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Military training instructors increasingly often employ computer games to train soldiers in all sorts of skills and tactics. One of the 

difficulties instructors face when using games as a training tool is the creation of suitable content, including scenarios, entities and 

corresponding terrain models. Terrain plays a key role in many military training games, as for example in our case game Tactical 

Air Defense. However, current manual terrain editors are both too complex and too time-consuming to be useful for instructors; 

automatic terrain generation methods show a lot of potential, but still lack user control and intuitive editing capabilities. We 

present a novel way for instructors to model terrain for their training games: instead of constructing a terrain model using complex 

modeling tools, instructors can declare the required properties of their terrain using an advanced sketching interface. Our 

framework integrates terrain generation methods and manages dependencies between terrain features in order to automatically 

create a complete 3D terrain model that matches the sketch. With our framework, instructors can easily design a large variety of 

terrain models that meet their training requirements. 
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1. INTRODUCTION 

3D computer games have grown tremendously in 

size, detail and visual realism. Game technology 

has matured rapidly and is nowadays frequently 

used outside the entertainment domain in so-

called serious games. One important application 

area for serious games is training and instruction. 

Military instructors use games as a tool for 

training their personnel, because games provide a 

visually realistic, immersive training environment 

and are very affordable. 

There are several examples where games are 

successfully applied to military training. A 

popular example is the military training system 

Virtual Battlespace 2 [1], which is based on the 

commercial game Armed Assault and is used by, 

among others, the US, UK, Australian and Dutch 

army for training soldiers in basic infantry tactics. 

Steel Beasts [2] is an armored vehicle simulation 

game that has been employed for years to train 

tactical vehicle movement and combat. Tactical 

Iraqi [3] is a game that teaches soldiers to interact 

with Iraqi people in their language and following 

their cultural manners. Although more a 

recruitment tool than purely a training game, 

America’s Army [4] is one of the classic 

examples of serious games.  

We examine the training game Tactical Air 

Defense, and discuss the importance of terrain in 

this and other military training scenarios. We 

show that common methods and tools for terrain 

modeling are not suitable for end-users of training 

games (e.g. training instructors), and describe 

how this hinders the effectiveness of game-based 

training. Next, we present our solution for this: a 

framework for declarative, automated terrain 

modeling. User can declare a terrain using an easy 

to use sketch-based interface and the framework 

automatically generates a matching terrain model. 

We explain how we use and adapt existing 

procedural methods for generating terrain. An 

example training scenario illustrates how the 

declarative approach of our framework simplifies 

terrain modeling. Lastly, we discuss some 

challenges ahead for improving this framework. 

2. THE ROLE OF TERRAIN IN 

MILITARY TRAINING GAMES 

We examine the role of terrain in military training 

games by analyzing Tactical Air Defense, an 

illustrative example of a serious game for training 

air defense personnel. We give the relevant 

background on the case and discuss how 

instructors define scenarios in this game. The 
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features of the terrain turn out to be a key factor 

in air defense scenarios. 

2.1 Military training case: Tactical Air 
Defense 

In a tactical air defense scenario, a platoon 

commander has the challenging task of setting up 

a ground-based defense system against threats 

from the air. He is responsible for protecting a 

zone of terrain and probably some high-value 

objects, for instance a city, an airfield, or an oil 

refinery, within that zone. At his disposal are a 

number of mobile anti-air teams, such as Stinger 

teams. A Stinger team consists of infantry units 

with a shoulder launched Stinger missile system 

or, in most cases, mounted on a light or armored 

vehicle (see Figure 1a). The commander plans the 

deployment of each Stinger team in his zone. He 

has to consider many variables, factors, and 

uncertainties, but in all considerations the terrain 

and its features play a major role. 

To defend against the air threat, the commander 

first estimates possible approach routes the enemy 

aircraft can take. Although he may have some 

additional intelligence information (e.g. “four jet 

fighters are flying in from the south”), the 

estimation is, for the most part, based on a map of 

the terrain. The presence of terrain features such 

as valleys, rivers, roads, forests and villages may 

give clues about the approach route the enemy 

pilots will take, as these features can provide 

cover for the attacking aircraft or can be used by 

pilots for visual orientation. 

Once the commander has a clear estimation of 

the route the enemy will most likely take, he sets 

up his air defense system accordingly, while 

considering a number of criteria: 

 

1. The covered depth of the air defense. A Stinger 

team can fire twice before needing a long reload 

operation (approximately 10 minutes). If some of 

the aircraft made it through the first line of 

defense, ideally there should be other lines taking 

over. 

2. The sight a Stinger team has at its position, which 

is often limited by terrain features such as hills or 

forests. 

3. The effective range of the anti-air weapon. A 

Stinger has a maximum firing range in which the 

missile is effective, but it also has a minimum 

distance the missile has to travel before it can lock 

on the target. 

4. The physical reachability of the position by the 

team, which depends on the type of vehicle and 

the accessibility of the terrain, and there may be 

time constraints as well. 

5. Considerations for the safety of the Stinger team, 

such as cover, camouflage and visibility from the 

air. 

