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Diagnostic algorithms and efficient visualization techniques are of major importance for preoperative

decisions, intra-operative imaging and image-guided surgery. Complex diagnostic decisions are

characterized by a high information flow and fast decisions, requiring efficient and intuitive

presentation of complex medical data and precision in the visualization. For intra-operative medical

treatment, the pre-operative visualization results of the diagnostic systems have to be transferred to the

patient on the operation room table. Via augmented reality, additional information of the hidden

regions can be displayed virtually. This state-of-the-art report summarizes visual computing algorithms

for medical diagnosis and treatment. After starting with direct volume rendering and tagged volume

rendering as general techniques for visualizing anatomical structures, we go into more detail by

focusing on the visualization of tissue and vessel structures. Afterwards, algorithms and techniques that

are used for medical treatment in the context of image-guided surgery, intra-operative imaging and

augmented reality are discussed and reviewed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Modern medicine produces large datasets with a strong annual
rate of growth due to the development and the increasing
differentiation of methods for medical diagnosis and treatment.
Frequently, the sector of medical economics is seen as one of the
central domains of innovation. At the same time, the number of
medical doctors remains static, jobs have even been reduced at
many sites, and the possibilities offered by medical technology are
not fully utilized. This can be noticed especially in the area of
medical image computing and the associated diagnosis and
medical treatment. The employed techniques that acquire cross-
sectional images may produce several thousand images within a
few minutes and the trend is increasing. On the opposite of this
technological potential, only few powerful and problem-adapted
software systems and visualization tools exist so that a large part
of the actual available image data remains unused.
ll rights reserved.

Klein).
A desired solution comprises the application of computer
systems for supporting medical practice. Such software assistants
for medical diagnosis and treatment are based on the idea that
computers are able to do special issues reliably and efficiently
while the diagnostic and therapeutic decision remains the task of
medical experts. To implement an optimal collaboration and
interaction between human and computer, software assistants
have to be designed and tested for special tasks. Fundamental
criteria are the robustness of technical and biological variations of
the incoming data, a handling of measurement errors as well as
efficiency and an acceptance of the software. For the latter point,
visual computing algorithms for medical diagnosis and treatment
play a decisive role as they constitute the most important
interface between the software and the doctors.

This paper summarizes selected visual computing methods
and processing algorithms for medical diagnosis (Section 3) and
reviews algorithms which are used for medical treatment in the
context of image-guided surgery, intra-operative imaging and
augmented reality (Section 4). Advantages and disadvantages of
the methods as well as directions for future work are shown.

We begin with volume rendering algorithms (Section 3.1),
which constitute the basis for medical diagnostic visualization

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2009.04.006
mailto:jan.klein@mevis.fraunhofer.de
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Table 1
A general overview of the presented techniques in our state-of-the-art report is

given.

Clinical task Algorithm/technique Section

Image acquisition CT, MRI, US 2

Visualization of scans in their

entirety

Direct volume rendering 3.1

Multi-modality rendering,

segmentation of different tissues

or organs

Tagged volume rendering 3.1

Visualization of fibrous tissue Fiber tracking 3.2

Grouping of anatomically similar

structures

Clustering 3.2

Visualization of vessels Model-based

reconstruction, implicit

visualization

3.3

Associate preoperative data with

patient in operation room

Tracking, registration

algorithms, intra-operative

imaging

4.1, 4.2

Medical simulations, training Virtual and mixed reality 4.3, 4.4, 4.5
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systems. They offer overview presentations of scalar volumetric
data from computed tomography (CT) or MR scans without prior
segmentation of specific regions, organs or risk structures. In the
context of volume rendering we consider the problem of
interactive performance with very large medical data volumes
as well as the problem of finding an appropriate transfer function
that maps the scalar data values to optical properties.

Afterwards, the visualization of highly patient-specific, com-
plex topology which are important risk structures for assessing
operability is discussed. First, the visualization of fibrous tissue
from complex tensor data will be explained (Section 3.2). The
presented techniques range from simplification to scalar informa-
tion, glyph visualization and the so-called fiber tracking. In
addition, we also review fiber clustering methods that aim to
extract structures with higher semantic meaning than a fiber or a
tensor. Second, the reconstruction of vascular systems from scalar
data is considered as an example (Section 3.3). In this context we
focus on modeling to convey shape and topology.

In the second part of this paper we discuss and review
algorithms and techniques that are used for medical treatment in
the context of image-guided surgery, intra-operative imaging and
augmented reality. The major issue here is how to associate the
pre-operative datasets and diagnostic results (e.g., risk structures)
with the patient on the operation table. We consider registration
techniques, passive optical tracking, and electromagnetic field
tracking, which have become more popular in the last few years
(Section 4.1) as well as intra-operative imaging techniques
(Section 4.2). Virtual and augmented reality methods which add
useful context information from the reality are reviewed (Section
4.3) and we pay special attention to the inherent occlusion
handling problem (Section 4.4). Collision detection algorithms are
an essential component in image-guided surgery as well as in
virtual and mixed reality applications. An overview of the well-
proven techniques and of very promising new directions in that
area is given in Section 4.5.

A general overview of the algorithms and methods presented
in this state-of-the-art report is given in Table 1.
2. Medical data

Surgical intervention planning and clinical diagnostic systems
benefit from the large variety of imaging modalities and
visualization tools currently available. Before focusing on the
visualization of anatomical structures in the next section, we give
a short introduction to the three main imaging techniques which
are currently available.

