
Interactive fiber structure visualization of the heart

Peeters, T.H.J.M.; Vilanova Bartroli, A.; ter Haar Romenij, B.M.

Published in:
Computer Graphics Forum

DOI:
10.1111/j.1467-8659.2009.01421.x

Published: 01/01/2009

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Peeters, T. H. J. M., Vilanova, A., & Haar Romenij, ter, B. M. (2009). Interactive fiber structure visualization of
the heart. Computer Graphics Forum, 28(8), 2140-2150. DOI: 10.1111/j.1467-8659.2009.01421.x

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Nov. 2016

http://dx.doi.org/10.1111/j.1467-8659.2009.01421.x
https://pure.tue.nl/en/publications/interactive-fiber-structure-visualization-of-the-heart(9b3d4dee-d05b-4619-9fe1-3b74ca677f70).html

DOI: 10.1111/j.1467-8659.2009.01421.x COMPUTER GRAPHICS forum
Volume 28 (2009), number 8 pp. 2140–2150

Interactive Fibre Structure Visualization of the Heart

T. H. J. M. Peeters, A. Vilanova and B. M. ter Haar Romeny

Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
{T.Peeters, A.Vilanova, B.M.terhaarRomeny}@tue.nl

Abstract
The heart consists of densely packed muscle fibres. The orientation of these fibres can be acquired by using
Diffusion Tensor Imaging (DTI) ex vivo. A good way to visualize the fibre structure in a cross section of the heart is
by showing short line segments originating from the cross section and aligned with the local direction of the fibres.
If the line segments are placed dense enough, one can see how the fibre orientations change. However, generation
of the line segments takes time and thus the user has to wait for new geometry to be generated when the plane
defining the cross section is changed. We present a new direct rendering method for the visualization of the 3D
vector field in a 2D user-definable cross section of a heart. On the intersection of the plane with the vector field, the
full 3D vectors are rendered as 3D line segments with a local ray casting approach. No preprocessing of the data
is needed and no geometry is generated. This technique allows a fast inspection of the data to identify interesting
areas where further analysis is necessary (e.g. quantification or generation of streamlines). We also show how the
technique is generalized to other glyph shapes than line segments by implementing ellipsoids.

Keywords: diffusion tensor imaging, heart visualization, glyphs, GPU based

ACM CCS: Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing
Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; J.3 [Computer Applications]:
Life and Medical Sciences

1. Introduction

The heart is a hollow muscle that pumps blood through
the body by repeated, rhythmic contractions. As opposed to
skeletal muscle, the heart contracts without being triggered
by nerve impulses, and it can work continuously without fa-
tigue. The efficiency of the heart as a pump is the result of
the arrangement of the muscle fibres in the heart wall. This
cardiac structure is not fully understood and has been a topic
of research and discussion for at least a few hundred years.
Even today it is a disputed topic [AHR∗05]. Heart disorders
can cause a change in the fibrous structure of the heart. For
example, if a person survives acute cardiac ischemia, com-
monly known as a heart attack, a wound healing process
takes place that changes the structure of the fibres in the in-
farcted area. Also, in non-ischemic regions, the heart wall
can remodel and thicken in order to compensate for the loss
of functional muscle fibres in the ischemic areas. Because
the heart structure, and changes caused by heart disorders,
are not fully understood, research is being done with the
purpose of improving our insight in the fibrous structure of
both healthy and ischemic hearts. The long-term goal of this
research is to improve treatment of cardiac infarction, and to

avoid heart failure that occurs when the remodelling of the
heart after an infarct is not sufficient to compensate for the
physiological needs of the body.

One of the tools that are used to analyze the heart is Dif-
fusion Tensor Imaging (DTI). DTI is an MRI technique that
measures the local diffusion of water in tissue. The diffusion
in each voxel is represented by a 3 × 3 symmetric positive-
definite tensor. Eigenanalysis can be applied to these ten-
sors. The computed eigenvectors �e1, �e2, �e3 and correspond-
ing eigenvalues λ1 ≥ λ2 ≥ λ3 > 0 represent, respectively, the
principal diffusion directions and the corresponding diffu-
sion coefficients. These eigenvectors are bi-directional, but
for convenience in the rest of this paper, we will refer to
them simply as vectors. For convenience the eigenvectors
are referred to in the rest of the paper as vectors. The main
diffusion direction �e1 relates to the local muscle fibre orien-
tation in each voxel of the volume. We use this vector field
of �e1 to visualize the fibre structure of the heart.