6. The overlap in cover of the Stinger teams. 

Defended areas should ideally be covered by more 

than one team. 

7. The strength of the cover will vary in the zone; 

high-value areas should be defended better than 

other areas. 

8. Whether the Stinger team will be in range of the 

radar support network it needs to track targets. 

 

In practice, an optimal solution cannot be found 

for all these variables, so a commander has to 

prioritize areas in his zone and the above criteria. 

His decision is based on experience and practice. 

Commanding an air defense platoon requires 

specialized training. To be able to set up an 

effective air defense, an aspirant commander 

needs to acquire tactical insights, experience and 

flexibility in coping with varying threats and 

circumstances. A Job Oriented Training (JOT) 

approach has proven to be very successful here. 

JOT promotes active learning; knowledge comes 

  
FIGURE 1: a) Vehicle with mounted Stinger missile system. b) Tactical Air Defense map view with sight diagrams of 

Stinger teams (colored circles) and radar coverage (surrounding polygon). 
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as a result of doing the job in a training 

environment followed by extensive peer 

evaluation of the performance, mistakes, lessons 

learned and alternative solutions [5]. 

 

Training game  

To support the JOT curriculum, the Netherlands 

Organisation for Applied Scientific Research 

TNO has developed a serious game for air 

defense. The game focus is on learning to set up 

an air defense for different circumstances, terrain, 

and types of threats, i.e. how to position Stinger 

teams in such a way that together they form an 

effective defense against possible air threats.  

A typical training session starts with a realistic 

briefing by a military instructor, which includes 

the zone of terrain the trainees are to defend, 

situation and intelligence reports and the 

identification of high-value targets. Trainees work 

in pairs and start to examine the situation and 

terrain on a paper map. They assess probable 

approach routes the enemy aircraft might take and 

the intent of the enemy (e.g. destroy a high-value 

building). The trainees use the game to evaluate 

and adjust their ideas based on the 3D view of the 

terrain and discuss and compare their opinions 

with peers. 

In the next phase of the training session, each 

team deploys an air defense setup using the game. 

The game adopts the paradigm of learning by 

doing; once a trainee places a Stinger team on the 

terrain map, a diagram of the lines of sight from 

that position is immediately displayed. This sight 

diagram is determined on the basis of a realistic 

Stinger model, and takes the terrain and its 

features into account. The sight diagrams allow 

the trainees to discuss the strengths and 

weaknesses of their deployment and adjust it 

accordingly (see Figure 1b). With their defense 

set up, the game can show how well the team 

performed, by simulating the enemy air attack in 

the 3D simulation. The Stinger teams 

automatically fire on enemy aircraft within their 

effective range and results of weapon interactions 

are calculated based on the Stinger and aircraft 

models. At the end of a session, the teams present 

their air defense solution to the group and discuss 

alternatives. 

 

Scenario creation  

The instructor creates scenarios by selecting and 

configuring the terrain zone, the air defense goal, 

air threat type and approach route, and the 

available Stinger teams. The scenarios vary with 

terrain complexity and threat level.  

Currently, the game offers a fixed set of large 

terrain models. This includes both geo-specific 

(based on real-world GIS data) and geo-typical 

(lifelike but fictive) terrain models. Geo-typical 

terrain has the advantage that it can be tailored to 

exactly meet the training goals. For each scenario 

a suitable terrain can composed. For example, a 

geo-typical terrain can combine highly varying 

terrain types in one model (e.g. a mountain range 

with a forest, a flat desert, a valley with a village 

and a river) or it can have a height profile that 

matches the exact line-of-sight requirements of 

the scenario. Geo-specific terrain allows the 

trainees to do a live training in the same field as 

they did their virtual training, which can teach 

them how their decisions work out in the real 

world.  

2.2 The importance of terrain 

In Tactical Air Defense and in other games for 

training military personnel, the terrain in which a 

scenario is executed plays a key role in the 

training. On a strategic level, securing particular 

areas or features of a terrain (e.g. a hill 

overlooking a city, a bridge across a river) can be 

an objective of a military scenario. Large terrain 

features can affect the performance of sensors, 

such as the mobile radar systems used for air 

defense; therefore to place these sensors, one 

should consider hindering terrain features such as 

hills and mountains within the sensor’s range.  

On a smaller scale, the terrain largely defines 

the tactical situation. Together with 

environmental conditions (season, weather, time-

of-day) it determines visibility and lines-of-sight. 

These are key factors in, for instance, first-person 

infantry trainers such as Virtual Battlespace 2. 

Natural terrain features such as rocks can also 

provide cover for infantry.  

