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Figure 1: Examples of bokeh textures generated with our ray-tracing solution.

Abstract
We present an efficient ray-tracing technique to render bokeh effects produced by parametric aspheric lenses. Contrary to
conventional spherical lenses, aspheric lenses do generally not permit a simple closed-form solution of ray-surface intersections.
We propose a numerical root-finding approach, which uses tight proxy surfaces to ensure a good initialization and convergence
behavior. Additionally, we simulate mechanical imperfections resulting from the lens fabrication via a texture-based approach.
Fractional Fourier transform and spectral dispersion add additional realism to the synthesized bokeh effect. Our approach is
well-suited for execution on graphics processing units (GPUs) and we demonstrate complex defocus-blur and lens-flare effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
Algorithms

1. Introduction

Optical systems are typically imperfect and not all rays will follow
the expected optical path toward the sensor, which leads to optical
aberrations [Smi00]. Classical systems make use of many spherical
lens elements to reduce this effect. A recent alternative is an aspheric
lens, whose profile does not correspond to a part of a sphere [KT80].
Their use typically implies fewer optical elements for a similar
reduction of aberrations, which, consequently, results in less weight.
This property made them a popular choice (e.g., smartphones lenses,
pancake lenses, and eyeglasses). Despite their wide-spread use in
practice, aspheric lenses have hardly been investigated in computer
graphics.

In this paper, we model and simulate aspheric lenses. Because
their surface profile is usually nonlinear and non-spherical, there is

† sungkil@skku.edu (corresponding author)

no general closed-form solution for calculating ray-surface intersec-
tions, as exists for spherical lenses [KMH95, SDHL11, HESL11].
Instead, we present an efficient numerical scheme to trace rays
through these lens elements. Additionally, aspheric lenses often con-
tain small imperfections due to the fabrication process (e.g., mechan-
ical grinding [LB07]), influencing out-of-focus blur. In particular, it
can impact the intensity profile of bokeh, the aesthetic appearance of
out-of-focus highlights, resulting in “onion-ring bokeh” [ST14]. We
simulate this characteristic aspect by using a normal map derived
from a virtual grinding process.

The contributions of this paper can be summarized as:
• an aspheric lens model, including imperfections;
• an efficient numerical aspheric-lens intersection method;
• a rendering solution for optical systems.

Our paper is organized as follows. We discuss previous work
(Sec. 2) and introduce our aspheric lens model (Sec. 3), including
imperfections (Sec. 4). We then cover our rendering algorithm and
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intersection test for aspheric lenses (Sec. 5) before presenting results
(Sec. 6) and concluding (Sec. 7).

2. Related Work

This section reviews previous work on simulating optical systems
and ray-tracing techniques for parametric surfaces.

2.1. Optical Simulation

Early approaches for optical simulations have relied on simple op-
tical models [Coo86, Che87], but simulating a full optical system
has been of growing interest. Many approaches opted for additional
realism in terms of geometric distortion, defocus blur, and spectral
dispersion. They usually build upon formal data sheets specifying
the optical system in terms of its optical elements. The seminal work
of Kolb et al. obtained geometric accuracy for distortion and field of
view [KMH95]. Steinert et al. included additional aberrations and
spectral diversities using Monte-Carlo rendering [SDHL11]. Hullin
et al. added reflections and anti-reflective coatings, which play a role
for lens flares [HESL11]. They attained physically faithful image
quality but were restricted to spherical lenses in order to simplify
the ray-surface intersection tests. In this paper, we add support for
aspheric lenses.

Optical imperfections can be classified into intrinsic and extrin-
sic ones. The former ones include aberrations and flares [HESL11,
LE13], the latter ones include issues due to mechanical manufactur-
ing (e.g., grinding and polishing) and real-world artifacts (e.g., dirt
or axis misalignment).

One of the pronounced intrinsic imperfections are (spherical)
aberrations manifesting in bokeh and can be simulated via ray trac-
ing [LES10, WZH∗10, WZHX13]. For higher performance, early
models captured the appearance phenomenologically [BW02]. Later
approaches relied on efficient filtering; polygonal filtering [MRD12],
separable filtering [MH14], low-rank linear filters [McG15], or look-
up table [GKK15].

