
 1

Declarative Terrain Modeling for Military Training Games

R.M. Smelik

TNO Defence, Security and Safety, the Netherlands

T. Tutenel

Delft University of Technology, the Netherlands

K.J. de Kraker

TNO Defence, Security and Safety, the Netherlands

R. Bidarra
Delft University of Technology, the Netherlands

Military training instructors increasingly often employ computer games to train soldiers in all sorts of skills and tactics. One of the

difficulties instructors face when using games as a training tool is the creation of suitable content, including scenarios, entities and

corresponding terrain models. Terrain plays a key role in many military training games, as for example in our case game Tactical

Air Defense. However, current manual terrain editors are both too complex and too time-consuming to be useful for instructors;

automatic terrain generation methods show a lot of potential, but still lack user control and intuitive editing capabilities. We

present a novel way for instructors to model terrain for their training games: instead of constructing a terrain model using complex

modeling tools, instructors can declare the required properties of their terrain using an advanced sketching interface. Our

framework integrates terrain generation methods and manages dependencies between terrain features in order to automatically

create a complete 3D terrain model that matches the sketch. With our framework, instructors can easily design a large variety of

terrain models that meet their training requirements.

Keywords: 3D environments; military training; procedural content generation; serious games; sketching interface; terrain

modeling

1. INTRODUCTION

3D computer games have grown tremendously in

size, detail and visual realism. Game technology

has matured rapidly and is nowadays frequently

used outside the entertainment domain in so-

called serious games. One important application

area for serious games is training and instruction.

Military instructors use games as a tool for

training their personnel, because games provide a

visually realistic, immersive training environment

and are very affordable.

There are several examples where games are

successfully applied to military training. A

popular example is the military training system

Virtual Battlespace 2 [1], which is based on the

commercial game Armed Assault and is used by,

among others, the US, UK, Australian and Dutch

army for training soldiers in basic infantry tactics.

Steel Beasts [2] is an armored vehicle simulation

game that has been employed for years to train

tactical vehicle movement and combat. Tactical

Iraqi [3] is a game that teaches soldiers to interact

with Iraqi people in their language and following

their cultural manners. Although more a

recruitment tool than purely a training game,

America’s Army [4] is one of the classic

examples of serious games.

We examine the training game Tactical Air

Defense, and discuss the importance of terrain in

this and other military training scenarios. We

show that common methods and tools for terrain

modeling are not suitable for end-users of training

games (e.g. training instructors), and describe

how this hinders the effectiveness of game-based

training. Next, we present our solution for this: a

framework for declarative, automated terrain

modeling. User can declare a terrain using an easy

to use sketch-based interface and the framework

automatically generates a matching terrain model.

We explain how we use and adapt existing

procedural methods for generating terrain. An

example training scenario illustrates how the

declarative approach of our framework simplifies

terrain modeling. Lastly, we discuss some

challenges ahead for improving this framework.

2. THE ROLE OF TERRAIN IN

MILITARY TRAINING GAMES

We examine the role of terrain in military training

games by analyzing Tactical Air Defense, an

illustrative example of a serious game for training

air defense personnel. We give the relevant

background on the case and discuss how

instructors define scenarios in this game. The

 2

features of the terrain turn out to be a key factor

in air defense scenarios.

2.1 Military training case: Tactical Air
Defense

In a tactical air defense scenario, a platoon

commander has the challenging task of setting up

a ground-based defense system against threats

from the air. He is responsible for protecting a

zone of terrain and probably some high-value

objects, for instance a city, an airfield, or an oil

refinery, within that zone. At his disposal are a

number of mobile anti-air teams, such as Stinger

teams. A Stinger team consists of infantry units

with a shoulder launched Stinger missile system

or, in most cases, mounted on a light or armored

vehicle (see Figure 1a). The commander plans the

deployment of each Stinger team in his zone. He

has to consider many variables, factors, and

uncertainties, but in all considerations the terrain

and its features play a major role.

To defend against the air threat, the commander

first estimates possible approach routes the enemy

aircraft can take. Although he may have some

additional intelligence information (e.g. “four jet

fighters are flying in from the south”), the

estimation is, for the most part, based on a map of

the terrain. The presence of terrain features such

as valleys, rivers, roads, forests and villages may

give clues about the approach route the enemy

pilots will take, as these features can provide

cover for the attacking aircraft or can be used by

pilots for visual orientation.

Once the commander has a clear estimation of

the route the enemy will most likely take, he sets

up his air defense system accordingly, while

considering a number of criteria:

1. The covered depth of the air defense. A Stinger

team can fire twice before needing a long reload

operation (approximately 10 minutes). If some of

the aircraft made it through the first line of

defense, ideally there should be other lines taking

over.

2. The sight a Stinger team has at its position, which

is often limited by terrain features such as hills or

forests.

3. The effective range of the anti-air weapon. A

Stinger has a maximum firing range in which the

missile is effective, but it also has a minimum

distance the missile has to travel before it can lock

on the target.

4. The physical reachability of the position by the

team, which depends on the type of vehicle and

the accessibility of the terrain, and there may be

time constraints as well.

5. Considerations for the safety of the Stinger team,

such as cover, camouflage and visibility from the

air.

6. The overlap in cover of the Stinger teams.

Defended areas should ideally be covered by more

than one team.

7. The strength of the cover will vary in the zone;

high-value areas should be defended better than

other areas.

8. Whether the Stinger team will be in range of the

radar support network it needs to track targets.

In practice, an optimal solution cannot be found

for all these variables, so a commander has to

prioritize areas in his zone and the above criteria.

His decision is based on experience and practice.