Wells [6] argues that terrain features not only 

have strategic and tactical value, but are also 

essential for trainees to be able to orientate, 

navigate and immerse themselves in a virtual 

environment. Features of well-known size such as 

trees and buildings give important cues for sizes 

and distances in the virtual world. Recognizable 

natural or man-made landmarks such as rivers or 

a church help trainees to navigate. A terrain 

model that is detailed and rich in natural and man-

made features is perceived as more lifelike, thus 

increasing the immersion of trainees into the 

virtual world. 
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3. CURRENT TERRAIN MODELING 

METHODS 

In Tactical Air Defense, the choice of terrain 

turns out to be an important part of creating a 

training scenario. Scenario creation usually starts 

with obtaining a suitable terrain model. However, 

the instructor currently has to choose from the 

fixed set of terrain models that were shipped with 

the game. Although they can cover many possible 

settings, they do significantly limit the number of 

potential training scenarios. The instructor cannot 

create new terrain, nor can he easily make 

changes to existing terrain models, e.g. displace 

terrain features to change the line of sight.  

In contrast to, for instance, mission rehearsal 

scenarios, training scenarios often take place on 

geo-typical terrain. It would be very helpful for 

instructors if they themselves were able to design 

new geo-typical terrain models or modify existing 

ones. This would allow them to create variations 

of terrain models with increasing complexity (e.g. 

by adding mountain ranges or forests, thereby 

limiting lines of sight). A more complex terrain 

entails a more difficult scenario, as a good air 

defense solution will be less obvious. Increasing 

the variety in terrain will also prevent the trainees 

from becoming too familiar with the specifics of a 

particular terrain model. Therefore, in this section 

we analyze existing manual and automatic 

methods for modeling geo-typical terrain, 

assessing the extent to which they are suitable for 

use by training instructors. 

3.1 Manual modeling methods 

Manual design of geo-typical terrain is 

comparable to game level design for commercial 

computer games. These fictional terrain models 

have evolved from primitive to highly detailed 

and, at least visually, very advanced. However, 

the workflow, tools, and techniques used to create 

these models have not advanced that much. Game 

levels are designed almost entirely by hand using 

complex tools and primitive constructs, e.g. 

manual creation and placement of geometry. 

Creating terrain models is currently thus both a 

complicated and tedious task, which requires 

specialized 3D modeling skills. It can take a 

skilled designer many months to complete a level, 

making it a costly and lengthy process. 

This becomes problematic when games are 

used for training and instruction. For commercial 

games, the terrain model and game scenarios are 

largely predefined by the game developer, but for 

training games, it is typically the end user, in our 

case a military training instructor, who defines the 

scenarios. Military instructors usually lack the 

time, budget and, most importantly, the required 

3D modeling skills for creating terrain models. 

Although they will have a clear picture of what 

kind of training scenario they want to create, and 

of the features the terrain should have, current 

terrain modeling tools, which often have been 

developed with expert game level designers in 

mind, simply do not support their way of 

thinking.  

3.2 Automatic generation methods 

Because of the disadvantages of modeling terrain 

by hand, automated terrain generation would 

seem a more feasible solution for terrain 

modeling by instructors, being a fast and easy 

way to acquire terrain models while not requiring 

3D modeling skills. We evaluate both procedural 

methods in scientific literature as well as three 

relevant commercial tools for automatic terrain 

generation. 

 

Research on procedural content generation  
Procedural methods generate content, such as 

textures, models or even art, through algorithms 

steered by random numbers. The main advantage 

of these methods is their ability to automatically 

generate a large amount of content from a limited 

set of input parameters. Procedural methods are 

often applied to generate terrain or its features. 

Height-maps (i.e. regular grids of elevation 

points) are often used as the basis of a terrain 

model. There are many procedural algorithms for 

generating height-maps, often based on fractal 

noise generators, such as Perlin noise [7, 8], 

which generates noise by sampling and 

interpolating points in a grid of random vectors. 

Rescaling and adding several levels of noise to 

each point in the height-map results in natural, 

mountainous-like structures (for a textbook on 

fractal noise and height-map generation, see Ebert 

et al. [9]). These height-maps can be transformed 

further based on simulations of physical 

phenomena, for instance erosion. Thermal erosion 

levels sharp changes in elevation, by iteratively 

distributing material from higher to lower points, 

until the talus angle, i.e. maximum angle of 

stability for a material such as rock or sand, is 

reached. Erosion caused by rainfall can be 

simulated using, for example, cellular automata, 

where the amount of water and dissolved material 

that flows out to other cells is calculated based on 

the local slope of the terrain surface. Musgrave 

treats both types of erosion in his PhD thesis [10] 

and Olsen discusses several optimizations [11]. 



 5 

Basic noise-based height-map generation 

delivers results that are fairly random; user 

control is only on a global level, often using 

unintuitive parameters. Several researchers have 

addressed this issue. Frade et al. [12] introduce an 

evolutionary approach to develop Terrain 

Programmes (TPs), which are combinations of 

functions that are applied to a terrain grid to 

generate a terrain model. Starting from an initial 

population of basic TPs, each new generation of 

TPs is created based on mutations of one or two 

selected TPs in the current population. The terrain 

designer selects these TPs based on example 

terrain models generated by these TPs. Stachniak 

and Stuerzlinger [13] propose a method that 

integrates constraints (expressed as mask images) 

into the terrain generation process. They employ a 

search algorithm that finds an acceptable set of 

deformation operations to apply to a random 

terrain in order to obtain a terrain that 

(approximately) adheres to these constraints. 