DTI is an improvement over conventional histological
techniques, because it is not destructive and less labour-
intensitive [JPSH04]. However, like histology, heart DTI

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA. 2140

T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart 2141

Figure 1: (a) RGB colouring of fibre orientation. XYZ components of the vectors are mapped directly to the RGB components
of the colour. (b) Colour coding of αh. Blue indicates in-plane fibres, red is out-of-plane. (c), (d) Rendering of tracked fibres
in an axial slice of a healthy mouse heart which was scanned ex vivo. In (c) line lighting is used to show the fibres shapes. In
(d) the line lighting is supplemented with rendering of shadows to enhance the perception of coherent structures among fibres
[PVStHR06].

cannot be applied in vivo. Because the movement of a living
heart complicates a DTI scan too much, for heart research
we make use of healthy and infarcted mouse and rat hearts
which were scanned ex vivo. These scans were made for re-
search done to improve our understanding of the structure of
the heart and to improve treatment of people recovering from
cardiac ischemia.

The application of DTI to the heart muscle is relatively
new [JPSH04] and most visualization methods for DTI focus
onextracting important structures in the brain by using either
tractography [VZKL05] or segmentation [WV05, ZTW06].
These methods cannot be applied to the heart directly because
the data is of a different nature. The heart wall consists of a
densely packed set of muscle fibres of which the orientation
changes gradually throughout the heart wall. Tractography
can be used to give a global intuition of the structure of
fibres in a healthy heart, or show erratic behaviour in dis-
eased hearts. However, tractography can easily result in a
visualization that is too dense and thus suffers from occlu-
sion. Therefore, it should be complemented by an interactive
method that shows local and more detailed information. Seg-
mentation is not possible because the fibre orientations in a
healthy heart change gradually and no clear borders can be
given between different parts of the heart, as is the case in
the brain.

A good way to visualize the fibre structure in a cross
section of the heart is by showing short lines originating
from the cross section and aligned with the local direction of
the fibres [PVStHR06]. If the lines are placed dense enough,
one can see how the fibre orientations change in a continous
way (see Figure 1(d)).

However, in order to make up for the lack of context the
user has when showing detailed local information, we pro-
pose a new technique that makes it possible for the user to
interactively place a plane-of-interest (POI) that defines the
cross section from which the line segments originate. With

this method the user can quickly browse the data by translat-
ing and rotating the POI, and if needed, identify interesting
areas where further analysis is done using e.g. quantification
or tractography.

In our proposed method, no time is needed for the gener-
ation of geometry that will be rendered. On the intersection
of the POI with the vector field of �e1, the full 3D vectors
are rendered as 3D line segments with a local ray casting ap-
proach. Existing methods that generate densely placed glyphs
or short streamlines need to recompute the geometry each
time the POI is changed. This causes that action to not be
interactive. An additional advantage of our method is that the
seeding distance and line length can be changed interactively,
without the need to update geometry. Also, most glyphing
techniques use less dense placement of the glyphs than what
we propose. These techniques are less suitable for visualiza-
tion of the heart muscle because the gradual changes in fibre
orientation cannot be observed easily. We apply line lighting
and shadow computations in order to convey the 3D orien-
tation and structure of the vectors to the user. This lighting
and shadowing is essential to convey the structure to the user
when using very dense seeding. In order to have interactive
performance, we implemented both the ray casting and the
lighting and shadowing on the GPU.

Our contribution is a new method for interactive visual-
ization of the fibre structure of the heart. We apply local ray
casting on the GPU to render line-segment glyphs that rep-
resent fibre orientations without generating geometry. Using
this method, the user can interactively place the POI, which
defines the cross section that will be visualized. We show that
our method clearly outperforms geometry-based methods, if
the placement of the POI has to be interactive. We also show
that the method is general enough to show other glyphs than
line segments by implementing ellipsoid glyphs.