Commanding an air defense platoon requires

specialized training. To be able to set up an

effective air defense, an aspirant commander

needs to acquire tactical insights, experience and

flexibility in coping with varying threats and

circumstances. A Job Oriented Training (JOT)

approach has proven to be very successful here.

JOT promotes active learning; knowledge comes

FIGURE 1: a) Vehicle with mounted Stinger missile system. b) Tactical Air Defense map view with sight diagrams of

Stinger teams (colored circles) and radar coverage (surrounding polygon).

 3

as a result of doing the job in a training

environment followed by extensive peer

evaluation of the performance, mistakes, lessons

learned and alternative solutions [5].

Training game

To support the JOT curriculum, the Netherlands

Organisation for Applied Scientific Research

TNO has developed a serious game for air

defense. The game focus is on learning to set up

an air defense for different circumstances, terrain,

and types of threats, i.e. how to position Stinger

teams in such a way that together they form an

effective defense against possible air threats.

A typical training session starts with a realistic

briefing by a military instructor, which includes

the zone of terrain the trainees are to defend,

situation and intelligence reports and the

identification of high-value targets. Trainees work

in pairs and start to examine the situation and

terrain on a paper map. They assess probable

approach routes the enemy aircraft might take and

the intent of the enemy (e.g. destroy a high-value

building). The trainees use the game to evaluate

and adjust their ideas based on the 3D view of the

terrain and discuss and compare their opinions

with peers.

In the next phase of the training session, each

team deploys an air defense setup using the game.

The game adopts the paradigm of learning by

doing; once a trainee places a Stinger team on the

terrain map, a diagram of the lines of sight from

that position is immediately displayed. This sight

diagram is determined on the basis of a realistic

Stinger model, and takes the terrain and its

features into account. The sight diagrams allow

the trainees to discuss the strengths and

weaknesses of their deployment and adjust it

accordingly (see Figure 1b). With their defense

set up, the game can show how well the team

performed, by simulating the enemy air attack in

the 3D simulation. The Stinger teams

automatically fire on enemy aircraft within their

effective range and results of weapon interactions

are calculated based on the Stinger and aircraft

models. At the end of a session, the teams present

their air defense solution to the group and discuss

alternatives.

Scenario creation

The instructor creates scenarios by selecting and

configuring the terrain zone, the air defense goal,

air threat type and approach route, and the

available Stinger teams. The scenarios vary with

terrain complexity and threat level.

Currently, the game offers a fixed set of large

terrain models. This includes both geo-specific

(based on real-world GIS data) and geo-typical

(lifelike but fictive) terrain models. Geo-typical

terrain has the advantage that it can be tailored to

exactly meet the training goals. For each scenario

a suitable terrain can composed. For example, a

geo-typical terrain can combine highly varying

terrain types in one model (e.g. a mountain range

with a forest, a flat desert, a valley with a village

and a river) or it can have a height profile that

matches the exact line-of-sight requirements of

the scenario. Geo-specific terrain allows the

trainees to do a live training in the same field as

they did their virtual training, which can teach

them how their decisions work out in the real

world.

2.2 The importance of terrain

In Tactical Air Defense and in other games for

training military personnel, the terrain in which a

scenario is executed plays a key role in the

training. On a strategic level, securing particular

areas or features of a terrain (e.g. a hill

overlooking a city, a bridge across a river) can be

an objective of a military scenario. Large terrain

features can affect the performance of sensors,

such as the mobile radar systems used for air

defense; therefore to place these sensors, one

should consider hindering terrain features such as

hills and mountains within the sensor’s range.

On a smaller scale, the terrain largely defines

the tactical situation. Together with

environmental conditions (season, weather, time-

of-day) it determines visibility and lines-of-sight.

These are key factors in, for instance, first-person

infantry trainers such as Virtual Battlespace 2.

Natural terrain features such as rocks can also

provide cover for infantry.

Wells [6] argues that terrain features not only

have strategic and tactical value, but are also

essential for trainees to be able to orientate,

navigate and immerse themselves in a virtual

environment. Features of well-known size such as

trees and buildings give important cues for sizes

and distances in the virtual world. Recognizable

natural or man-made landmarks such as rivers or

a church help trainees to navigate. A terrain

model that is detailed and rich in natural and man-

made features is perceived as more lifelike, thus

increasing the immersion of trainees into the

virtual world.

 4

3. CURRENT TERRAIN MODELING

METHODS

In Tactical Air Defense, the choice of terrain

turns out to be an important part of creating a

training scenario. Scenario creation usually starts

with obtaining a suitable terrain model. However,

the instructor currently has to choose from the

fixed set of terrain models that were shipped with

the game. Although they can cover many possible

settings, they do significantly limit the number of

potential training scenarios. The instructor cannot

create new terrain, nor can he easily make

changes to existing terrain models, e.g. displace

terrain features to change the line of sight.

In contrast to, for instance, mission rehearsal

scenarios, training scenarios often take place on

geo-typical terrain. It would be very helpful for

instructors if they themselves were able to design

new geo-typical terrain models or modify existing

ones. This would allow them to create variations

of terrain models with increasing complexity (e.g.

by adding mountain ranges or forests, thereby

limiting lines of sight). A more complex terrain

entails a more difficult scenario, as a good air

defense solution will be less obvious. Increasing

the variety in terrain will also prevent the trainees

from becoming too familiar with the specifics of a

particular terrain model. Therefore, in this section

we analyze existing manual and automatic

methods for modeling geo-typical terrain,

assessing the extent to which they are suitable for

use by training instructors.