Extrinsic imperfections are not easily incorporated into ideal para-
metric models [KMH95, WZH∗10, SDHL11, HESL11, WZHX13].
One attempt was to use artificial noise for diffraction at the aper-
ture [RIF∗09,HESL11], whereas our method is driven by simulating
the lens-fabrication process.

2.2. Ray Tracing of Parametric Surfaces

While many modern ray tracers focus on polygonal mod-
els [PBMH02, FS05], early approaches often included several para-
metric surface types, which can be classified in four categories: sub-
division [Whi80], algebraic methods [Kaj82, Bli82, Han83, Man94],
Bézier clipping [NSK90, EHS05], and numerical techniques [Tot85,
JB86, AGM06].

In optics, much work addressed intersections with spherical sur-
faces but few approaches covered aspheric lenses; typically, tessel-
lation [MNN∗10] and Delaunay triangles [OSRM09]) or Newton-
Raphson methods [AS52,For66] were applied. Tessellation is costly
for sufficient precision, while the Newton-Raphson method is fast

(a) spherical lens (b) aspheric lens

sa sa

Figure 2: A spherical lens (a) can cause spherical aberration, while
even a single aspheric lens (b) may focus well.

but unreliable for complex surfaces. These problems manifest them-
selves even more clearly when using limited precision floating-point
numbers, as is often the case for GPU approaches. In contrast, our
solution relies on a bracketing method supported by tight proxy
geometry to perform the intersection test, which even works for
lower-precision floating point values.

3. Aspheric-Lens Model

We here introduce our parametric aspheric-lens model. An aspheric
lens adds nonlinear deviations to its base curvature c of a spherical
surface (Figure 2), leading to a better convergence of peripheral rays
on the focus plane. The common parametric form of an aspheric
surface with its sagittal profile z on the optical axis (along the z-axis),
is expressed in terms of the radial coordinate r from the optical axis
as:

z(r) :=
cr2

1+
√

1− (1+κ)c2r2
+∑A2ir2i, (1)

where κ is a conic constant [FTG00] and A2i are coefficients for
even-polynomial sections; the coefficients of particular systems can
be found in patents or lens design books [Smi05].

The design of an aspheric lens goes through an iterative opti-
mization procedure to minimize aberrations. The conic constant
κ is often a consequence of the lens’ base shape from which the
aspheric lens is derived, hence, the focus lies on optimizing A2i.
The design requires high expertise and care in optics. We refer the
reader to the textbooks for mathematical properties and practical
usages [FTG00, Smi05].

4. Imperfections

In the real world, the fabrication of large spherical/aspheric lenses
involves mechanical grinding and polishing [LB07] (Figure 3). The
process has usually several phases; for instance, spherical grinding,
precision grinding, and polishing are applied in sequence [FTG00].
Similarly, in precision glass molding, a mold is carved, which will
then exhibit the imperfections that are passed on to the lens, when it
is produced with the mold. The processes are not entirely standard-
ized and although the various phases have been improved over the
years, the result is not perfect yet.

The most visible artifacts resulting from the fabrication process
are due to a misalignment between grinding and optical axis, grind-
ing asymmetries resulting from the swinging of the tools, and limited
grinding precision. A few nanometers of deviation can lead to a visi-
ble impact on bokeh. We model the resulting imperfections indirectly
by simulating the grinding process itself. Following the fabrication
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(b) polishing(a) grinding
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Figure 3: Simple mechanics of lens fabrication via a grinder.
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Figure 4: Example of a grinding pattern generation; parameters
are 5000× exaggerated for illustration purposes.

method, we create grinding patterns by superposing circles with a
smooth boundary (reflecting the grinding head) and decreasing radii
(or a spiral, depending on the simulated tool). We apply a perturba-
tion via a wave pattern, whose strength is user controlled. Similarly,
following real-world examples, the result involves between 50 to
120 rings. Each ring is also drawn with a low-frequency jittering to
simulate the swinging. The rings are accumulated to create a height
profile and combined with a white noise texture to simulate general
imperfections. The final result is a height field from which we derive
a normal map. The latter is used during rendering to influence the
refractive directions. The process is illustrated in Figure 4.