Schneider et al. [14] introduce an editing 

environment in which the user edits the terrain by 

interactively modifying the base functions of the 

noise generator (by replacing the Perlin noise grid 

with a set of user-drawn gray-scale images), while 

viewing the results in 3D. Zhou et al. [15] 

describe a technique that generates terrain based 

on example input height-map and a user line 

drawing that defines the occurrence of large-scale 

curved line features, such as a mountain ridge. 

Features are extracted from the example height-

map and matched to the sketched curves and 

seamed together in the resulting height-map. De 

Carpentier and Bidarra [16] introduce procedural 

brushes: users paint height-mapped terrain 

directly in 3D by applying simple terrain raising 

brushes but also brushes that generate several 

types of noise in real-time.  

Based on terrain types, elevation and slope 

data, vegetation can be distributed automatically. 

Some approaches use quite complex ecosystem 

simulations that take into account soil information 

as well as the competition for space and sunlight 

between plants [17]. 3D models of plants are also 

an ideal candidate for procedural generation. 

Although plants of the same species all have a 

unique form, their basic structure is very similar. 

Because of this, plant models can, for instance, be 

generated using rule-based systems known as L-

systems. These L-systems contain a starting 

symbol and a set of rewriting rules that transform 

the starting symbol into a more complex one. 

Here these transformations are mostly geometric 

transformations, e.g. they define the translation of 

a shape, the addition of new shapes relative to an 

existing structure, or the change from one shape 

to another one. When considering an L-system to 

create trees, the starting rule could define the tree 

trunk and other rules could add branches to an 

existing branch, or add leaves to smaller branches 

(see e.g. [18]). 

 Finally, procedural methods are also being 

applied to road network generation and urban 

modeling, for an overview of approaches, see e.g. 

Watson et al. [19] or Kelly and McCabe [20].  

Most of these procedural content generation 

algorithms have several drawbacks that can 

hinder their use. The main challenge of 

procedural modeling is to find a good balance 

between automation and control. For application 

in training scenarios the generated results are 

often too random; the user has too little control 

over the outcome. For instance, one fractal 

height-map will often differ quite a bit from 

another that was generated with exactly the same 

input parameters. This is because procedural 

algorithms use random numbers a great deal. The 

algorithm’s input parameters influence the result 

only at a very global level.  In the end, the exact 

values of the random numbers determine, for 

instance, whether there is a steep mountain range 

or a valley at a specific location in the terrain, 

while the parameters only influence the changes 

of mountain ranges to occur. Furthermore, the 

parameters often require an in-depth knowledge 

of the algorithm (e.g. the number of noise octaves 

or the persistence value) to estimate the effect of a 

parameter on the outcome. Combined, these 

drawbacks typically give users little control over 

the generation process and force them to use a 

time consuming trial and error approach, as was 

noted in e.g. Stachniak and Stuerzlinger [13]. In 

our application domain, this is not an acceptable 

working method.  

Besides the issues identified for using an 

individual method, it is also far from trivial to 

tune procedural methods to work well together to 

generate a fully featured terrain model. As we 

will see below, most commercial tools focus on a 

specific aspect of terrain modeling (e.g. elevation 

data). To our knowledge, there is currently no tool 

or integrating framework that combines these 

various algorithms in a usable way. 

 

Commercial tools  

We review three commercial automatic terrain 

generation tools that have been around for several 

years and have a substantial user base: TerraGen, 

GeoControl and L3DT. There are numerous other 

tools available, but these three deliver, in our 
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view, the most impressive results and have more 

advanced editing capabilities. 

TerraGen 2 [21] uses an elaborate network of 

nodes (nodes generate noise or apply filters and 

even mathematical functions to intermediate 

results) to generate elevation data. Users control 

this process by placing the nodes, setting their 

parameters and connecting them in a specific 

order. During generation, this network is 

traversed and outputs of nodes are blended 

resulting in a height-map. The resulting terrain 

can also automatically be populated with external 

objects (for instance, tree models). 

TerraGen delivers very impressive visuals, 

which have been used in several movies. 

However, to be able to use this tool effectively, 

background knowledge on mathematics and noise 

generation is necessary and extensive 

experimentation with the tool is needed. The tool 

has a steep learning curve, but is very powerful 

once mastered. Therefore, we conclude that this 

tool is much more usable for computer artists, 

who focus on creating aesthetically pleasing 

textured height-maps, than for training 

instructors, who focus on the functional 

requirements of a terrain. 

GeoControl 2 [22] is a height-map editor that 

iteratively generates elevation data using its 

“Dynamic Level Generation” algorithm. The 

process starts with a 2 x 2 grid of height pixels 

and subdivides this grid using a fractal noise 

algorithm until the desired terrain dimensions are 

reached. A user can define the noise 

characteristics to be used in each subdivision. 

Additionally, filters can be applied to this basic 

noise algorithm, for instance erosion or 

smoothing filters. Like TerraGen, GeoControl 

generates high-quality height-maps.  