In Section 2, we list existing methods for visualizing DTI
data and other related techniques. In Section 3, we describe

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

2142 T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart

the method we propose in a general way. In Section 4, we
show how to implement the method on the GPU and give
implementation details. Our results are given in Section 5.
Finally, in Section 6, we summarize our contributions and
identify directions for future research.

2. Related Work

Various methods exist for visualizing DTI data. The simplest
is to reduce the tensor volume to a volume of scalars by
computing an anisotropy index such as, for example, frac-
tional anisotropy (FA) [BP96, VZKL05] in each voxel. This
scalar volume can then easily be visualized by mapping the
scalar values to colours using a colour lookup table. The re-
sulting colours are then shown in a 2D cross section of the
volume. The advantage is that this method is easy to imple-
ment and fast to render. The disadvantage is that a lot of
information is lost. Less information is lost if the tensor field
is reduced to the vector field of �e1 which defines the main
diffusion direction in each voxel. A popular way to visualize
this field is by slicing the data and mapping the components
of �e1 to RGB colour space (see Figure 1(a)). This colouring
can be combined with a weighting, e.g. by FA, in order to
show more information. However, this visualization is am-
biguous (different vectors can have the same colour) and not
intuitive.

An often-used scalar index for visualization and quantifi-
cation of fibre orientations in the heart is the helix angle αh

[DS79]. It represents the angle between the fibre direction
and the plane perpendicular to the long axis of the heart. The
helix angle is visualized in one slice of a heart in Figure 1(b).
The major disadvantage of using αh for visualization is,
again, the fact that it cannot show the full 3D vector infor-
mation. Furthermore, as with the RGB colour coding, colour
is not always an intuitive way of representing orientations.

For showing a more global overview of a DTI dataset,
several methods for tracking fibres can be used [VZKL05,
MCG94]. In brain DTI data, the reconstructed fibres are used
as approximations for bundles of axons that connect different
parts of the brain. When DTI and fibre tracking are applied
to heart data, the reconstructed fibres approximate bundles
of muscle fibres and can be used to show the structure of the
heart [ZB03]. However, in our application, where we have
densely packed fibres in the heart wall, visual clutter will be
a problem. Also, preprocessing of the data is needed in order
to acquire the streamlines that will be rendered. We want
to avoid this step and make the definition of the region-of-
interest (ROI) interactive. There are methods where special
data structures are used to select precalculated fibres that go
through interactively defined ROIs [BBP∗05, ASM∗04] in the
brain. However, the goal and approach in those methods is
different from ours. They visualize connectivity in the brain
by showing long fibre bundles going through relatively small
ROIs, and we show the changes in fibre orientation in the
heart by rendering short line segments in larger ROIs.

Dense and texture-based methods such as LIC [CL93] and
IBFV [vW02] have been very succesful in visualizing 2D
vector fields. Extensions of these 2D techniques have been
made to apply them to cross sections of 3D vector fields
[LHD∗04, SBH99]. However, these methods often project
the 3D vectors on a 2D surface [SBH99]. Thus they lose the
third dimension of the vectors or suffer from clutter. In our
application projecting the 3D vector would easily lead to mis-
interpretation of the data. True 3D texture-based approaches
exist [TvW03, IG97, SFCN02] where 3D textures are gener-
ated. However, often this texture generation is not interactive
for large datasets (i.e. 5123) [HA04]. Rendering of the output
volume using standard volume rendering techniques can give
problems with aliasing, occlusion and the perception of line
structures in the volume. There are solutions for these prob-
lems such as oversampling the input texture or blurring the
output texture [HA04], injecting ‘opacity noise’ [TvW03]
and several shading techniques [HA04, WSE07]. However,
in the end the visual result heavily depends on the resolu-
tions of the textures that are used so a balance must be found
between texture size and performance. Also, in flow visual-
ization methods that rely on the rendering of a scalar volume,
it is difficult to distinguish the individual line structures be-
cause only volumetric data is available.