One more artifact, which can be independent of the production
process, are tiny dirt marks. These can become visible with large
out-of-focus bokeh. Their appearance can be arbitrary, and we model
them as noisy granular details using a noise generator and augment
the previously-derived texture. Further, we store this pattern also as
an additional color channel to reduce the intensity of intersecting
rays.

5. Rendering

Given the lens model, we will, similarly to previous work [KMH95,
SDHL11, HESL11], apply a deterministic forward ray tracing to
trace the light propagation in an optical system. An overview of the
various steps of our approach is given in Figure 5. The incoming
rays are generated at the entrance pupil. When the rays encounter
a lens element, we test for intersection. If the element is missed or
a total reflection occurs, we stop the ray traversal. At the aperture,
we use a polygonal texture to define the iris and to test if rays are
blocked [HESL11]. Once a ray reaches the sensor, we accumulate
its irradiance via additive alpha blending.

To account for imperfections, we apply the normal maps, which
are stored as 2D textures for each aspheric surface. Based on the
texture lookup, the intersecting ray is jittered. As the normal vectors
are based on our virtual grinding patterns, the result will exhibit the
typical bokeh with ring patterns, often called “onion-ring” bokeh.

Offline preprocessing
  

  load an optical system

  for each aspheric lens

  - find proxy surfaces

Online rendering

    virtual grinder

  - generate bump maps  

  - generate normal maps 

for each RGB channel

    for each ray

        for each surface element s

            if s is an aperture

                apply aperture stop at intersection

            else if s is an aspheric lens

                find analytical intersection with proxies

                test numerical intersection

                refract ray (with jittered normal)

            else if s is a spherical lens

                test analytical intersection

                refract ray

    triangulate and rasterize rays

    apply FrFT

    accumulate the result

Figure 5: Overview of the rendering pipeline of our system.

5.1. Ray-tracing an Aspheric Lens

To test the intersection of a ray and the aspheric surface, we use a
bracketing-based root-finding method (either the bisection or the
false position method). The explicit lens definition (Eq. (1)) is incon-
venient for this process, and we instead reformulate it to an implicit
representation.

Eq. (1) defines the height-field lens surface given a radial co-
ordinate r, where r is shared by several points located around the
optical axis (z-axis). For an arbitrary 3D point v (with its Carte-
sian coordinates vx, vy, and vz) this radial coordinate is expressed
as r := (v2

x + v2
y)

1/2. When v lies on the lens surface, vz = z(r) is
satisfied. This leads to the following implicit formulation:

f (v) := z((v2
x + v2

y)
1/2)− vz, (2)

where the sign of f (v) implies if a point lies above or below the
aspheric-lens surface and the aspheric-lens surface is the set {v ∈
R3| f (v) = 0}.

When inserting a ray equation into the implicit formulation,
the problem becomes a root-finding process. Derivative-based
methods exist, which utilize the base curvature as an initial
guess [AS52, For66, Smi00]. However, the use of gradients can
be difficult and unreliable, as many GPUs only have limited or no
support for double precision. Our solution instead relies on a bracket-
ing method, which does not require to evaluate gradients. Avoiding
double-precision computations on GPUs leads to a great perfor-
mance gain; such preference for bracketing can be found in various
GPU approaches [BES12] and is a robust and efficient choice.

The bisection method is the simpler method of the two and initial-
ized with a tight interval. It is iteratively subdivided at its midpoint,
yielding two subintervals. The process always continues with the
subinterval whose extremities lie on opposite sides of the surface.
The false position method [BF01] is similar but assumes in each
iteration that the function is linear between the two interval extremi-
ties. The root of this linear function defines the position to produce
subintervals.

Proxy Geometry The efficiency of our root-finding process de-
pends on the initial interval, which we initialize by determining the
ray intersection with a tight surface-englobing proxy geometry. In
principle, one could define two planes that englobe the lens surface,
but seen that many aspheric lenses are based on a spherical surface,
two spherical interfaces usually deliver a tighter fit.
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Figure 6: Example definition of pairs of proxy surfaces: (a) spheres
and (b) planes.