One feature of GeoControl is the isoline. Users 

define an isoline by setting the elevation value 

along the line and the noise characteristics of the 

transition area around the line. As they draw an 

isoline on a height-map, a mountain ridge with 

these properties is generated along this line that 

blends in nicely with the existing map. After this 

process is finished, users can apply a procedural 

method to automatically generate rivers and lakes 

on the height-map. Besides this, it is also possible 

to modify the terrain afterwards by drawing a 

vector line and define a flattening operation along 

this line. This can, for instance, be used to 

manually create the embankment of a road in the 

terrain. 

GeoControl’s isolines can, with some practice, 

be used to draw height profiles that adequately 

match the user’s wishes. Still, the complete 

modeling process of this tool can be quite 

complex and the quality of the results depend on 

knowledge of the effect of parameters and the 

dependencies between generation steps.  

L3DT [23] allows a user to design a height-map 

by drawing on a design map using a brush. This 

brush is actually a set of generation parameters 

that are set by the user. These include the 

elevation, the amount of erosion, the roughness of 

the terrain, whether this cell is a source of water, 

and a climate profile. Each grid cell in the design 

map is automatically expanded to 64 x 64 points 

in the resulting height-map by applying noise, 

erosion and water flooding algorithms.  

Climate profiles are used for generating a large 

terrain texture that is draped on the height-map, 

for each type of material (e.g. grass, rock) the 

conditions under which it can occur  (e.g. 

elevation range, slope range, water level) are 

specified. After the height-map is generated, a 

scoring mechanism determines the placement of 

materials based on the climate profile. The 

resulting terrain texture is very convincing, 

resembling a satellite image.  

From the tools evaluated, L3DT’s design map 

is in our view the most suitable working method 

for non-expert terrain modelers. The tool is 

however limited to generating height-maps and 

corresponding terrain textures. To our knowledge 

there is no tool that can generate a fully featured 

3D terrain model, and which is still suitable for 

non-expert use. 

3.3 Suitability of current modeling 
methods 

It is our belief that none of the methods and tools 

discussed above provide an ideal and complete 

solution for terrain modeling by training 

instructors. Manual terrain modeling methods are 

time-consuming and require 3D modeling skills, 

and automated methods are either too complex in 

use, lack user control or (as in the case of 

TerraGen, GeoControl and L3DT) focus mainly 

on one aspect of a terrain model, namely 

elevation data and corresponding terrain textures. 

Therefore, in practice, instructors are forced to 

reuse the terrain models that were shipped with 

the game or, alternatively, hire an external party 

to create custom terrain. The predefined terrain 

models most likely do not always adequately 

match their training requirements, and therefore 

restrict the training scenarios they can create. 

Hiring a third party to create new game terrain is 

mostly too expensive or involves a significant 

delay. The end result is that the training scenario 

is adjusted to match the available terrain, instead 
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of the other way round, which clearly has a 

negative impact on the overall training 

effectiveness. 

4. A NOVEL INTEGRATED TERRAIN 

MODELING APPROACH 

To remedy the situation discussed above, we 

propose a new approach for modeling geo-typical 

terrain. Our intent is not only to significantly 

speed up the terrain modeling process, but, more 

importantly, to provide an expeditious way for 

people without special modeling expertise to 

create terrain models that meet their requirements. 

We believe that for this goal a declarative 

approach is best suited. This declarative terrain 

modeling approach (focusing on “what do I 

want?”) is fundamentally different from the 

current constructive approach (focusing on “how 

do I model it?”). It is ideally suited for serious 

games, in which more often than not the terrain 

model designers are end users, such as instructors, 

and not artists.  

We are developing a modeling framework to 

support this declarative approach. Earlier, we 

have identified key requirements for this 

framework [24] Instructors have an idea for a 

particular terrain that fits their training scenario. 

Our framework allows them to express this idea 

using a sketch interface; it then creates the terrain 

model accordingly. The framework thus lets 

instructors focus on declaring the terrain they 

need, without bothering with low-level 3D 

modeling tasks or difficult parameter tuning. Our 

framework provides automated modeling by 

integrating a variety of procedural content 

generation methods in a usable way. 

The typical modeling workflow in our 

framework is as follows (see Figure 2). Users (in 

this case, training instructors) compose a digital 

sketch of the rough layout of the terrain. They 

declare the location of important terrain features, 

such as forests, mountains, cities and villages. 

Once they are satisfied with the rough terrain 

layout, the framework generates a high-resolution 

terrain map that complies to the specified features 

at large, but has, on a small scale, a high level of 

detail and variations in elevation, vegetation etc. 

Instructors can view the terrain in 3D and can 

manually edit the terrain map or modify the rough 

layout where desired. The modeling process is 

thus iterative: users can go back and forth 

between the rough layout and the detailed map. 

When they are satisfied with the results, the 

terrain map can be automatically exported to a 3D 

terrain model that can be used in the training 

game. 