Peeters et al. [PVStHR06] visualize the fibrous structure
of the heart by rendering short line segments in the main
diffusion directions in one slice of the heart (see Figures 1(c)
and (d)). In order to effectively convey the structure of the
fibres, very dense seeding is used. Line lighting and shad-
owing is applied to the line segments, which is essential to
show the coherent structure of groups of fibres. The main
disadvantage of this method is that many line segments (in
the order of 10 K and more) must be generated. Because of
this, the user cannot interactively change the POI that defines
the positions of the seed points, or other parameters such as
seed-point density and line length.

There are methods for interactive and high-quality render-
ing of glyphs using GPU ray casting [Gum03, SWBG06].
However, those methods focus on geometrically more com-
plex glyphs such as ellipsoids as opposed to our ‘simple’
line segments. They render a 2D sprite for each glyph that
is shown The use of a sprite per-glyph would not be bene-
ficial for the complexity and performance of our rendering.
Therefore, we render only one bounding box that contains all
our glyphs. Also, we exploit the fact that our densely packed
glyphs originate from points on a square grid and determine
inside the fragment shader which glyph is visible, while the
other approaches use the Z-buffer for this purpose.

The method that we propose was initially inspired by relief
mapping [OBM00, POC05]. Relief mapping maps a relief
texture to a surface. The relief texture contains a displacement
in the direction orthogonal to the surface in each texel. The
surface with the relief texture can be rendered in real-time
by applying ray casting in the fragment shader on the GPU
[POC05].

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart 2143

Although relief mapping inspired us, we cannot use this
approach directly. We cannot convert the dense field of lines
that we render into a relief map. Relief maps only support
displacements orthogonal to the surface, while our line seg-
ments can have any orientation. Furthermore, a step-based
ray-casting approach would not work for us because we
would miss the thin lines that we want to render when taking
discrete steps along the view ray. Thus we propose a new
method for interactive visualizations of fibre orientations of
cross sections of DTI data in the following sections.

3. Ray Casting Vectors in a Plane

Our goal is to render a dense set of simple glyphs (i.e. line
segments) that originate from a user-specified cross section
defined by a POI. The seed points that are used as the origins
for the line segments are implicitly defined by the POI and a
user-specified seed-distance d s .

We do not do any rendering calculations on the CPU. First,
the whole vector volume is loaded into the GPU memory as
a 3D texture. Then, we render a bounding box around all
the line segments originating from the user-defined POI. As
a result of this, a fragment shader is called for each of the
pixels that potentially has to show a part of the data to be
visualized.

For each pixel, we have the following rendering steps.

1. Determine the view-ray V = V + μ�v. V is the camera
position and �v is the normalized view direction.

2. Select the seed points S on the POI that are in range for
V .

3. Compute intersections I of the glyphs originating from
S with view-ray V .

4. Render the glyph with intersection I ∈ I closest to the
camera position V . This includes lighting and shadow
computations.

We know the camera position V and the intersection of
the POI and V , so step 1 is straightforward. Steps 2–4 are
further explained in Sections 3.1 to 3.3. Algorithm details
that depend on the type of glyph (line segments or ellipsoids)
are given in Sections 4.2 and 4.3.

3.1. Select seed points in range

The line segments that will render originate from seed points
in the POI. The POI is defined by three vertices O, P 1 and P2

where
→
OP1, is orthogonal to

→
OP2, (see Figure 2). We do not

explicitly generate vertices to be used as seed points, but we
use the seed distance d s and place the seed points on a square
grid on the POI. In order to select the seed points S that have
a line segment that potentially intersects the view-ray V we
need to know the intersection point P of V and the POI, and
the angle between view direction �v and the normal �n of the
POI. This is illustrated in Figure 2.

Figure 2: Illustration of the POI. The figure shows some
seed points in the lower-left of the POI. The seed points
cover the whole plane. Vectors �s1 and �s2 are shown that
are used to iterate over all seed points. They are parallel to

vectors
→
OP1,

→
OP2 which are also shown. Furthermore, we

show camera position V, view direction �v, POI normal �n and
the radius h/(�v · �n) of the circle to select the seed points in
the range of the view-ray.