Computed tomography: The computed tomography technology,
which reconstructs 3D image volumes of tissue density from
X-ray projections taken in different orientations, is developing
rapidly. The current trend is to use multiple X-ray sources and to
broaden the X-ray detectors so as to shorten acquisition time and
improve image quality. With current CT scanners one can, for
example, acquire high resolution image volumes covering the
entire human heart with voxel sizes below 0.5 mm in less than
100 ms, which makes CT very valuable in emergency situations.

Magnetic resonance imaging: Magnetic resonance imaging
(MRI) scanners, which use static and time-varying magnetic fields
for generating 3D volumes, also evolve at a fast pace toward
stronger magnetic fields and improved hardware. While not quite
delivering the same image resolution as CT, MRI is able to generate
anatomical images with excellent contrast between soft tissue
types, for example, between white and gray matter in the brain.
Moreover, the flexible MRI technique is increasingly being used to
depict functional information, such as cortical activation with
functional MRI; blood flow with phase-contrast MRI generating
3Dþ time velocity vector fields [1]; as well as specialized
anatomical information such as fiber connections in the brain
using diffusion tensor imaging (DTI) [2]. The main advantages of
MRI are the high soft tissue contrast, the possibility to define
oblique cut planes for the acquisition, and the fact that no ionizing
radiation is used. In contrast to CT and ultrasound (US), MRI
scanners and their operating costs are more expensive and the
image acquisition process is longer.

Ultrasound imaging: The third major imaging modality is
ultrasound, which uses echoes of high frequency sound waves to
generate images. The main advantages of ultrasound are the small
and cost-effective hardware and the real-time image acquisition
rate which is an advantage for intra-operative solutions. Also the
ultrasound technology is evolving toward 3D image acquisition.
However, the quality and the resolution is generally not as good as
in CT and MRI.
3. Visualization of anatomical structures

In computer-assisted medical diagnosis and treatment, the
visualization of anatomical structures plays an important role. In
this section, we describe visualization techniques that can be used
for displaying overview representations as well as specific organs
or tissue. We begin with volume rendering as a general method,
followed by the visualization of tissue data by diffusion tensor
imaging. Finally, we depict a very special problem, namely the
visualization of vessels, in order to give an example for the
visualization of highly patient-specific, complex topology.

3.1. Volume rendering

Direct volume rendering (DVR) is the most common way of
depicting scalar volumetric data such as CT or MR scans in their
entirety, as opposed to extracting surfaces of objects of interest
(e.g., bones, vessels), or looking at a series of individual slice
images, which is still common in radiology. In contrast to viewing
2D slice images, looking at the whole 3D volume makes it
considerably easier to perceive depth relations and follow
structures that are not parallel to one of the image planes. An
important example is the use of pre-operative planning in
neurosurgery, where it is much more natural and accurate to
plan the best and minimally invasive approach to a tumor in 3D.
Another example where 3D visualization is essential is virtual
endoscopy [3,4].
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For brevity, we review the basics of volume rendering and the
most common practical approaches only briefly. For more details,
we refer readers to the literature [6]. Essentially, in DVR the image
volume is thought of as a collection of particles with certain
physical properties that describe their interaction with light, e.g.,
absorption, emission, and scattering of light, which are subsumed
in an optical model. To obtain an image of the entire volume, the
volume rendering integral corresponding to a chosen optical model
is solved along rays from the eye point through pixels of the
output image plane. This integral is solved via discretization,
where individual samples are taken, mapped to optical properties,
and composited in order to obtain an approximate result of
sufficient quality.

In the medical context, interactive performance is crucial,
and the most common state-of-the-art method is to perform
ray-casting on the GPU (graphics processing unit) [7–10]. Earlier
GPU-based methods were based on texture slicing [11]. Alter-
native approaches are CPU-based ray-casting [12], using dedicated
hardware such as the VolumePro [13], shear-warp [14], or
splatting [15]. The latter is especially suited to visualize sparsely
populated volumes such as vasculature [16].

A fundamental practical problem of medical volume rendering
has always been the significant size of volume data, which is
usually tackled via bricking approaches [17]. Bricking can also be
used in conjunction with single-pass ray-casting in order to
remove the per-brick setup overhead [18]. Recent GPU ray-casting
implementations employing bricking are able to render volumes
with several thousand slices at interactive rates [10]. It is also
possible to use out-of-core approaches to avoid loading the entire
volume into CPU memory [19].

Current high-end GPUs are available with memory sizes from
512 MB to 4 GB, which enables rendering of relatively large
volumes even without bricking. However, data sizes are growing
constantly and it is important that the size of the volumes that can
be rendered is not directly limited by the available amount of on-
board memory. Naturally, memory requirements increase even
Fig. 1. In direct volume rendering (DVR), the transfer function maps the raw

volume data to optical properties needed for image synthesis. Even a simple 1D

transfer function allows for a lot of flexibility, from assigning varying amounts of

transparency to certain structures (left), to essentially depicting isosurfaces

without extracting geometry (right).

Fig. 2. Examples of a semantic transfer function model for CT angiography, with the anat

not specified directly, but via structures’ names and visual attributes.
further when multiple imaging modalities are visualized concur-
rently, or the data are time-dependent and thus consist of one or
multiple volumes per time step.

Interactive volume rendering has been restricted to orthogonal
projection for a long time. However, recent advances in GPU-
based ray-casting easily allow for perspective projections, which
are especially important in virtual endoscopy [9] that focuses on
the virtual representation of minimally invasive procedures for
training, planning, and diagnosis without an actual invasive
intervention. In contrast to texture slicing, ray-casting also
increases flexibility, for example, allowing adaptive sampling
rates [20]. In general, it is also easier to implement [6].