The terrain map is a layered data structure, see 

Figure 2. Using different terrain layers improves 

the adaptability of the terrain, because changes to 

one layer do not necessarily have to affect other 

layers. We distinguish five layers in the terrain 

map, stacked as follows: 

 

• Earth layer: elevation data and soil information; 

• Water layer: rivers, lakes, oceans;  

• Vegetation layer: forests, bushes, trees; 

• Road layer: highways, local roads, bridges; and 

• Urban layer: cities, towns, airports, factories. 

 

Although the layers are kept separately in the 

editing phase, they obviously have 

interdependencies (see Figure 3). To generate a 

consistent terrain, the generation process of the 

layers is ordered in such a way that a layer can be 

based on other layers. For example, generating 

plants and trees for the Vegetation layer takes into 

account the proximity of rivers in the Water layer 

and the properties of soil and elevation in the 

Earth layer. The major roads generation method 

for the Road layer will have the sketched road 

lines but also the previously generated Earth layer 

as input, to be able to determine where valid roads 

can be placed, e.g. not too steep ascending roads.  

FIGURE 2: The workflow of the declarative terrain modeling framework. 
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Still, to obtain a fully consistent and valid 

terrain, a merging phase is necessary after the 

generation process of Figure 3. This includes 

local corrections (e.g. flattening terrain before 

placing a building), significant modifications (e.g. 

carving a road embankment through a mountain 

range), and more complex changes (e.g. when a 

highway is modified so that it crosses a river on 

the Water layer, this road can be modified to 

include a bridge or it can be rerouted). The 

framework is responsible for merging all features 

correctly in the base terrain, and detecting and 

resolving any inconsistencies. By maintaining the 

terrain consistency in this way, exporting the 

layered terrain model to, for instance, a 3D model 

can be a straightforward automated process. 

Creating a detailed terrain map based on the 

rough layout of the terrain is a form of data 

amplification, i.e. automatically expanding a 

small dataset into a large one. Amongst the most 

used data amplification algorithms are procedural 

content generation methods, discussed earlier. We 

are using combinations of existing procedural 

methods, which have been tuned to work well 

together, to expand sketch elements to terrain 

layers. Furthermore, we deploy semantically rich 

mechanisms to maintain consistency between 

terrain layers. In the next section, we discuss the 

generation method of two of the five layers: the 

Earth and Vegetation layer. 

5. SKETCH-BASED TERRAIN 

GENERATION METHOD 

We explain how terrain layers are generated 

based on the rough terrain layout using a training 

scenario from Tactical Air Defense. The first 

training session for aspiring platoon commanders 

is aimed at familiarization with the Stinger 

missile system and its parameters (e.g. its range, 

rate of fire, etc.). The trainees do not have any 

previous experience with the system. Following 

the JOT philosophy, they are simply told to place 

an air threat, a Stinger team and a radar system on 

the terrain, and to experiment with them. They are 

to discover and explore, by doing, the constraints 

of the missile system, as well as the influence of 

external factors, including: 

 
• the influence of terrain and its features on the sight 

diagram of the Stinger team; 

• the influence of the aircraft’s approach route, 

angle and altitude; and 

 

FIGURE 3: Our terrain generation process, dashed lines indicate inputs and solid lines outputs of the generation steps. 
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• the relation between the position of the Stinger 

team and the mobile radar and radar coverage for 

the team. 

 

By moving the team and radar around the 

terrain, while examining the sight diagrams, and 

by running the simulated engagements with 

different setups, the trainees will get a good 

understanding of the basic principles in half a day 

of training. 

An instructor preparing this scenario will wish 

to expose his trainees to a large variety of terrain 

types, ranging from flat grasslands to steep 

mountain ranges. A geo-typical terrain works best 

here: it can contain lots of varying terrain types 

while keeping the model at a reasonable size. In a 

geo-specific terrain on the other hand, such level 

of variation would usually be found only in 

ranges of hundreds of kilometers. 

Using our framework, an instructor can declare 

such a terrain. He chooses a size for his terrain 

and sketches the rough layout of the terrain (see 

Figure 4). The base of the terrain is declared by 

specifying where in the terrain which ecotopes 

occur. An ecotope describes both the type of 

terrain, e.g. a specific type of desert, hills or 

mountains, and the associated range of elevation. 

The instructor’s sketch is performed on an 

ecotope grid, a grid of small cells with each cell 

representing an area of e.g. one or two hundred 

meters square. Each ecotope has its unique color. 

Thus the drawing of the grid is quite similar to 

painting a pixel bitmap ([25] introduced the idea 

of procedurally expanding a bitmap with terrain 

colors to a height-map). On top of this grid, the 

instructor can place major terrain features, such as 

a forest. These are drawn as polygonal shapes 

(similar to the point, line and area shapes in 

common GIS vector files). In this way the 

instructor is able to declare the basic training 

terrain, with a large variety of terrain 

combinations e.g. ocean and beaches, sparsely 

vegetated grasslands, thick forests, hills, and a 

chasm between two mountain ranges. 