3.1 Manual modeling methods

Manual design of geo-typical terrain is

comparable to game level design for commercial

computer games. These fictional terrain models

have evolved from primitive to highly detailed

and, at least visually, very advanced. However,

the workflow, tools, and techniques used to create

these models have not advanced that much. Game

levels are designed almost entirely by hand using

complex tools and primitive constructs, e.g.

manual creation and placement of geometry.

Creating terrain models is currently thus both a

complicated and tedious task, which requires

specialized 3D modeling skills. It can take a

skilled designer many months to complete a level,

making it a costly and lengthy process.

This becomes problematic when games are

used for training and instruction. For commercial

games, the terrain model and game scenarios are

largely predefined by the game developer, but for

training games, it is typically the end user, in our

case a military training instructor, who defines the

scenarios. Military instructors usually lack the

time, budget and, most importantly, the required

3D modeling skills for creating terrain models.

Although they will have a clear picture of what

kind of training scenario they want to create, and

of the features the terrain should have, current

terrain modeling tools, which often have been

developed with expert game level designers in

mind, simply do not support their way of

thinking.

3.2 Automatic generation methods

Because of the disadvantages of modeling terrain

by hand, automated terrain generation would

seem a more feasible solution for terrain

modeling by instructors, being a fast and easy

way to acquire terrain models while not requiring

3D modeling skills. We evaluate both procedural

methods in scientific literature as well as three

relevant commercial tools for automatic terrain

generation.

Research on procedural content generation
Procedural methods generate content, such as

textures, models or even art, through algorithms

steered by random numbers. The main advantage

of these methods is their ability to automatically

generate a large amount of content from a limited

set of input parameters. Procedural methods are

often applied to generate terrain or its features.

Height-maps (i.e. regular grids of elevation

points) are often used as the basis of a terrain

model. There are many procedural algorithms for

generating height-maps, often based on fractal

noise generators, such as Perlin noise [7, 8],

which generates noise by sampling and

interpolating points in a grid of random vectors.

Rescaling and adding several levels of noise to

each point in the height-map results in natural,

mountainous-like structures (for a textbook on

fractal noise and height-map generation, see Ebert

et al. [9]). These height-maps can be transformed

further based on simulations of physical

phenomena, for instance erosion. Thermal erosion

levels sharp changes in elevation, by iteratively

distributing material from higher to lower points,

until the talus angle, i.e. maximum angle of

stability for a material such as rock or sand, is

reached. Erosion caused by rainfall can be

simulated using, for example, cellular automata,

where the amount of water and dissolved material

that flows out to other cells is calculated based on

the local slope of the terrain surface. Musgrave

treats both types of erosion in his PhD thesis [10]

and Olsen discusses several optimizations [11].

 5

Basic noise-based height-map generation

delivers results that are fairly random; user

control is only on a global level, often using

unintuitive parameters. Several researchers have

addressed this issue. Frade et al. [12] introduce an

evolutionary approach to develop Terrain

Programmes (TPs), which are combinations of

functions that are applied to a terrain grid to

generate a terrain model. Starting from an initial

population of basic TPs, each new generation of

TPs is created based on mutations of one or two

selected TPs in the current population. The terrain

designer selects these TPs based on example

terrain models generated by these TPs. Stachniak

and Stuerzlinger [13] propose a method that

integrates constraints (expressed as mask images)

into the terrain generation process. They employ a

search algorithm that finds an acceptable set of

deformation operations to apply to a random

terrain in order to obtain a terrain that

(approximately) adheres to these constraints.

Schneider et al. [14] introduce an editing

environment in which the user edits the terrain by

interactively modifying the base functions of the

noise generator (by replacing the Perlin noise grid

with a set of user-drawn gray-scale images), while

viewing the results in 3D. Zhou et al. [15]

describe a technique that generates terrain based

on example input height-map and a user line

drawing that defines the occurrence of large-scale

curved line features, such as a mountain ridge.

Features are extracted from the example height-

map and matched to the sketched curves and

seamed together in the resulting height-map. De

Carpentier and Bidarra [16] introduce procedural

brushes: users paint height-mapped terrain

directly in 3D by applying simple terrain raising

brushes but also brushes that generate several

types of noise in real-time.

Based on terrain types, elevation and slope

data, vegetation can be distributed automatically.

Some approaches use quite complex ecosystem

simulations that take into account soil information

as well as the competition for space and sunlight

between plants [17]. 3D models of plants are also

an ideal candidate for procedural generation.

Although plants of the same species all have a

unique form, their basic structure is very similar.

Because of this, plant models can, for instance, be

generated using rule-based systems known as L-

systems. These L-systems contain a starting

symbol and a set of rewriting rules that transform

the starting symbol into a more complex one.

Here these transformations are mostly geometric

transformations, e.g. they define the translation of

a shape, the addition of new shapes relative to an

existing structure, or the change from one shape

to another one. When considering an L-system to

create trees, the starting rule could define the tree

trunk and other rules could add branches to an

existing branch, or add leaves to smaller branches

(see e.g. [18]).

 Finally, procedural methods are also being

applied to road network generation and urban

modeling, for an overview of approaches, see e.g.

Watson et al. [19] or Kelly and McCabe [20].