Incorporating ray-casting into an application for surgery
planning and training provides more flexibility than extracting
explicit geometry. For example, interactively changing the
isovalue corresponding to the surface of the colon or a vessel in
virtual endoscopy. For such applications, this can also include the
display of segmented background objects [21], or the use of full
DVR behind the surface [9].

Transfer functions: A major issue in DVR is how scalar data
values are mapped to optical properties, which is commonly done
via a global transfer function. In the simplest case, a transfer
function is just a 1D table that maps density to color and opacity.
Fig. 1 illustrates that this already enables a lot of flexibility, such as
choosing from different semi-transparent depictions of multiple
structures up to fully opaque results corresponding to isosurfaces.
However, the specification of transfer functions is still a major
hurdle for physicians, who are often overwhelmed by their
complexity and the time required to specify them. Furthermore,
many structures cannot be separated sufficiently with 1D transfer
functions, and thus two or more dimensions are used [22,23].

Recent advances such as semantic transfer functions [5,24] can
radically improve usability, and thereby increase the acceptance
of volume rendering by medical doctors in the future. Fig. 2 shows
visualizations generated using a semantic transfer function model
that completely hides the underlying 2D transfer function domain
from the user.

Another important issue is how to handle reliability or, vice
versa, the uncertainty, which can be inherent in the visualization.
A recent approach in the context of medical applications tackles
this issue using probabilistic animation that results from applying
a probabilistic transfer function [25], which is an approach to
visually convey the uncertainty in a tissue classification task.
Fig. 3 shows two frames from an animation sequence using this
approach, where a probabilistic transfer function steers the
animation. The amount of time that the boundary of a given
structure is shown in a given color corresponds to the probability
with which the boundary is actually located where it is shown in
the visualization.

Both incorporating domain knowledge and domain-specific
conventions and metaphors, e.g., semantic approaches, as well as
visualizing error and uncertainty have been identified as im-
portant research challenges for the future by the NIH-NSF
Visualization Research Challenges Report [26].
omical structures brain, soft tissue, bone and vasculature [5]. Transfer functions are
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Fig. 3. Two frames of a real-time animation sequence that conveys the uncertainty

regarding the border between a cyst and a hemorrhage in an MR brain

examination [25].

Fig. 4. Planning of a right subfrontal approach for pituitary tumor resection [28].

(a) Skin incision, (b) operating microscope view, and (c) keyhole approach

planning. Single-pass ray-casting can combine multiple modalities in real-time:

MRI (skin and brain); CT (bone); MRA (vessels).
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Tagged volume rendering: If a transfer function alone does not
suffice in order to separate different objects (tissues, organs) of
interest, segmentation becomes necessary, which incorporates
spatial information into the volume rendering process by
specifying to which object each voxel belongs. Segmentation
information can be used to define per-object transfer functions or
rendering modes [27]. This makes it significantly easier to specify
transfer functions and thus visually discriminate different anato-
mical structures, because optical properties can be assigned to
each segmented structure individually. Segmentation also pro-
vides a powerful basis for multi-volume rendering in which
multiple modalities such as CT, MRI, fMRI, and PET are combined
on a per-object basis. In this case, transfer functions can be
assigned individually to each segmented structure in each
modality [28]. Fig. 4 shows three stages of an application for the
preoperative planning of a neurosurgical keyhole approach. As in
the specification of transfer functions, uncertainty is also a very
important topic in segmentation. If a segmentation approach not
only determines the binary masks for each segmented object,
but also determines the uncertainty associated with the
segmentation, this information can be included in the
visualization as well [29].

One possibility to circumvent both, transfer function specifica-
tion and segmentation, is to use opacity peeling [30]. This
technique removes occluding parts of the volume in a view-
dependent manner. However, opacity peeling can also be com-
bined with the use of both transfer functions and segmentation, in
order to combine their advantages. For example, opacity
peeling achieves more accurate results when crucial structure
boundaries are known or can be determined on-the-fly. An
example of such an approach is skull peeling [28], where the
structures occluding the brain in an MR volume are peeled away
by using a co-registered CT volume to detect the structure
boundaries of the skull. In this case, the CT data are used for
on-the-fly thresholding of the bone, which is used to steer the
peeling of the MR volume. The result is an unoccluded view of
the brain.
3.2. Diffusion tensor imaging

Diffusion tensor imaging is a relatively new MR imaging
modality that measures water diffusion in tissue [2]. The water
molecules in tissue with an oriented structure, e.g., the white
matter in the brain, tend to diffuse along these structures. The
diffusion process is generally modeled by a Gaussian probability
density function, or equivalently it is described by a second order
tensor, i.e., a symmetric 3� 3 matrix whose eigenvalues are real
and positive. It is assumed that the diffusion tensor reflects the
underlying tissue structure; for example, the main eigenvector
points out the main orientation.

Applications: DTI was initially developed for visualizing white
matter in the brain but its use has since been extended to include,
for example, tumor dissection [31,32] and investigations of
ischemic muscle tissue in the heart [33]. Specifically, after
infarction the fiber structure of the heart muscle is remodeled
to adapt to the new conditions. Changes in the fiber structure can
be measured with DTI, with the aim of understanding why the
fiber remodeling sometimes fails, leading to a collapse of the
heart. Yet another interesting application is the use of DTI for
preterm neonates or neonates who suffer from hypoxic ischemia
[34] (a disorder characterized by a reduction in oxygen supply
(hypoxia) combined with reduced blood flow (ischemia) to the
brain). Being able to detect possible damages in the brain at an
early stage yields the possibility to initiate a therapy that ensures
the best possible development of the child. For all these
applications, advanced visualization plays a crucial role, as the
raw DTI data acquired by the MR scanner do not lend itself to
visual inspection.