5.1 Earth layer generation method 

Based on this rough terrain layout the terrain 

layers are generated. The first layer to be 

generated is the Earth layer, which primarily 

contains elevation and ecotope data. The Earth 

layer generation is based only on the ecotope grid 

of the rough terrain layout; the terrain features are 

used for the other layers. The generation process 

consists of a number of steps, in which the rough 

terrain layout is amplified by interpolation of the 

coarse data to a full size terrain, combined with 

several noise input maps and filters to make the 

terrain more plausible and life-like.  

The complete Earth layer generation proceeds 

as follows. We start by creating a temporary data 

grid with the same dimensions as the ecotope grid 

of the rough terrain layout, called an ecomap, 

which contains the following elevation 

information on each grid cell: 

 
• Base Elevation: the base value in meters of the 

elevation at the center of this cell; 

• Elevation Variation: the range in meters of the 

small scale variation in elevation in the cell; and 

• Terrain Roughness: a factor describing the 

variation in elevation in this cell, lower values 

resulting in a smoother terrain. 

 

These three data values are computed for each 

cell on the basis of the user-specified ecotope grid 

of the rough terrain layout. The definition of each 

ecotope includes value ranges for base elevation, 

elevation variation and roughness. For each grid 

cell in the ecomap, the ranges defined in this 

cell’s and neighboring cells’ ecotope are weighted 

using a Gaussian smoothing kernel. From the 

resulting ranges, a random value is chosen for the 

three data values, which on average will be at the 

middle of the range. 

Once we have a grid with elevation information 

at the cell centers, we can amplify this ecomap 

into the Earth layer. This is where an interpolation 

method and fractal noise comes in. For each point 

(x, y) in the Earth layer, we interpolate the Base 

Elevation at nearby centers of the ecomap using 

Catmull-Rom interpolation [26]. This results in a 

very smooth terrain shown in Figure 5a.  

 
 

FIGURE 4: A rough terrain layout for the example 

scenario. 
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We make the elevation profile more realistic by 

scaling the elevation by a weighted combination 

of two multi-fractal Perlin noise fields: the first 

field is generated with its parameters set to result 

in noise with sharp ridges, while the second field 

parameters are set to produce smooth, rolling 

noise, see e.g. [9] for more details. The weight 

factor for the two fields is a mask image that is 

based on the ecotope grid: where the ecotope is 

defined to be mountainous, the mask image is 

white (i.e. the factor is 1.0), elsewhere it is black 

(i.e. 0.0), with a smooth transition between the 

regions. This is because the ridged multi-fractal 

noise is well-suited for mountains, while the 

smoother noise is better suited for e.g. rolling 

hills. For some additional, small-scale (several 

meters) variation, we add to each point some 

Perlin noise in an interpolated range of the 

Elevation Variation. Figure 5b shows this 

intermediate Earth layer; the elevation profile has 

changed and is no longer unnaturally smooth. 

While this creates a realistic profile in the z-

direction, in the (x, y) field the transitions 

between e.g. ecotopes are still grid-like, see the 

blocky ecotope-color pattern in Figure 5a and 5b. 

To remedy this, we perturbate the landscape, by 

swapping each point with a random point in the 

field within a certain range. The (x, y) coordinates 

of each random point are determined based on a 

noise vector multiplied by the perturbation range. 

The resulting difference in the ecotope transitions 

is clearly visible when comparing Figure 5b and 

5c.  

The Earth layer is now completely filled, but 

for some final tuning, we apply two filters that 

improve the visual realism of the terrain: a simple 

erosion filter followed by a smoothing filter using 

a Gaussian smoothing kernel. The Earth layer 

resulting from the complete procedure is shown in 

Figure 5c. Note that it matches the rough terrain 

layout, but has features and variation of its own. 

If we would run the method again, another, 

similar but different Earth layer would result. 

5.2 Vegetation layer generation 
method 

Next, both the rough terrain map and the freshly 

generated Earth layer are used for generating the 

distribution of plants and trees in the Vegetation 

layer. Our implementation builds on the algorithm 

proposed by Deussen et al. [17]. Their algorithm 

simulates competition between plants for space. 

They abstract plants to circles, which represent 

the ecological neighborhoods of the plants, and 

start with a random distribution of plants of a 

field. In each iteration new plants are added, 

plants that are either too old or dominated by 

other plants are removed. Domination of plants 

occurs when two ecological neighborhoods 

intersect; the plant with a higher competitive 

ability dominates the other. The competitive 

ability depends on the water concentration of the 

       
 

    

a)    b)   c)   d) 

 

FIGURE 5: 2D contour-maps and 3D views of the Earth layer: a) interpolation only, b) interpolation and scaling by noise, c) 

final Earth layer, d) Earth and Vegetation layers combined. 
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location combined with the plant’s preference for 

wet or dry areas and the plant’s relative size. 