The proxy geometry is determined in an offline preprocess. First,
we construct a spherical interface determined by the surface point
on the optical axis and the intersection between the tube and the
lens (in many optical data sheets, the corresponding radius is given
as sa). Next, we find the two tangent positions to the aspheric lens
surface along the z-axis. These two configurations define our proxy
geometry (Figure 6). The tangent position could be determined via a
root finding (inserting their expression in Eq. (2)) but would need to
be coupled to an additional test of the lens boundary. In consequence,
for simplicity and to support even more general lens surfaces, we
use a sample-based procedure. It proved sufficient in practice and
tests different configurations by evaluating a dense set of surface
points for tangency (all samples positive/negative and one sample
close/equal to zero).

5.2. Fractional Diffraction Synthesis

Light patterns (or its lens-flare ghosts) passing through an aper-
ture usually exhibit ringing at edges, which is crucial for a re-
alistic appearance of bokeh patterns (Figure 7). This ringing is
known to be caused by near-field Fresnel diffraction [Kin75]. This
Fresnel diffraction can be formulated to a fractional Fourier Trans-
form (FrFT) [PF94], which uses a fractional order α to control the
amount of transition to the full Fourier Transform (FT); see Fig-
ure 7. The FrFT Fα(u) of a signal g(x) is formulated as: Fα(u) :=∫

∞

−∞
Kα(u,x)g(x)dx, where the transform kernel Kα(u,x) is:

Kα(u,x)=
√

1− j cotα e−2π j(cscα ux−cotα (u2+x2)/2). (3)

We implement a discrete FrFT on the GPU, instead of the CPU
(as done by the previous studies [OZK01, HESL11]); see the ac-
companying supplement for details. Since the phase components
of FrFT (see Eq. (3)) shift much faster than FT, it requires a denser
sampling to avoid aliasing. The typical implementation relying on
fast FT (FFT) is slow and needs considerable zero padding, which
may not fit into GPU memory. So, we take a direct discrete sam-
pling approach. Despite its several limitations (e.g., non-unitary
and irreversible [PD00]), it is a good GPU fit. In particular, the
denser sampling can make use of the built-in bilinear interpolation
without explicit upscaling, which greatly improves performance and
addresses the major bottleneck of our pipeline.

We choose α empirically (typically, α ∈ [0.1,0.2]), which gives
visually-plausible results. The concrete value is chosen to best match
the appearance of a real photograph. The reason being that, albeit
conceptually well defined [PF94], an efficient and accurate compu-
tation of α is a significant challenge. We would need to not only
evaluate per-object αs, but also composite FrFTs of different αs;
for multi-lens systems, each bounce would need an additional FrFT

F0[f] F0.2[f] F0.4[f] F0.6[f] F0.8[f] F1.0[f]

Figure 7: Evolution of the fractional Fourier transform along its
order α ∈ [0,1] for a heptagonal aperture.

evaluation when the aperture is traversed. As the visual differences
are typically low, we propose to choose α empirically.

5.3. Anti-Aliased and Spectral Rendering

Our solution supports similar extensions as one by Hullin et
al. [HESL11]. To avoid noise, we trace a beam of three rays and
rasterize the resulting triangle with interpolation on the sensor. Addi-
tionally, we employ multisample antialiasing (MSAA). For spectral
rendering, we compute different refractive indices depending on the
wavelength [HESL11,SDHL11] and trace the result of each spectral
sample separately.

6. Results and Discussions

We implemented our system using the OpenGL API on an Intel Core
i7 machine with NVIDIA GTX 980 Ti. Four patented lenses were
chosen for our experiments (see Figure 8 for illustrations, patent
numbers, and the corresponding output generated by our approach).
The red-colored interfaces indicate aspheric elements. Normal maps
are applied to the aspheric surfaces only because the manufacturing
imperfections are uncommon for spherical surfaces. In combination
with the FrFT, the bokeh renderings appear similar to photographs.

Our algorithm performs the bokeh synthesis in a two-step process;
an offline stage (the virtual grinding to produce the normal map,
and the proxy-surface fitting on the CPU) and an online stage on
the GPU (ray tracing through the lens system, rasterization into
the sensor texture, and the FrFT for starburst streaks). Note that
the offline preprocessing is light-weight requiring only 60 ms on
average over all shown camera models. Table 1 summarizes the
rendering performance during the online stage using 5122 and 10242

resolutions for the entering rays on the entrance pupil and the sensor
plane. We measured the result for the synthesis of an achromatic
(single wavelength) bokeh resulting from a directional light source.

