWALA M., COHEN

M., HOPPE H., TOYAMA K.: Digital photography with flash
and no-flash image pairs. ACM Transactions on Graph-
ics (Proceedings of Siggraph Conference) 23, 3 (2004),
664–672.

[QWQK00] QU H., WAN M., QIN J., KAUFMAN A.: Image
based rendering with stable frame rates. In VISUALIZA-
TION ’00: Proceedings of the 11th IEEE Visualization
2000 Conference (VIS 2000) (Washington, DC, USA,
2000), IEEE Computer Society.

[RE12] RITSCHEL T., EISEMANN E.: A computational model
of afterimages. Computer Graphics Forum (Proc. EURO-
GRAPHICS) 31, 2 (May 2012).

[REH*11] RITSCHEL T., EISEMANN E., HA I., SEIDEL H.-P.:
Making imperfect shadow maps view-adaptive: High-
quality global illumination in large dynamic scenes. Com-
puter Graphics Forum (presented at EGSR 2011) (2011).

[RGK*08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps
for efficient computation of indirect illumination. ACM
Transactions on Graphics (Proc. SIGGRAPH ASIA 2008)
27, 5 (2008), 129.

[RP94] REGAN M., POSE R.: Priority rendering with a vir-
tual reality address recalculation pipeline. In SIGGRAPH
’94: Proceedings of the 21st Annual Conference on

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering 2407

Computer Graphics and Interactive Techniques (New
York, NY, USA, 1994), ACM, pp. 155–162.

[SaLY*08a] SITTHI-AMORN P., LAWRENCE J., YANG L., SANDER

P. V., NEHAB D.: An improved shading cache for modern
GPUs. In Proceedings of Graphics Hardware (2008), pp.
95–101.

[SaLY*08b] SITTHI-AMORN P., LAWRENCE J., YANG L., SANDER

P. V., NEHAB D., XI J.: Automated reprojection-based pixel
shader optimization. ACM Transactions on Graphics 27,
5 (12 2008), 127.

[SB95] SMITH S. M., BRADY J. M.: SUSAN—A new approach
to low level image processing. Tech. Rep. TR95SMS1c,
Chertsey, Surrey, UK, 1995.

[Sch96] SCHAUFLER G.: Exploiting frame to frame coherence
in a virtual reality system. In VRAIS ’96: Proceedings of
the 1996 Virtual Reality Annual International Symposium
(VRAIS 96) (Washington, DC, USA, 1996), IEEE Com-
puter Society, p. 95.

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample-
based visibility for soft shadows using alias-free shadow
maps. Computer Graphics Forum (Proceedings of the Eu-
rographics Symposium on Rendering 2008) 27, 4 (June
2008), 1285–1292.

[SGHS98] SHADE J., GORTLER S., HE L.-w., SZELISKI R.: Lay-
ered depth images. In SIGGRAPH ’98: Proceedings of the
25th Annual Conference on Computer Graphics and In-
teractive Techniques (New York, NY, USA, 1998), ACM,
pp. 231–242.

[Shi95] SHINYA M.: Improvements on the Pixel-tracing Fil-
ter: Reflection/Refraction, Shadows, and Jittering. In Pro-
ceedings of the Graphics Interface ’95 (1995), pp. 92–
102.

[SJW07] SCHERZER D., JESCHKE S., WIMMER M.: Pixel-correct
shadow maps with temporal reprojection and shadow test
confidence. In Proceedings of the Eurographics Sympo-
sium on Rendering (2007), pp. 45–50.

[SKUT*10] SZIRMAY-KALOS L., UMENHOFFER T., TOTH B.,
SZECSI L., SBERT M.: Volumetric ambient occlusion for
real-time rendering and games. IEEE Computer Graphics
and Applications 30 (2010), 70–79.

[SLS*96] SHADE J., LISCHINSKI D., SALESIN D. H., DEROSE

T., SNYDER J.: Hierarchical image caching for accelerated
walkthroughs of complex environments. In SIGGRAPH
’96: Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques (New York,
NY, USA, 1996), ACM, pp. 75–82.

[SS00] SIMMONS M., SÉQUIN C. H.: Tapestry: A dynamic
mesh-based display representation for interactive render-
ing. In Proceedings of the 11th Eurographics Workshop
on Rendering (2000), pp. 329–340.

[SSMW09] SCHERZER D., SCHWÄRZLER M., MATTAUSCH O.,
WIMMER M.: Real-time soft shadows using temporal co-
herence. Lecture Notes in Computer Science (LNCS) (Nov.
2009).

[SSS74] SUTHERLAND I. E., SPROULL R. F., SCHUMACKER R.
A.: A characterization of ten hidden surface algorithms.
ACM Computing Surveys 6, 1 (1974), 1–55.

[SW08] SCHERZER D., WIMMER M.: Frame sequential inter-
polation for discrete level-of-detail rendering. Computer
Graphics Forum (Proceedings EGSR 2008) 27, 4 (June
2008), 1175–1181.

[SW09] SMEDBERG N., WRIGHT D.: Rendering techniques
in gears of war 2. Lecture Notes in Computer Science
(2009).

[SWP11] SCHERZER D., WIMMER M., PURGATHOFER W.: A sur-
vey of real-time hard shadow mapping methods. Computer
Graphics Forum 30, 1 (Feb. 2011), 169–186.