We use the same simulation of competition, but 

in our method the distribution of plants is based 

on the terrain features; vegetation density is high 

in forests and low in other areas. Per species, the 

number of plants in an area depends on the extent 

to which the Earth layer’s ecotope supports that 

species, e.g. the desert ecotope only supports 

species that have a low need for water. The exact 

placement of a plant depends also on the Earth 

layer’s local elevation and slope, e.g. some trees 

such as spruces and pines can grow on relatively 

steep mountainous terrain, while most others 

cannot. Figure 5d shows the distribution of trees 

of different species for this example scenario, the 

colors of the circles indicate the plant’s species. 

Figure 6 shows another view on the final 3D 

terrain model of the Earth and Vegetation layer in 

this scenario. The terrain model matches the 

rough terrain layout, shown in Figure 4, but 

clearly has a lot of variety of its own. It takes 

instructors very little time to sketch a rough 

terrain layout and, for this scenario, further 

manual refinements are not necessary. With this 

terrain model, trainees can quickly get a grasp on 

the effect of natural terrain features on the 

effectiveness of their air defense deployment.  

5.3 Technical aspects 

Our framework is implemented in C# / C++ 

.NET, with 3D visualization done in 

OpenSceneGraph [27]. To support an iterative 

approach, it is important that the generation 

processes are reasonably fast. Fortunately, several 

parts of the terrain generation and merging 

process are very well-suited for parallel 

processing. For instance, for the earth layer 

generation, the interpolation, noise scaling and 

perturbation steps are combined for each point, as 

it is possible to determine the definitive elevation 

of each point without knowing the values at the 

neighboring points. An emerging trend in parallel 

programming is to use a Graphics Processing Unit 

(GPU) as a general computation device, because 

it has a larger number of floating point processors 

available. A large part of our generation and 

merging process is performed in parallel on the 

GPU using NVIDIA’s CUDA [28], a C-like 

programming language for performing all sorts of 

computations on GPU’s. Our CUDA 

implementation is about 20 times faster than our 

original CPU implementation.  

6. CONCLUSION 

Due to the advancements in realism and 

immersion, computer games have an increasingly 

high potential for military training purposes. 

Training instructors are very competent at 

designing complex training scenarios, closely 

matching their stated learning objectives. 

However, they typically lack the technical skills 

that currently available tools require to build 

adequate terrain models. As a practical 

consequence, they often end up using predefined 

models, thus limiting training effectiveness. 

 We presented a novel declarative modeling 

approach consisting of a terrain modeling process 

and supporting framework, aimed at making 

terrain modeling tasks much more effective and 

accessible. The modeling framework developed 

supports non-specialists throughout the terrain 

modeling process, enabling e.g. training 

instructors to easily declare and generate a terrain 

that suits their training objectives. The careful 

deployment of procedural methods has been 

instrumental in this goal. 

We evaluated our declarative modeling 

approach with a number of military training 

instructors and other training experts. They were 

very supportive of our approach, seeing the 

 

Figure 6: A wide view on the 3D terrain model automatically generated by our framework. 
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framework as a valuable tool for modeling terrain 

for training scenarios. Most importantly, they 

realize they are no longer limited by the 

availability of terrain models, as they can create a 

new terrain model for each desired scenario by 

intuitively declaring its layout and features. They 

can even do this during a training session, e.g. to 

highlight a certain tactical aspect that came up in 

previous group discussions. For a large number of 

training scenarios, such as the Tactical Air 

Defense introductory scenario described in this 

paper, automatic generation based on the declared 

rough terrain layout yields a complete and fitting 

terrain model, without any further involvement of 

the instructor. 

We are currently focusing on a number of 

research issues of our declarative terrain modeling 

framework.  

Firstly, we are working on integrating city 

generation capabilities in the Urban layer of the 

framework, a key feature for many complex 

training scenarios. For this, we have developed 

novel mechanisms to create a believable layout, 

including positions, connections and 

dependencies, of the different types of districts in 

a city, e.g. upper class residential, industrial, etc 

(see [29]). Results for informally structured 

villages have also been presented in [30].  

Secondly, we want to enable instructors to 

manually perform small scale adjustments in 

order to fine-tune the terrain to their scenario. For 

instance, in the tactical air defense case, 

instructors would like to be able to manually 

insert a special building as an objective or target. 

For this, we need a set of easy-to-use manual 

editing tools for each of the terrain layers. 

Thirdly, we want to explore a variety of useful 

constraints a user could impose on a rough terrain 

layout to constrain the generation process. For 

instance, in an air defense scenario it might be 

helpful to specify line-of-sight constraints for a 

specific area of terrain. 

 Lastly, an ongoing challenge involves the 

consistency management of interacting terrain 

features, typically lying on different terrain layers. 

For many such interactions, constraint solving 

methods will likely be necessary to automatically 

readjust actual terrain features in a coherent and 

plausible manner. 

Producing appropriate terrain models is crucial 

for the effectiveness of scenarios for military 

training, but it is seriously hindered by the 

complexity of current terrain modeling tools and 

methods. In order to realize the full potential of 

games for military training, it is essential to 

support and enhance the modeling process. We 

believe that this requires a shift from the 

conventional paradigm of terrain construction 

towards declarative terrain modeling. The 

approach discussed here is a firm step in this 

direction. 
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