Most of these procedural content generation

algorithms have several drawbacks that can

hinder their use. The main challenge of

procedural modeling is to find a good balance

between automation and control. For application

in training scenarios the generated results are

often too random; the user has too little control

over the outcome. For instance, one fractal

height-map will often differ quite a bit from

another that was generated with exactly the same

input parameters. This is because procedural

algorithms use random numbers a great deal. The

algorithm’s input parameters influence the result

only at a very global level. In the end, the exact

values of the random numbers determine, for

instance, whether there is a steep mountain range

or a valley at a specific location in the terrain,

while the parameters only influence the changes

of mountain ranges to occur. Furthermore, the

parameters often require an in-depth knowledge

of the algorithm (e.g. the number of noise octaves

or the persistence value) to estimate the effect of a

parameter on the outcome. Combined, these

drawbacks typically give users little control over

the generation process and force them to use a

time consuming trial and error approach, as was

noted in e.g. Stachniak and Stuerzlinger [13]. In

our application domain, this is not an acceptable

working method.

Besides the issues identified for using an

individual method, it is also far from trivial to

tune procedural methods to work well together to

generate a fully featured terrain model. As we

will see below, most commercial tools focus on a

specific aspect of terrain modeling (e.g. elevation

data). To our knowledge, there is currently no tool

or integrating framework that combines these

various algorithms in a usable way.

Commercial tools

We review three commercial automatic terrain

generation tools that have been around for several

years and have a substantial user base: TerraGen,

GeoControl and L3DT. There are numerous other

tools available, but these three deliver, in our

 6

view, the most impressive results and have more

advanced editing capabilities.

TerraGen 2 [21] uses an elaborate network of

nodes (nodes generate noise or apply filters and

even mathematical functions to intermediate

results) to generate elevation data. Users control

this process by placing the nodes, setting their

parameters and connecting them in a specific

order. During generation, this network is

traversed and outputs of nodes are blended

resulting in a height-map. The resulting terrain

can also automatically be populated with external

objects (for instance, tree models).

TerraGen delivers very impressive visuals,

which have been used in several movies.

However, to be able to use this tool effectively,

background knowledge on mathematics and noise

generation is necessary and extensive

experimentation with the tool is needed. The tool

has a steep learning curve, but is very powerful

once mastered. Therefore, we conclude that this

tool is much more usable for computer artists,

who focus on creating aesthetically pleasing

textured height-maps, than for training

instructors, who focus on the functional

requirements of a terrain.

GeoControl 2 [22] is a height-map editor that

iteratively generates elevation data using its

“Dynamic Level Generation” algorithm. The

process starts with a 2 x 2 grid of height pixels

and subdivides this grid using a fractal noise

algorithm until the desired terrain dimensions are

reached. A user can define the noise

characteristics to be used in each subdivision.

Additionally, filters can be applied to this basic

noise algorithm, for instance erosion or

smoothing filters. Like TerraGen, GeoControl

generates high-quality height-maps.

One feature of GeoControl is the isoline. Users

define an isoline by setting the elevation value

along the line and the noise characteristics of the

transition area around the line. As they draw an

isoline on a height-map, a mountain ridge with

these properties is generated along this line that

blends in nicely with the existing map. After this

process is finished, users can apply a procedural

method to automatically generate rivers and lakes

on the height-map. Besides this, it is also possible

to modify the terrain afterwards by drawing a

vector line and define a flattening operation along

this line. This can, for instance, be used to

manually create the embankment of a road in the

terrain.

GeoControl’s isolines can, with some practice,

be used to draw height profiles that adequately

match the user’s wishes. Still, the complete

modeling process of this tool can be quite

complex and the quality of the results depend on

knowledge of the effect of parameters and the

dependencies between generation steps.

L3DT [23] allows a user to design a height-map

by drawing on a design map using a brush. This

brush is actually a set of generation parameters

that are set by the user. These include the

elevation, the amount of erosion, the roughness of

the terrain, whether this cell is a source of water,

and a climate profile. Each grid cell in the design

map is automatically expanded to 64 x 64 points

in the resulting height-map by applying noise,

erosion and water flooding algorithms.

Climate profiles are used for generating a large

terrain texture that is draped on the height-map,

for each type of material (e.g. grass, rock) the

conditions under which it can occur (e.g.

elevation range, slope range, water level) are

specified. After the height-map is generated, a

scoring mechanism determines the placement of

materials based on the climate profile. The

resulting terrain texture is very convincing,

resembling a satellite image.

From the tools evaluated, L3DT’s design map

is in our view the most suitable working method

for non-expert terrain modelers. The tool is

however limited to generating height-maps and

corresponding terrain textures. To our knowledge

there is no tool that can generate a fully featured

3D terrain model, and which is still suitable for

non-expert use.

3.3 Suitability of current modeling
methods

It is our belief that none of the methods and tools

discussed above provide an ideal and complete

solution for terrain modeling by training

instructors. Manual terrain modeling methods are

time-consuming and require 3D modeling skills,

and automated methods are either too complex in

use, lack user control or (as in the case of

TerraGen, GeoControl and L3DT) focus mainly

on one aspect of a terrain model, namely

elevation data and corresponding terrain textures.

Therefore, in practice, instructors are forced to

reuse the terrain models that were shipped with

the game or, alternatively, hire an external party

to create custom terrain. The predefined terrain

models most likely do not always adequately

match their training requirements, and therefore

restrict the training scenarios they can create.

Hiring a third party to create new game terrain is

mostly too expensive or involves a significant

delay. The end result is that the training scenario

is adjusted to match the available terrain, instead

 7

of the other way round, which clearly has a

negative impact on the overall training

effectiveness.

4. A NOVEL INTEGRATED TERRAIN

MODELING APPROACH

To remedy the situation discussed above, we

propose a new approach for modeling geo-typical

terrain. Our intent is not only to significantly

speed up the terrain modeling process, but, more

importantly, to provide an expeditious way for

people without special modeling expertise to

create terrain models that meet their requirements.