Visualizing DTI tensors: The most common DTI visualization
technique used in clinical environments is based on a scalar
valued function of the tensor, i.e., the information in the six
independent variables of the 3� 3 symmetric tensor is reduced to
one scalar that represents some relevant characteristic, mainly the
diffusion anisotropy which describes the direction preference of
the diffusion process [35]. The resulting scalar data can be
visualized using common scalar field visualization techniques;
from 2D cutting plane color mappings to volume rendering or
even surface information that may reveal anatomically relevant
information [36].

When visualizing intrinsic 6D data as scalars, information is
inevitably lost. In case of diffusion tensors, diffusion shape and
orientation cannot be conveyed in maps of diffusion anisotropy.
Another group of techniques use glyph representations to
visualize the tensor data, see Fig. 5(i). Several glyph shapes have
been used, e.g., ellipsoids, cuboids, and superquadrics [37]. These
methods are able to show the full tensor data without any
information reduction. However, the clinical value of this
visualization technique remains an open question as a human
may have difficulties perceiving relevant information. Although
techniques have been proposed to improve the perception by
optimizing the placement of glyphs [38], cluttering is still a
problem.
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Fig. 5. Different visualizations of a healthy mouse heart dataset with resolution 128� 128� 64: (i) superquadrics glyph in a region of the heart using hue color coding of

the helix angle. (ii) Limited length fiber tracks obtained with seeding in a radial line. It shows the local helix form. (iii) Fiber tracking with region seeding. Fibers are shown

as tubes and color coded according to main eigenvector. Cross sections showing hue color map of the fractional anisotropy. (iv) Fiber tracking with full volume seeding and

using illuminated streamlines.

Fig. 6. Fiber tracking techniques determine the fibrous tissue structure from

diffusion tensor information. Left: whole-brain fiber tracking result; right: fibers

going through yellow sphere can be displayed in real-time. Fig. 7. Brain connectivity maps generated by tracking a large number of traces

from the points indicated by the arrows. Such maps can be used to delineate risk

structures, in this case the corpus callosum in the brain. The white arrows indicate

the seed points used for starting the tracking.
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Fiber tracking: Fiber tracking techniques aim at reconstructing
the fibrous tissue structure from the diffusion tensor information,
see Fig. 6. The advantage of these methods is that the result is
analogous to what the physicians or radiologists are expecting and
an extensive amount of research has therefore been focused on
this reconstruction [39–41]. Using streamline algorithms, the
tensor field is reduced to a vector field consisting of the main
eigenvectors of the tensors. This vector field can then be
visualized using common techniques in flow visualization. An
extension to streamlines are streamsurfaces, where a surface
represented by the two main eigenvectors is reconstructed in
areas of planar anisotropy [42,43]. The disadvantage of the
streamline methods is that they do not make full use of tensor
information, and thresholds based on anisotropy indices are
required to define when the main eigenvector is valid. Another
disadvantage is that the results are dependent on the seeding
strategy for the streamlines. Often the seeding regions are defined
subjectively by the user and relevant information can be missed
with unfortunately chosen seed points.

Probabilistic tracking methods aim at visualizing the uncer-
tainty present in DTI data by incorporating models of the
acquisition process and noise [44–46]. The uncertainty is assessed
by tracking many possible paths originating from a single seed
point and in this process taking the tensor uncertainty into
account. Based on the tracked paths, the maps of connectivity
probabilities are produced, see Fig. 7. Such maps may be used to
delineate risk structures for pre-surgical planning.

Fiber clustering: In practice, the interesting structures are not
individual fibers, which in any case are impossible to reconstruct,
since the DTI resolution is much lower than the diameter of the
individual fibers. Instead, the interesting structures are anatomi-
cal meaningful bundles that are formed by fibers. Furthermore, it
is interesting to compare individuals or groups of individuals, e.g.,
patients and normal controls, and quantify similarities and
differences.

Fiber clustering algorithms [47–49] have been developed
to group anatomically similar or related fibers into bundles (see
Fig. 8(ii) and (iii)). As no user interaction is needed, undesirable
bias is excluded. One of the main questions in several of these
algorithms is to decide when the two fibers are to be considered
similar or related, forming a bundle. Different distance/similarity
measures between fibers are employed (e.g., Hausdorf distance,
mean distance [49]).

3.3. Visualization of vessels

Knowing the branching pattern and topology of vascular
structures is crucial for planning and performing surgery. 3D
visualizations of vascular structures that convey the location,
properties, spatial distances, and functional relationships of
vessels to other relevant anatomic structures have been a frequent
request by surgeons. Such visualizations should mainly work with
CT images due to the better resolution compared to MR data.
Ideally, the visualization should be static, yet providing all
necessary morphological and spatial information in one single
picture. The perception of spatial distances, however, becomes
demanding when viewing a static, monoscopic projection of a 3D



ARTICLE IN PRESS

Fig. 8. The visualization of clustered fiber tracts improves the perception and allows for a better interaction with the data, e.g., single bundles can be selected

for quantification processes (cc ¼ corpus callosum, slf ¼ superior longitudinal fasciculus, cb ¼ cingulum bundle, ilf ¼ inferior longitudinal fasciculus, cst ¼ cortico-

spinal tract, fx ¼ fornix, uf ¼ uncinate fasciculus).