For the computation of P, we use the following equation
for the POI:

P : nx �x + ny �y + nz�z + d = 0 (1)

where (nx, ny, ny)T = �n and d is the distance from the POI
to the point (0,0,0) in world coordinates. In the intersection
point P, we have (V + μ�v) · �n + d = 0. From this, we can
compute μ as follows:

μ = − �n · V + d

�n · �v (2)

If V is parallel to the POI we have �n · �v = 0 and μ = ∞.
However, as we will show further, the range of seed points
to be taken into account is also ∞ in this case, so no seed
points will be missed.

The length of the glyphs is given by h. So, we only need
to take those seed points S into account where the distance
d(S,V) between the seed point S and the viewray V is at
most h. We know that for |�v · �n| = 1, we only need to look
at those seed points that are inside the circle on the POI with
origin P and radius h. However, if the viewing direction is
not orthogonal to the plane, we need to look in a larger area.
An initial upper bound for the area of the seed points is a
circle with radius h/(�v · �n). When �v · �n = 0 the result is ∞.
In the implementation this is not a problem because we only
look at seed points that are inside the boundaries of the POI
and the input tensor field.

We now have initial bounds for which seed points are
possibly in the range for V . For each row of seed points, we
compute which are the first and last seed point that is range
for V . Then we only take those seed points and the ones

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

2144 T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart

in between them into account. Details of this algorithm are
given in Section 4.1.

3.2. Compute glyph—view-ray intersections

Next, we need to know which glyph is visible in the current
pixel. S is the collection of seed points with d(S,V) ≤ h for
all S ∈ S. For each seed point S ∈ S we run the following
algorithm:

• If V does not intersect glyph G(S), discard the seed point.

• Otherwise, calculate the intersection point I of V and
G(S).

We do this for each S ∈ S and keep track of the seed
point for which ||S − V || is the smallest. That is, for which
seed point I = V + μ�v has the smallest μ ≥ 0. Thus, we
select that glyph and render it with the proper lighting and
shadowing.

3.3. Shadowing

If we render the line segments using a colour that does not
depend on its neighbourhood then it becomes impossible to
distinguish different line segments that are very close to each
other (see Figure 1(c)). We use shadowing to avoid this (see
Figure 1(d)). In order to determine for each fragment whether
it is in direct light or in shadow, we repeat the algorithms
given in Sections 3.1 and 3.2. However, now we use the
light-ray L instead of the view-ray

L(μ) = L + μ�l, (3)

where L is the light position, and �l the light-ray direction.
Thus, we replace the view direction �v by the light direction
�l = I−L

||I−L|| and E by L. We again compute the glyph with the
smallest distance ||I − L|| from the intersection to the light
source. If we acquire the same line segment as the one that
is the closest to V in the current fragment, then it is directly
lighted. Otherwise, there is another line segment in between
the light source and the one that we are currently rendering.
In that case, it is in shadow.

In the lighting equation, we use lower values for the am-
bient and diffuse light coefficients for fragments that are in
shadow to make the shadowed fragments darker. Also, we
set the specular component to 0 to avoid specular highlights
in shadow.

4. Algorithm Details

We implemented our method as a mapper in the Visualiza-
tion ToolKit (VTK) [SML04] and integrated it in with our
DTI-visualization tool called DTITool that is used by our
collaborators to do heart and brain research. Because of this
integration, we can combine our new method with other vi-
sualizations such as colour-coded planes and fibre tracking,
which is shown in Figures 3–5. The mapper has as input the

Figure 3: Our new rendering method showing an axial cross
section of a healthy mouse heart. RGB colouring of fibre
orientation was applied to the fibres and to the textured plane
showing a coronal cross section in the background.

vector volume, and a vtkPlaneWidget. The vtkPlaneWidget
defines the POI and can be interactively rotated, translated
and scaled by the user. Furthermore, the user can set the seed
distance d s . The shader programs that run on the GPU are
written in OpenGL Shading Language (GLSL).