We believe that for this goal a declarative

approach is best suited. This declarative terrain

modeling approach (focusing on “what do I

want?”) is fundamentally different from the

current constructive approach (focusing on “how

do I model it?”). It is ideally suited for serious

games, in which more often than not the terrain

model designers are end users, such as instructors,

and not artists.

We are developing a modeling framework to

support this declarative approach. Earlier, we

have identified key requirements for this

framework [24] Instructors have an idea for a

particular terrain that fits their training scenario.

Our framework allows them to express this idea

using a sketch interface; it then creates the terrain

model accordingly. The framework thus lets

instructors focus on declaring the terrain they

need, without bothering with low-level 3D

modeling tasks or difficult parameter tuning. Our

framework provides automated modeling by

integrating a variety of procedural content

generation methods in a usable way.

The typical modeling workflow in our

framework is as follows (see Figure 2). Users (in

this case, training instructors) compose a digital

sketch of the rough layout of the terrain. They

declare the location of important terrain features,

such as forests, mountains, cities and villages.

Once they are satisfied with the rough terrain

layout, the framework generates a high-resolution

terrain map that complies to the specified features

at large, but has, on a small scale, a high level of

detail and variations in elevation, vegetation etc.

Instructors can view the terrain in 3D and can

manually edit the terrain map or modify the rough

layout where desired. The modeling process is

thus iterative: users can go back and forth

between the rough layout and the detailed map.

When they are satisfied with the results, the

terrain map can be automatically exported to a 3D

terrain model that can be used in the training

game.

The terrain map is a layered data structure, see

Figure 2. Using different terrain layers improves

the adaptability of the terrain, because changes to

one layer do not necessarily have to affect other

layers. We distinguish five layers in the terrain

map, stacked as follows:

• Earth layer: elevation data and soil information;

• Water layer: rivers, lakes, oceans;

• Vegetation layer: forests, bushes, trees;

• Road layer: highways, local roads, bridges; and

• Urban layer: cities, towns, airports, factories.

Although the layers are kept separately in the

editing phase, they obviously have

interdependencies (see Figure 3). To generate a

consistent terrain, the generation process of the

layers is ordered in such a way that a layer can be

based on other layers. For example, generating

plants and trees for the Vegetation layer takes into

account the proximity of rivers in the Water layer

and the properties of soil and elevation in the

Earth layer. The major roads generation method

for the Road layer will have the sketched road

lines but also the previously generated Earth layer

as input, to be able to determine where valid roads

can be placed, e.g. not too steep ascending roads.

FIGURE 2: The workflow of the declarative terrain modeling framework.

 8

Still, to obtain a fully consistent and valid

terrain, a merging phase is necessary after the

generation process of Figure 3. This includes

local corrections (e.g. flattening terrain before

placing a building), significant modifications (e.g.

carving a road embankment through a mountain

range), and more complex changes (e.g. when a

highway is modified so that it crosses a river on

the Water layer, this road can be modified to

include a bridge or it can be rerouted). The

framework is responsible for merging all features

correctly in the base terrain, and detecting and

resolving any inconsistencies. By maintaining the

terrain consistency in this way, exporting the

layered terrain model to, for instance, a 3D model

can be a straightforward automated process.

Creating a detailed terrain map based on the

rough layout of the terrain is a form of data

amplification, i.e. automatically expanding a

small dataset into a large one. Amongst the most

used data amplification algorithms are procedural

content generation methods, discussed earlier. We

are using combinations of existing procedural

methods, which have been tuned to work well

together, to expand sketch elements to terrain

layers. Furthermore, we deploy semantically rich

mechanisms to maintain consistency between

terrain layers. In the next section, we discuss the

generation method of two of the five layers: the

Earth and Vegetation layer.

5. SKETCH-BASED TERRAIN

GENERATION METHOD

We explain how terrain layers are generated

based on the rough terrain layout using a training

scenario from Tactical Air Defense. The first

training session for aspiring platoon commanders

is aimed at familiarization with the Stinger

missile system and its parameters (e.g. its range,

rate of fire, etc.). The trainees do not have any

previous experience with the system. Following

the JOT philosophy, they are simply told to place

an air threat, a Stinger team and a radar system on

the terrain, and to experiment with them. They are

to discover and explore, by doing, the constraints

of the missile system, as well as the influence of

external factors, including:

• the influence of terrain and its features on the sight

diagram of the Stinger team;

• the influence of the aircraft’s approach route,

angle and altitude; and

FIGURE 3: Our terrain generation process, dashed lines indicate inputs and solid lines outputs of the generation steps.

 9

• the relation between the position of the Stinger

team and the mobile radar and radar coverage for

the team.

By moving the team and radar around the

terrain, while examining the sight diagrams, and

by running the simulated engagements with

different setups, the trainees will get a good

understanding of the basic principles in half a day

of training.

An instructor preparing this scenario will wish

to expose his trainees to a large variety of terrain

types, ranging from flat grasslands to steep

mountain ranges. A geo-typical terrain works best

here: it can contain lots of varying terrain types

while keeping the model at a reasonable size. In a

geo-specific terrain on the other hand, such level

of variation would usually be found only in

ranges of hundreds of kilometers.

Using our framework, an instructor can declare

such a terrain. He chooses a size for his terrain

and sketches the rough layout of the terrain (see

Figure 4). The base of the terrain is declared by

specifying where in the terrain which ecotopes

occur. An ecotope describes both the type of

terrain, e.g. a specific type of desert, hills or

mountains, and the associated range of elevation.

The instructor’s sketch is performed on an

ecotope grid, a grid of small cells with each cell

representing an area of e.g. one or two hundred

meters square. Each ecotope has its unique color.