Fig. 9. Examples of vascular illustrations enhancing perception of properties important in surgery. Left and right image: hatching indicates curvature and distances; middle

image: textures indicate distances to a lesion (orange).
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visualization. This is especially true for complex vascular systems
that may consist of multiple interweaved tree-like structures such
as the vascular systems of the liver (portal vein, liver artery,
hepatic veins, and biliary ducts). The effectiveness and lucidity of
the visualization highly depend on the accentuation of spatial
depth as well as the perceptive separation of important, individual
properties. Algorithms aiming at improving spatial perception,
particularly depth perception, and at communicating important
vascular properties by using and extending illustrative
visualization techniques have been proposed in Ritter et al. [50],
see Fig. 9.

Conventional visualization techniques: For the diagnosis of
vascular diseases, visualization techniques, such as direct volume
rendering, maximum intensity projection and isosurface render-
ing, are employed. With these methods, the underlying image
data are faithfully represented [51]. However, artifacts due to
inhomogeneity of contrast agent distribution and aliasing pro-
blems due to the limited spatial resolution may hamper the
interpretation of spatial relations. Direct volume rendering of
segmented vascular structures is feasible and may be used to
emphasize specific features of the vessel wall, such as plaques
[52]. Therefore, explicit surface reconstructions of vascular
structures are often preferred for surgical therapy planning and
intra-operative visualization, where the interpretation of vascular
connectivity and topology is more important than the visualiza-
tion of vascular diseases [53].

Model-based reconstruction: The idea of model-based recon-
struction aims at improving the reconstruction of vascular
connectivity. Other reconstruction methods use the skeleton of a
vascular tree and the local radius information as input. Assuming
a circular cross section, surfaces of vascular trees are either
explicitly constructed or created by means of an implicit
description. Among the explicit methods, graphics primitives
such as cylinders [54] and truncated cones [55] have been
employed. These primitives are fitted along the cylinder and
scaled according to the local diameter of vascular structures. Since
skeletonization algorithms generally produce centerlines connect-
ing voxel centers, the visual quality may be improved by
smoothing the vessel skeleton, e.g., with a binomial filter [55]. A
general problem of these methods is discontinuities at branching
points. To overcome such problems, smooth transitions can be
modeled by freeform surfaces [56]. The most advanced explicit
reconstruction technique is based on subdivision surfaces [57]. An
initial base mesh is constructed along the vessel centerline. The
base mesh consists of quadrilateral patches and can be subdivided
and refined according to the Catmull–Clark scheme.

Implicit visualization of vascular structures: Implicit modeling,
as a special variant of model-based reconstruction, is used to
obtain smooth shapes. A special variant, convolution surfaces, can
be used to represent skeletal structures [58]. With careful
selection of a convolution filter, this concept can accurately
represent the local diameter of vascular structures [59]. The
implicit surface description has to be polygonized, e.g., with a
variant of Bloomenthal’s polygonizer. The accuracy of this
polygonization can be adjusted to either focus on speed or
accuracy. In an evaluation with 12 medical doctors, it was shown
that the improved visual quality improves the acceptance of 3D
visualizations of vascular structures. A comprehensive survey of
methods for vessel analysis and visualization can be found in
Bühler et al. [60].
4. Visual computing for medical treatment and simulation

A classic vision in surgery is to provide the surgeon with an
‘‘X-ray view’’ with which interior regions of the body that are
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hidden behind other organs are visualized. Virtual reality—or
actually augmented or mixed reality—techniques are addressing
this by enriching (‘‘augmenting’’) the view of the patient with
virtual information of the hidden regions. Of particular interest
are the regions or organs that are classified as risk structures, like
vascular structures (Section 3.3) or white matter fiber tracts
(Section 3.2), because they are vital and must not be damaged
during the surgical intervention.
Fig. 10. Tracking of a surgical screw driver through an instrument array. Image is

courtesy of Jürgen Hoffmann, Universität Tübingen.

1 Next to the computational costs, elastic registration also gives rise to

questions how accurately the details of a deformed dataset represents the reality.
4.1. Image-guided surgery

Information of risk structures of interest can be acquired by a
pre-operative scan of the patient, typically done with a CT or MRI
scanner. While this is already a common practice in diagnosis and
surgery planning (see Section 3.2), the major issue here is how to
relate the pre-operative dataset(s) with the patient on the
operation room (OR) table. The solution for this problem is to
register the dataset to the patient, or actually the OR table to
which the patient is fixed. This process requires the association of
landmarks visible in the dataset and on the patient. While a
minimum of four such associations is needed, typically six or
more associations are established to improve accuracy and
stability of the registration. Unfortunately, anatomical landmarks
can vary significantly and are sometimes very difficult to identify.
Instead, artificial markers, fiducials—which are easy to locate in
the dataset and on the patient—are attached to the patient before
the pre-operative scan.

After establishing the geometric transformation between the
dataset and OR table, the virtual data from the dataset can be
related to the patient, provided that the patient is not moved
independently from the OR table.

Tracking: The position and orientation (or pose) of the OR table
is measured based on a reference array—which is a defined,
identifiable object—that in turn is measured by a tracking system.
While a number of different methods are conceivable, passive or
active optical tracking based on light sources and cameras is the
current, most widely used technique. For passive tracking, one
(or more) infrared light sources emit infrared light that is reflected
by spherical markers of the reference array and again captured by
two cameras mounted in a fixed geometric relationship. In
contrast, active tracking uses several LED light sources that are
directly identified by the cameras. While the former concept does
not require an active control or energy supply, the latter requires
batteries—which at latest need to be replaced after each
intervention—and cable- or wireless-based control. In turn, the
higher grade of control for active tracking allows more flexibility
(active on/off switching of the LEDs) and hence somewhat better
accuracy in certain situations. Once the markers have been
identified, their positions are computed by triangulating the
information of the image position of the marker by both cameras.
To also compute the orientation of the reference array, a minimum
of three markers in a constant geometric relationship is needed.
Since the cameras measure projections of the markers, the
accuracy of the computed position depends on the geometric
arrangement of the markers; the further from linear dependence
they are, the better.