Overall, our system is capable of real-time performance, even
when applying FrFT. Ray tracing and rasterization scale linearly
with the complexity of the lens systems and the number of rays,
while the FrFT scales with the resolution. FrFT is the most sig-
nificant bottleneck, but still up to 20× faster than existing Matlab
implementations (e.g., 2.8 s at 10242). For dispersion, we need to
repeat the achromatic processing for each wavelength, which lin-
early scales with the number of spectral samples; e.g., computing
with seven wavelengths takes around 1.5 s at a 10242 resolution.

6.1. Defocus Blur and Lens Flares

Similarly to previous work, we can use our model to compute de-
focus blur and lens flares, but even with our efficient ray-tracing
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System 1 (USP3992085)

System 2 (USP4514052)

System 4 (USP5805359)

System 3 (USP5793533)

α = 0.1

α = 0.1

α = 0.01

α = 0.12

α = 0.1

α = 0.1

α = 0.01

α = 0.12

Figure 8: Examples of lens systems (yellow, red, and green elements for the entrance pupil, aspheric elements, and sensor planes, respectively),
normal maps (exaggerated for legibility) and their corresponding bokeh textures.

Table 1: Performance of bokeh rendering measured in frame time
(ms) for the four lens systems with respect to the number of rays (ray
tracing and raster) and resolution (FrFT).

System ID Ray tracing Raster FrFT

5122 10242 5122 10242 5122 10242

1 0.77 2.43 0.26 0.59 26.93 199.14
2 1.14 3.97 0.43 0.79 28.04 202.30
3 0.87 2.76 0.24 0.59 27.18 202.11
4 0.65 2.10 0.29 0.62 27.17 201.18

solution, it would be very costly to apply our approach for full
depth-of-field or lens-flare rendering on entire scenes. It would re-
quire a large number (e.g., thousands) of lens samples, similarly to
glossy highlights in Monte-Carlo rendering and there are no good
solutions yet for this particular case, such as adaptive sampling or
interpolation methods. Consequently, the ray tracing scheme and
the fractional Fourier transforms can become bottlenecks. One pos-
sibility for higher efficiency is to generate a bokeh texture with our
system, which is then used in a simplified simulation.

Figure 9 illustrates an example of thin-lens depth-of-field blur
using accumulation buffering [HA90] in combination with a pre-
computed bokeh texture. Each rendered view is modulated by the
intensity stored in the bokeh texture. We used a 2562 resolution in
the accompanying video and 5122 in the figure. In practice, 2562

usually suffices. The accumulation buffering remains a costly pro-
cess (e.g., 100 s for 2562 samples, even though a single sample
only takes 1.5 ms) but it would be possible to rely on faster meth-
ods [LES09, LES10].

Similarly, we can approximate lens flare. Real-time lens-flare
rendering typically uses the same type of pre-defined texture, which
illustrates the light rays traversing the aperture. We used a recent
sprite-based lens-flare rendering [LE13] for demonstration purposes
(Figure 10). It is based on the paraxial linear approximation to locate
the flares in real time.

7. Conclusion and Discussions

We presented an efficient ray-tracing technique for parametric as-
pheric lenses. Our solution includes the simulation of mechanical
imperfections, which builds upon the lens-fabrication process and
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(a) (b) (c)

Figure 9: Examples of defocus blur [HA90] using bokeh textures generated with our solution.

(a) (b) (c)

Figure 10: Examples of a texture sprite-based lens-flare rendering [LE13] to which our bokeh textures applied.

supports various effects. It is possible to render high-quality images
and to generate realistic bokeh effects for use in real-time lens-flare
or defocus algorithms.

Our method improves existing optical simulations, which can be
used to compute precise out-of-focus blur. Ray tracing for a single
lens sample is still light-weight, but strong highlights need many
lens samples in order to avoid noise. One viable alternative for real-
time purposes, which would sacrifice some accuracy, would be a
polygonal beam tracing and adding imperfections in a postprocess.

While our system supports artistic parameter choices, it would
be interesting to offer a way to restrict the fabrication parameters to
realistic values. We would also like to explore how to directly derive
the parameters from photos.
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