Thus the drawing of the grid is quite similar to

painting a pixel bitmap ([25] introduced the idea

of procedurally expanding a bitmap with terrain

colors to a height-map). On top of this grid, the

instructor can place major terrain features, such as

a forest. These are drawn as polygonal shapes

(similar to the point, line and area shapes in

common GIS vector files). In this way the

instructor is able to declare the basic training

terrain, with a large variety of terrain

combinations e.g. ocean and beaches, sparsely

vegetated grasslands, thick forests, hills, and a

chasm between two mountain ranges.

5.1 Earth layer generation method

Based on this rough terrain layout the terrain

layers are generated. The first layer to be

generated is the Earth layer, which primarily

contains elevation and ecotope data. The Earth

layer generation is based only on the ecotope grid

of the rough terrain layout; the terrain features are

used for the other layers. The generation process

consists of a number of steps, in which the rough

terrain layout is amplified by interpolation of the

coarse data to a full size terrain, combined with

several noise input maps and filters to make the

terrain more plausible and life-like.

The complete Earth layer generation proceeds

as follows. We start by creating a temporary data

grid with the same dimensions as the ecotope grid

of the rough terrain layout, called an ecomap,

which contains the following elevation

information on each grid cell:

• Base Elevation: the base value in meters of the

elevation at the center of this cell;

• Elevation Variation: the range in meters of the

small scale variation in elevation in the cell; and

• Terrain Roughness: a factor describing the

variation in elevation in this cell, lower values

resulting in a smoother terrain.

These three data values are computed for each

cell on the basis of the user-specified ecotope grid

of the rough terrain layout. The definition of each

ecotope includes value ranges for base elevation,

elevation variation and roughness. For each grid

cell in the ecomap, the ranges defined in this

cell’s and neighboring cells’ ecotope are weighted

using a Gaussian smoothing kernel. From the

resulting ranges, a random value is chosen for the

three data values, which on average will be at the

middle of the range.

Once we have a grid with elevation information

at the cell centers, we can amplify this ecomap

into the Earth layer. This is where an interpolation

method and fractal noise comes in. For each point

(x, y) in the Earth layer, we interpolate the Base

Elevation at nearby centers of the ecomap using

Catmull-Rom interpolation [26]. This results in a

very smooth terrain shown in Figure 5a.

FIGURE 4: A rough terrain layout for the example

scenario.

 10

We make the elevation profile more realistic by

scaling the elevation by a weighted combination

of two multi-fractal Perlin noise fields: the first

field is generated with its parameters set to result

in noise with sharp ridges, while the second field

parameters are set to produce smooth, rolling

noise, see e.g. [9] for more details. The weight

factor for the two fields is a mask image that is

based on the ecotope grid: where the ecotope is

defined to be mountainous, the mask image is

white (i.e. the factor is 1.0), elsewhere it is black

(i.e. 0.0), with a smooth transition between the

regions. This is because the ridged multi-fractal

noise is well-suited for mountains, while the

smoother noise is better suited for e.g. rolling

hills. For some additional, small-scale (several

meters) variation, we add to each point some

Perlin noise in an interpolated range of the

Elevation Variation. Figure 5b shows this

intermediate Earth layer; the elevation profile has

changed and is no longer unnaturally smooth.

While this creates a realistic profile in the z-

direction, in the (x, y) field the transitions

between e.g. ecotopes are still grid-like, see the

blocky ecotope-color pattern in Figure 5a and 5b.

To remedy this, we perturbate the landscape, by

swapping each point with a random point in the

field within a certain range. The (x, y) coordinates

of each random point are determined based on a

noise vector multiplied by the perturbation range.

The resulting difference in the ecotope transitions

is clearly visible when comparing Figure 5b and

5c.

The Earth layer is now completely filled, but

for some final tuning, we apply two filters that

improve the visual realism of the terrain: a simple

erosion filter followed by a smoothing filter using

a Gaussian smoothing kernel. The Earth layer

resulting from the complete procedure is shown in

Figure 5c. Note that it matches the rough terrain

layout, but has features and variation of its own.

If we would run the method again, another,

similar but different Earth layer would result.

5.2 Vegetation layer generation
method

Next, both the rough terrain map and the freshly

generated Earth layer are used for generating the

distribution of plants and trees in the Vegetation

layer. Our implementation builds on the algorithm

proposed by Deussen et al. [17]. Their algorithm

simulates competition between plants for space.

They abstract plants to circles, which represent

the ecological neighborhoods of the plants, and

start with a random distribution of plants of a

field. In each iteration new plants are added,

plants that are either too old or dominated by

other plants are removed. Domination of plants

occurs when two ecological neighborhoods

intersect; the plant with a higher competitive

ability dominates the other. The competitive

ability depends on the water concentration of the

a) b) c) d)

FIGURE 5: 2D contour-maps and 3D views of the Earth layer: a) interpolation only, b) interpolation and scaling by noise, c)

final Earth layer, d) Earth and Vegetation layers combined.

 11

location combined with the plant’s preference for

wet or dry areas and the plant’s relative size.

We use the same simulation of competition, but

in our method the distribution of plants is based

on the terrain features; vegetation density is high

in forests and low in other areas. Per species, the

number of plants in an area depends on the extent

to which the Earth layer’s ecotope supports that

species, e.g. the desert ecotope only supports

species that have a low need for water. The exact

placement of a plant depends also on the Earth

layer’s local elevation and slope, e.g. some trees

such as spruces and pines can grow on relatively

steep mountainous terrain, while most others

cannot. Figure 5d shows the distribution of trees

of different species for this example scenario, the

colors of the circles indicate the plant’s species.