Pointers, endoscopes, probes and other tools are tracked
through another marker array (instrument array) by the tracking
system, see Fig. 10. Different geometric configurations (number of
markers, distance and angles between the markers) identify each
tool.

Alternatively to optical tracking, electro-magnetic field track-
ing is also becoming increasingly popular. Electro-magnetic
tracking has clear advantages, in that it does not require a static
relationship between tooltip and reference markers and also does
not need optical visibility of the markers. The disadvantage is that
it is subject to various electro-magnetic field measuring artifacts,
when ferromagnetic or metal objects are introduced into the
magnetic field. More details can be found in Preim and Bartz [61].

In surgery, the combined system of marker/sensor arrays and
tracking system is called an intra-operative navigation system and
largely defines the field of image-guided surgery.

Unfortunately, a number of caveats come with the electro-
magnetic tracking approach. First, the accuracy largely depends
on the accuracy of the registration procedure. An inaccurate
registration will lead to an insufficient overlap between dataset
and patient. Second, several environmental factors may introduce
measurement inaccuracies, which reduce the tracking quality. In
particular optical tracking is sensitive to scattered infrared light
from day light or physical deformations of the camera array
during the warm-up. Finally, the whole procedure builds on the
assumption that the patient has not changed significantly since
the pre-operative scan. If this assumption is not sufficiently
correct, the whole registration procedure becomes dramatically
more complex, because the body changes induce deformations of
the datasets, possibly down to every voxel. Therefore, this
situation requires elastic (non-rigid) registration with computa-
tional costs that are currently prohibitive for the surgical routine.1

An overview of different registration techniques (rigid and non-
rigid), can be found in Maintz and Viergever [62].
4.2. Intra-operative imaging

An alternative to advanced registration approaches, intra-
operative imaging re-scans the patient on the OR table. An
example where this alternative is typically chosen is in brain
surgery, where changes of pressure in the head after opening of
the skull and of the dura (the leather-like hard skin of the brain)
lead to position and shape changes of the brain. The so-called
brain shift becomes even stronger after the (surgical) removal of
tissue (e.g., tumor tissue) from the brain. The downside is that
intra-operative scanning is a complex issue and typically requires
a compromise on either image quality or costs. Intra-operative
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scanners must generally be more mobile and less complex than
pre-operative scanners or other restrictions apply which leads to a
lower image quality. For example, intra-operative MRI scanners
are used to provide access for the surgeons to the patient, hence
the name open MR has been established [63]. Technical boundary
conditions unfortunately only allow a weaker magnetic field,
meaning a lower image quality. Recently, full field MRI scanners
were introduced into the OR, providing an image quality
comparable to regular pre-operative scanners [64]. Unfortunately,
intra-operative full field MRI requires numerous changes to the
OR, making it an expensive alternative.

Intra-operative ultrasound is well established and a cost-
efficient scanning method, where a tracked ultrasound probe
acquires 2D or 3D data in real-time. In many situations, it can be
used as a valuable tool [65–68]. Alternatively, calibrated and
tracked intra-operative X-ray systems are an option proposed by
Navab et al. [69].

4.3. Virtual and mixed reality

Virtual reality simulates the interaction with virtual objects,
which—as the name suggests—do not physically exist. With such
medical simulations, surgeons can try out different approaches
without exposing the patient to any risks. These simulations are
adaptable to a wide range of clinical situations [70]. A specific
virtual reality application in medicine is virtual endoscopy, where
a virtual camera inspects body cavities in a representation
acquired by a CT or MRI scanner, see Fig. 11. Since a previous
survey report has already focused on virtual endoscopy [3], we
just direct the interested user to that paper.

In contrast, virtual objects are added to a representation of
reality in a mixed (augmented) reality system, whereas reality is
captured either by an optical see-through display, e.g., a head-
mounted display (HMD) [71,72] or a semi-transparent display
[73], or by a video see-through display [74]. Optical see-through
approaches represent the reality by direct viewing through (semi-
)transparent glasses. Subsequently, the virtual objects are pro-
jected onto the glasses. While this approach has the advantage of
no or little additional processing, it only provides a limited visual
quality, since the reality is attenuated by the glass. In contrast,
Fig. 11. Multimodal representation of cerebral ventricular system (3rd ventricle)

and local vascular architecture from two registered MRI datasets, from an

endoscopic point of view. The blue ellipsoid indicates the arterial circle of Willis

near the base of the skull, where left and right internal carotid arteries branch to

the middle and anterior cerebral arteries. This area indicates the target for certain

endoscope interventions to treat a hydrocephalus (ventriculostomy), where a new

drain of the ventricular system is realized.
video see-through uses a camera to acquire the reality and
embeds the virtual information in a post-processing step. This
gives a better visual quality but higher processing costs.