[TDR*11] TEMPLIN K., DIDYK P., RITSCHEL T., EISEMANN E.,
MYSZKOWSKI K., SEIDEL H.-P.: Apparent resolution en-
hancement for animations. In Proceedings of the 27th
Spring Conference on Computer Graphics (Vinicne, Slo-
vak Republic, 2011), pp. 85–92.

[Tek95] TEKALP A. M.: Digital Video Processing. Prentice
Hall, New York, NY, USA, 1995.

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In Proceedings of the ICCV (1998), pp.
839–846.

[TV05] TAKEUCHI T., VALOIS K. D.: Sharpening image mo-
tion based on the spatio-temporal characteristics of human
vision. In Proc. SPIE, Vol. 5666, 690 (2005), pp. 83–94.

[VALBW06] VELÁZQUEZ-ARMENDÁRIZ E., LEE E., BALA K.,
WALTER B.: Implementing the render cache and the
edge-and-point image on graphics hardware. In GI ’06:
Proceedings of Graphics Interface 2006 (Toronto, ON,
Canada, 2006), Canadian Information Processing Society,
pp. 211–217.

[WBB*07] WAND M., BERNER A., BOKELOH M., FLECK

A., HOFFMANN M., JENKE P., MAIER B., STANEKER D.,
SCHILLING A.: Interactive editing of large point clouds.
In Proceedings of the Symposium on Point-Based Graph-
ics 2007 : Eurographics/IEEE VGTC Symposium Pro-
ceedings (Prague, Czech Republik, 2007), B. Chen,

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2408 Scherzer et al. / Temporal Coherence Methods in Real-Time Rendering

M. Zwicker, M. Botsch and R. Pajarola R. (Eds.), Eu-
rographics Association, pp. 37–46.

[WDG02] WALTER B., DRETTAKIS G., GREENBERG D. P.: En-
hancing and optimizing the render cache. In EGRW ’02:
Proceedings of the 13th Eurographics Workshop on Ren-
dering (Aire-la Ville, Switzerland, 2002), Eurographics
Association, pp. 37–42.

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive
rendering using the render cache. In Rendering techniques
’99 (Proceedings of the 10th Eurographics Workshop on
Rendering) (New York, NY, USA, Jun 1999), D. Lischin-
ski and G. Larson (Eds.), vol. 10, Springer-Verlag/Wien,
pp. 235–246.

[WDS04] WALD I., DIETRICH A., SLUSALLEK P.: An interac-
tive out-of-core rendering framework for visualizing mas-
sively complex models. In Proceedings of the Eurograph-
ics Symposium on Rendering (2004).

[WGS99] WIMMER M., GIEGL M., SCHMALSTIEG D.: Fast
walkthroughs with image caches and ray casting. In Vir-
tual Environments ’99: Proceedings of the 5th Eurograph-
ics Workshop on Virtual Environments (June 1999), M.
Gervautz, D. Schmalstieg., and A. Hildebrand (Eds.), Eu-
rographics, Springer-Verlag Wien, pp. 73–84. (ISBN 3-
211-83347-1)

[WKC94] WALLACH D. S., KUNAPALLI S., COHEN M. F.:
Accelerated MPEG compression of dynamic polygo-
nal scenes. In Proceedings of SIGGRAPH (1994), pp.
193–197.

[WS99] WARD G., SIMMONS M.: The holodeck ray cache:
An interactive rendering system for global illumination in
nondiffuse environments. ACM Transactions on Graphics
18, 4 (1999), 361–368.

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.: Light
space perspective shadow maps. In Rendering Tech-
niques 2004 (Proceedings of the Eurographics Sympo-
sium on Rendering) (June 2004), A. Keller and H. W.
Jensen (Eds.), Eurographics, Eurographics Association,
pp. 143–151.

[XV96] XIA J. C., VARSHNEY A.: Dynamic view-
dependent simplification for polygonal models. In IEEE
Visualization ’96 (1996), R. Yagel and G. M. Nielson
(Eds.), pp. 335–344.

[YNS*09] YANG L., NEHAB D., SANDER P. V., SITTHI-
AMORN P., LAWRENCE J., HOPPE H.: Amortized super-
sampling. ACM Transactions on Graphics 28, 5 (2009),
135.

[YSL08] YANG L., SANDER P. V., LAWRENCE J.: Geometry-
aware framebuffer level of detail. Computer Graphics Fo-
rum 27, 4 (2008), 1183–1188.

[YTS*11] YANG L., TSE Y.-C., SANDER P. V., LAWRENCE J.,
NEHAB D., HOPPE H., WILKINS C. L.: Image-based bidirec-
tional scene reprojection. ACM Transactions on Graphics
30, 6 (2011), 150.

[YWY10] YU X., WANG R., YU J.: Real-time depth of field
rendering via dynamic light field generation and filtering.
Computer Graphics Forum (Proc. of Pacific Graphics) 29,
7 (2010).

[ZMHI97] ZHANG H., MANOCHA D., HUDSON T., HOFF III K.
E.: Visibility culling using hierarchical occlusion maps.
In Proceedings of SIGGRAPH (1997), pp. 77–88.

[ZWL05] ZHU T., WANG R., LUEBKE D.: A gpu-accelerated
render cache. Pacific Graphics (Short Paper Session)
(October 2005).

c© 2012 The Authors
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