Figure 6 shows another view on the final 3D

terrain model of the Earth and Vegetation layer in

this scenario. The terrain model matches the

rough terrain layout, shown in Figure 4, but

clearly has a lot of variety of its own. It takes

instructors very little time to sketch a rough

terrain layout and, for this scenario, further

manual refinements are not necessary. With this

terrain model, trainees can quickly get a grasp on

the effect of natural terrain features on the

effectiveness of their air defense deployment.

5.3 Technical aspects

Our framework is implemented in C# / C++

.NET, with 3D visualization done in

OpenSceneGraph [27]. To support an iterative

approach, it is important that the generation

processes are reasonably fast. Fortunately, several

parts of the terrain generation and merging

process are very well-suited for parallel

processing. For instance, for the earth layer

generation, the interpolation, noise scaling and

perturbation steps are combined for each point, as

it is possible to determine the definitive elevation

of each point without knowing the values at the

neighboring points. An emerging trend in parallel

programming is to use a Graphics Processing Unit

(GPU) as a general computation device, because

it has a larger number of floating point processors

available. A large part of our generation and

merging process is performed in parallel on the

GPU using NVIDIA’s CUDA [28], a C-like

programming language for performing all sorts of

computations on GPU’s. Our CUDA

implementation is about 20 times faster than our

original CPU implementation.

6. CONCLUSION

Due to the advancements in realism and

immersion, computer games have an increasingly

high potential for military training purposes.

Training instructors are very competent at

designing complex training scenarios, closely

matching their stated learning objectives.

However, they typically lack the technical skills

that currently available tools require to build

adequate terrain models. As a practical

consequence, they often end up using predefined

models, thus limiting training effectiveness.

 We presented a novel declarative modeling

approach consisting of a terrain modeling process

and supporting framework, aimed at making

terrain modeling tasks much more effective and

accessible. The modeling framework developed

supports non-specialists throughout the terrain

modeling process, enabling e.g. training

instructors to easily declare and generate a terrain

that suits their training objectives. The careful

deployment of procedural methods has been

instrumental in this goal.

We evaluated our declarative modeling

approach with a number of military training

instructors and other training experts. They were

very supportive of our approach, seeing the

Figure 6: A wide view on the 3D terrain model automatically generated by our framework.

 12

framework as a valuable tool for modeling terrain

for training scenarios. Most importantly, they

realize they are no longer limited by the

availability of terrain models, as they can create a

new terrain model for each desired scenario by

intuitively declaring its layout and features. They

can even do this during a training session, e.g. to

highlight a certain tactical aspect that came up in

previous group discussions. For a large number of

training scenarios, such as the Tactical Air

Defense introductory scenario described in this

paper, automatic generation based on the declared

rough terrain layout yields a complete and fitting

terrain model, without any further involvement of

the instructor.

We are currently focusing on a number of

research issues of our declarative terrain modeling

framework.

Firstly, we are working on integrating city

generation capabilities in the Urban layer of the

framework, a key feature for many complex

training scenarios. For this, we have developed

novel mechanisms to create a believable layout,

including positions, connections and

dependencies, of the different types of districts in

a city, e.g. upper class residential, industrial, etc

(see [29]). Results for informally structured

villages have also been presented in [30].

Secondly, we want to enable instructors to

manually perform small scale adjustments in

order to fine-tune the terrain to their scenario. For

instance, in the tactical air defense case,

instructors would like to be able to manually

insert a special building as an objective or target.

For this, we need a set of easy-to-use manual

editing tools for each of the terrain layers.

Thirdly, we want to explore a variety of useful

constraints a user could impose on a rough terrain

layout to constrain the generation process. For

instance, in an air defense scenario it might be

helpful to specify line-of-sight constraints for a

specific area of terrain.

 Lastly, an ongoing challenge involves the

consistency management of interacting terrain

features, typically lying on different terrain layers.

For many such interactions, constraint solving

methods will likely be necessary to automatically

readjust actual terrain features in a coherent and

plausible manner.

Producing appropriate terrain models is crucial

for the effectiveness of scenarios for military

training, but it is seriously hindered by the

complexity of current terrain modeling tools and

methods. In order to realize the full potential of

games for military training, it is essential to

support and enhance the modeling process. We

believe that this requires a shift from the

conventional paradigm of terrain construction

towards declarative terrain modeling. The

approach discussed here is a firm step in this

direction.

ACKNOWLEDGEMENTS

This research has been supported by the GATE

project, funded by the Netherlands Organization

for Scientific Research (NWO) and the

Netherlands ICT Research and Innovation

Authority (ICT Regie). We thank the researchers

from the TNO departments Modeling &

Simulation and Training & Instruction for their

comments and feedback. Finally, we thank the

tactical air defense instructors of the Royal

Netherlands Army for their constructive input.

REFERENCES

[1] Virtual Battlespace 2, Bohemia

Interactive Australia (2009). Available from

http://www.vbs2.com.

[2] Steel Beasts, eSim Games (2009).

Available from http://www.steelbeasts.com.

[3] Tactical Iraqi Language & Culture, Alelo

inc. (2009). Available from http://www.

tacticallanguage.com/.

[4] America’s Army, US Army (2009).

Available from http://www.americasarmy.com.

[5] Hulst, van der, A., Muller, T., Besselink,

S., Coetsier, D., Roos, C. (2008). Bloody

Serious Gaming: Experiences with Job Oriented

Training. Proceedings of the

Interservice/Industry Training, Simulation &

Education Conference (I/ITSEC), Orlando,

USA, 375-385.