Overall, HMDs are not well accepted in a clinical environment,
which is mostly due to the limited optical possibilities (field of
view, resolution) and the ergonomic deficiencies of wearing
obstructing eye glasses or even more cumbersome helmets. The
tracked semi-transparent MEDARPA display [73] is mounted on a
swivel arm, and it is moved over the intervention site, where
reality is seen through the display, and virtuality is displayed on
the display. It provides good hand–eye coordination, similar to a
HMD, but does not require a display immediately in front of the
eyes. However, the attenuation due to the semi-transparency of
the display reduces the brightness and contrast, and hence
significantly reduces visibility. A standard display used by Fischer
et al. [74] provides a good visual representation, but not a good
hand–eye coordination, since the display is not positioned
between the eyes of the surgeon and the intervention site.
However, this system is designed for endoscopic representations,
where the physician is used to look at a display instead of at the
immediate intervention site. A different projection-only concept
was proposed by Hoppe et al. [75] and later by Ritter et al. [76]
where the virtual information is projected directly onto the organ
during open surgery. However, the organ surface is not well suited
as a projection screen; hence the visual quality remains quite low.
In the following, we limit ourselves to video see-through, but the
issues and solutions are similar for optical see-through. A survey
on this discussion can be found in Azuma [77].

In order to combine the reality captured by the video camera
and the virtuality, tracked by the tracking system, the video
camera must be calibrated or registered to the tracking system, so
that the video stream can be aligned with the patient dataset
(extrinsic calibration). Typically, a specific pattern is used, which
can be identified by the video software, like the video tracing
system ARToolkit [78]. If the pattern is also registered/calibrated
to the tracking system, the video image of the camera can be
matched with the virtual information tracked by the tracking
system. If the video camera is moved during the intervention, we
also need to attach tracking markers of the tracking system to the
camera body, so that the movement of the video camera can be
tracked. Furthermore, if a video camera with non-standard optics
is used, the optical system must be calibrated (intrinsic calibra-
tion) [79]. In an OR setting, additional tracking systems are not
practical due to the additional setup costs. If a data interface to
download the current tracking data is provided, this system can
be used as tracking system [74].

A different issue of the use of mixed or augmented reality for
medical applications is the depth perception. Johnson et al. [80]
pointed out the problem of correct depth perception for
transparent surface rendering in stereoscopic mixed reality of
the optical see-through MAGI system [81]. A more recent
discussion of this issue using different rendering alternatives
was also provided by Sielhorst et al. [82]. Correct depth perception
depends on many depth cues, such as motion parallax, relative
size, perceptive distortions, illumination, shading, and occlusion.
Even if a correct registration of the virtual information is provided,
incorrect cues may seriously disturb the correct depth perception.
One important cue is occlusion; if a virtual object that is located
behind a real object is rendered on top of it, the depth perception
is affected. Occlusion was one of the depth cues that was violated
in the application examined by Johnson et al. [80]. The issue was
aggravated by the use of transparent surfaces, which are known to
reduce correct depth perception [83]. Solutions for the occlusion
problem are discussed in the next section. A more detailed
discussion of the role of perception for computer graphics can be
found in a recent state-of-the-art report [84].
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Fig. 12. Mixed reality display for a patient skull phantom without and with correct occlusion of reality. Left: the pointer tool vanishes behind the skull model, but its virtual

representation is still rendered in front of the skull. Middle: a virtual representation of a tumor (red) is augmented in the camera image without considering occlusion. The

virtual representation of the instrument (yellow) is augmented taking into account occlusion information. Right: the occlusion information is correctly computed also for

complex situations, where the cheek bone occludes the instrument. Images are courtesy of Jan Fischer, University of Tubingen.
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Approaches in a less clinical, more technical environment are
described for ultrasound guided needle biopsy in classic papers of
Bajura et al. [85] and State et al. [86]. Specifically mixed reality
systems for liver surgery are discussed in Scheuering et al. [87],
Olbrich et al. [88], and Lange et al. [89], and mixed reality
endoscopy systems in Dey et al. [90]. Other approaches suggested
another mixed reality endoscope system for the port placement
for a surgical telemanipulator system [91] and a mixed reality
microscope [81].
Fig. 13. Example application of collision detection (intestine surgery simulation).

The objects in this case are highly deformable. Both self-collisions and collisions

between different objects must be detected and handled. (Screenshot courtesy L.

Raghupathi, L. Grisoni, F. Faure, D. Marchall, M.-P. Cani, C. Chaillou [99].)
4.4. Occlusion handling

A different issue of mixed reality is known as the occlusion
problem. This problem is based on the 3D nature of virtual objects
and the lack of 3D information in the camera video stream. 3D
objects can only be drawn over the camera video stream, resulting
in incorrect depth sorting of 3D objects in the mixed stream. If the
virtual object moves behind a real object in the camera stream, it
will still be drawn on top of it, disturbing the immersion of the
user (Fig. 12, left).

Different approaches have been proposed to address this
problem. Breen et al. suggested the manual creation of geometric
models of real scene objects to generate the missing 3D
information [92]. This geometry is then used as phantom
geometry to set the depth buffer for the subsequent rendering
of the virtual objects. While this approach works quite well in
static scenes, it involves a massive modeling effort for
complex environments. This approach was later extended for
the occlusion handling of an avatar representing a user [93].
More recently, a scenario for medical mixed reality has been
described, in which the patient phantom geometry was extracted
from volumetric datasets of the patients measured by a CT or MRI
scan [94]. In this case, however, the high complexity of 3D models
extracted from a volume dataset requires the simplification
of the models to enable the mandatory interactive performance.
This reduction can be achieved by extracting only a visual hull of
the patient’s geometry and removing all interior parts (Fig. 12
middle/right).