[6] Wells, W. D. (2005). Generating

Enhanced Natural Environments and Terrain

for Interactive Combat Simulations

(GENETICS). VRST ’05: Proceedings of the

ACM symposium on Virtual reality software

and technology, New York, NY, USA, ACM

Press, 184–191.

[7] Perlin, K. (1985). An Image Synthesizer.

In SIGGRAPH '85: Proceedings of the 12
th

Annual Conference on Computer Graphics and

Interactive Techniques, volume 19, pages 287-

296. ACM.

[8] Perlin, K. (2002). Improving noise.

SIGGRAPH 2002: Proceedings of the 29
th

Annual Conference on Computer Graphics and

Interactive Techniques, ACM, New York, NY,

681-682.

[9] Ebert, D. S., Worley, S., Musgrave, F.

K., Peachey, D., Perlin, K. (2003). Texturing &

 13

Modeling, a Procedural Approach. Third

edition, Elsevier.

[10] Musgrave, F.K. (1993). Methods for

Realistic Landscape Imaging. Unpublished

doctoral thesis, Yale University.

[11] Olsen, J. (2004). Realtime procedural

terrain generation. Unpublished technical

report, University of Southern Denmark.

Available from http://oddlabs.com/download/

terrain_generation.pdf.

[12] Frade, M., Fernandez de Vega, F., Cotta,

C. (2009). Breeding Terrains with Genetic

Terrain Programming: The Evolution of Terrain

Generators. International Journal of Computer

Games Technology, vol. 2009, Hindawi

Publishing Corporation.

[13] Stachniak, S., Stuerzlinger, W. (2005).

An Algorithm for Automated Fractal Terrain

Deformation. Computer Graphics and Artificial

Intelligence 1, 64–76.

[14] Schneider, J., Boldte, T., Westermann,

R. (2006, November). Real-Time Editing,

Synthesis, and Rendering of Infinite Landscapes

on GPUs. Paper presented at the Conference on

Vision, Modeling and Visualization, Aachen,

Germany.

[15] Zhou, H., Sun, J., Turk, G., Rehg, J.M.

(2007). Terrain Synthesis from Digital

Elevation Models. IEEE Transactions on

Visualization and Computer Graphics, 13(4),

834-848.

[16] De Carpentier, G. and Bidarra, R.

(2009). Interactive GPU-based Procedural

Heightfield Brushes. In Proceedings of the 4
th

International Conference on the Foundation of

Digital Games, Florida, USA.

[17] Deussen, O., Hanrahan, P., Lintermann,

B., Mêch, R., Pharr, M., Prusinkiewicz, P.

(1998). Realistic Modeling and Rendering of

Plant Ecosystems. SIGGRAPH 1998:

Proceedings of the 25
th

 Annual Conference on

Computer Graphics and Interactive

Techniques, ACM Press, New York, NY, USA,

275–286.

[18] Prusinkiewicz, P., Lindenmayer, A.

(1990). The Algorithmic Beauty of Plants.

Springer - Verlag.

[19] Watson, B., Müller, P., Veryovka, O.,

Fuller, A., Wonka, P., Sexton, C. (2008).

Procedural Urban Modeling in Practice. IEEE

Computer Graphics and Applications, 28(3),

18–26.

[20] Kelly, G., McCabe, H. (2006). A Survey

of Procedural Techniques for City Generation.

Institute of Technology Blanchardstown

Journal, Dublin, Ireland, (14), 87-130.

Available from http://www.gamesitb.com/

SurveyProcedural.pdf.

[21] Terragen 2, PlanetSide Software (2009).

Available from http://www.planetside.co.uk/

terragen/tg2/.

[22] Geocontrol 2, Rosenberg, J. (2009).

Available from http://www.geocontrol2.com/

e_index.htm.

[23] L3DT, Torpy, A. (2009). Available from

http://www.bundysoft.com/L3DT/.

[24] Smelik, R.M., Tutenel, T., de Kraker,

K.J., Bidarra, R. (2008). A Proposal for a

Procedural Terrain Modelling Framework.

Poster Proceedings of the 14th Eurographics

Symposium on Virtual Environments EGVE08,

Eindhoven, The Netherlands, 39-42.

[25] Roden, T., Parberry, I. (2004). From

Artistry to Automation: A Structured

Methodology for Procedural Content Creation.

Proceedings of the 3
rd

 International Conference

on Entertainment Computing, Eindhoven, The

Netherlands, 151–156.

[26] Catmull, E.E., Rom, R.J. (1974). A Class

of Local Interpolating Splines. In Barnhill,

R.E., Riesenfeld, R.F. (Eds.) Computer Aided

Geometric Design (pp. 317-326). Academic

Press, New York.

[27] OpenSceneGraph, Osfield, R., Burns, D.

(2009). Available from http://www.

openscenegraph.org.

[28] CUDA, NVIDIA Corporation (2009).

Available from http://www.nvidia.com/object/

cuda_home.html.

[29] Groenewegen, S. A., Smelik, R. M., de

Kraker, K. J., and Bidarra, R. (2009).

Procedural City Layout Generation Based On

Urban Land Use Models. In Alliez, P. and

Magnor, M., editors, Proceedings of

Eurographics 2009: Short Papers, pages 45-48,

Munich, Germany. Eurographics Association.

[30] Smelik, R.M., Tutenel, T., de Kraker,

K.J., Bidarra, R. (2009). A Case Study on

Procedural Modeling of Southern Afghanistan

Terrain. Proceedings of the IMAGE 2009

Conference, Saint Louis, Missouri, USA, 329-

337.