The phantom approach works well when sufficient informa-
tion can be extracted for the occluding objects. In other cases, the
information has to be extracted online from the video stream.
Malik et al. [95] extracted the information by tracking planar
features to estimate the hand of a user in a mixed reality
environment. Dynamic occlusion with static backgrounds on the
basis of textures for the background objects was addressed by
Fischer et al. [96]. Finally, Berger [97] and Lepetit et al. [98]
examined occlusion in stored video sequences.
4.5. Collision detection

Collision detection is an essential component in virtual and
mixed reality applications (Fig. 13). In such environments,
collisions between deformable organs have to be detected and
handled. Furthermore, collisions between surgical tools and
deformable tissue have to be processed and topological changes
due to cutting may occur [100].

There are several different approaches to the collision detec-
tion process. Bounding volume hierarchies (BVHs) have proven to
be very efficient for rigid objects [101,102]. A bounding volume
hierarchy covering and partitioning an object is simply a tree
where each node is associated with a bounding volume. BVHs can
also be used when dealing with reduced deformable models [103].

In contrast to the object-partitioning methods, space-parti-
tioning approaches are mainly used when objects are deformable
as they are independent of changes in the object topology. For the
partitioning, octrees [104], BSP trees [105] and voxel grids [106]
have been proposed.

For scenarios where deformable objects have to be tested
against rigid objects, e.g., between a surgical knife and a liver,
distance fields are a very elegant and simple solution that also
provides collision information like contact normals or penetration
depths [107]. A distance field specifies the minimum distance to a
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surface for all points in the field. In the literature, different data
structures have been proposed for representing distance fields,
e.g., octrees, BSP trees, or uniform grids. The problem of uniform
grids, the large memory consumption, can be alleviated by a
hierarchical data structure called adaptively sampled distance
fields [108]. For the collision detection problem, special attention
has to be paid to the continuity between different levels of the
tree [109].

Stochastic methods are very interesting for time-critical
scenarios. They offer the possibility to balance the quality of the
collision detection against computation time, e.g., by selecting
random pairs of colliding features as a guess of the potentially
intersecting regions [110]. To identify the colliding regions when
objects move or deform, temporal as well as spatial coherence can
be exploited [111]. A stochastic approach can be applied to several
collision detection problems [112].

Hardware-assisted approaches, especially full GPU implemen-
tations, have already been utilized for collision detection [113] and
self-collision detection [114].

All mentioned collision detection algorithms provide some
solutions for collision detection in medical applications. However,
a best-suited approach for all situations does not exist. If collisions
between rigid and deformable objects have to be tested, as in the
case of intra-operative situations, distance fields may be very
useful. In applications where a real-time response is most
important, such as training simulations and other virtual reality
applications, stochastic approaches or GPU-based implementa-
tions could be preferable, which may incur some occasional
inaccuracies. If accuracy is of importance, then BVH-based
approaches are probably the most suitable choice.

Current challenges in collision detection are
�
 deformable objects because it is notoriously difficult to find
any acceleration data structures that can be updated quickly
enough to be of any benefit;

�
 theoretical results about the average running time of the

algorithms which may be very interesting for real-time
scenarios;

�
 stochastic collision detection is still an area that has received

very little attention; and

�
 collision detection on the recent multi-core architectures, such

as the cell processor or NVidia’s Tesla architecture.
5. Conclusions

We have reviewed several algorithms for processing and
visualizing medical image data, including scalar, vector and tensor
data, with the aim of supporting image-guided surgery and
mixed-reality simulations. The challenge when developing such
algorithms is to extract relevant information and to present it in
perceptible way, preferably at interactive speed. Recent advances
in volume rendering techniques, like interactive rendering of
perspective projections, GPU-based ray-casting or semantic
transfer functions, are able to handle the current sizes of medical
data volumes and to present them to the clinician in an intuitive
and useful way. However, interactive performance remains a
problem.

Upcoming challenges include the visualization of multi-valued
data. For example, clinical studies where patients are frequently
examined with different medical imaging modalities are an
important research area. There, multi-modal visualization tech-
niques are used for merging relevant information. Moreover,
vector valued and tensor valued data are gaining importance in
the clinical environment.
An example is the diffusion weighted MRI modality for which
visualization of glyphs, fiber tracking and clustering are some of
the processing techniques considered in this work. As we
mentioned, not much information can be extracted directly from
the DTI raw data. Therefore, it is very important that image
analysis and visualization techniques that help to understand
these data are reliable. Furthermore, presenting the DTI data to a
user in a comprehensive way where there is a balance between
data simplification and clarity of the visualization remains an
important issue.

In the context of vessel visualization, current challenges
include the generation of geometric models appropriate for blood
flow simulations. Latest results indicate that existing vessel
visualization techniques may be adapted to produce meshes with
sufficient triangle quality [115]. However, thorough investigations
and comparisons with other techniques are necessary to come up
with a reliable approach for visualizing vascular structures and
simulating blood flow. With the information obtained via
simulations, quantities such as wall shear stress which depend
on morphologic, functional and dynamic factors may be investi-
gated and visualized.

Finally, bringing the visualization algorithms from the research
lab into the clinic and the operation room is not only an
engineering task. In a lot of applications physicians or radiologists
want to distinguish between healthy and pathology, or evaluate
changes on time, in an objective way. Finding good quantitative
non-biased ways to evaluate differences, as well as, visualization
and navigation tools that help identify these differences is also of
major importance for the clinical application of algorithms for
medical diagnosis and treatment. Augmented- and mixed-reality
methods are still at their inception state and collision detection
algorithms must be developed so that no bottlenecks arise when
utilizing them in mixed-reality simulations.
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