First, we do eigenalysis to compute the eigenvectors. We
then load the main vectors in GPU memory as a 3D RGB
float texture. The XYZ-components of the vectors are stored
in the RGB-components of the texture. To avoid interpolation
problems, on the GPU, we make use of nearest neighbour
interpolation of the vectors.

In Section 4.1, we give implementation details about how
relevant seed points are selected in the fragment shader. In
Section 4.2, we explain how to do intersection and lighting
for line segments. In order to show that our method is easily
adapted to other glyphs than line segments, in Section 4.3, we
show how to do the intersection and lighting for ellipsoids.

4.1. Seed-point selection

For the representation of the POI as described in Section 3.1
we pass the origin O and two points P1 and P2 with orthogonal

vectors
→
OP1, and

→
OP2 (see Figure 2) as uniform variables

to the shaders. We also compute seeding step vectors �s1, �s2

parallel to respectively
→
OP1, and

→
OP2 with length d s that

will be used to go from one seeding position to the next.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart 2145

Figure 4: Three cross sections of a healthy mouse heart vi-
sualized with three different methods. (1) Short line segments
rendered as geometry. (2) Colour-coding of αh shown as a
texture on a plane. (3) Short line segments rendered with our
new method.

We showed in Section 3.1 that the seed points with a
distance larger than h/(�v · �n) to the intersection P of the
view ray and the POI do not need be taken into account. In
the fragment shader, we use this to compute the number of
steps in directions �s1, �s2, −�s1 and −�s2 that need to be taken
from the seed point closest to P in order to iterate over all the
seed points by:

NumSteps =
⌊h/ds

�n · �v
⌋

if �n · �v
= 0

NumSteps = ∞ if �n · �v = 0.

Each seed point S can be written as S = O + i �s1 + j �s2

with integer values i and j. The initial ranges for i and j
are given by i ∈ [mini , maxi], j ∈ [minj , maxj] as deter-
mined by the calculation of NumSteps described earlier, and
bounded by the size of the POI and of the input volume.
We iterate over the selected seed points in a nested loop. To
avoid handling points that are out-of-range for the viewray
V , in the inner loop, we compute the range for i to have only
seed points with a distance of at most h to V . We define
C as the cylinder with axis V and radius h (see Figure 6).

Then, we iterate over the seed points that are in range as
follows:

float μrange[2]; float irange[2];
for (j = minj ; j ≤ maxj ; j = j + 1)

{
point R = O + j ∗ �s2;
line L(μ) = R + μ �s1/| �s1|;
float d = minimal distance between V and L;
float μd = argument of L(μ) in the point

where L is closest to V .
If (d ≤ h)
{
\\Compute the values of μ where L intersects C:
vec �n = (�s1 × �v)/| �s1 × �v|;
vec �o = (�n × �s1)/|�n × �s1|;
float t = (h2 − d2)/(�v · �o);
float μrange[2] = {μd − t , μd + t};
If there is only one intersection,

then t = 0 and μrange[0] = μrange[1].
irange[0] = max(mini , ceil(μrange[0]));
irange[1] = min(maxi , floor(μrange[1]));
for (i = irange[0]; i ≤ irange[1]; i = i + 1)

{
Handle seed point S = R + i ∗ �s1 + j ∗ �s2;

}}}

Using this algorithm, texture lookups and distance calcu-
lations are only done for the seed points with a distance of
at most h to the view-ray V . Thus, we use the optimal search
area for seed points that can be the origin of glyphs that
intersect V .

4.2. Intersection and lighting of line segments

Because lines are infinitesimally thin, the chance that a line
intersects with the view ray is infinitesimally small. There-
fore, we assign a thickness r to the lines, where r depends
on the distance to V . Because the lines that we render have a
length h and are not infinitely long, we also incorporate h in
our algorithm. In order to find the line segment that is visible
in the current fragment, for each seed point S in the set of
preselected seed points S, we run the following algorithm:

• �w is the eigenvector at position S of the input volume

• Compute the closest distance d between line W(μ) =
S + μ �w and V . The algorithm is given in Appendix A.

• If d > r then the line can be discarded.

• If d ≤ r , but not in a point Q where ||Q − S|| ≤ h, then
the line can also be discarded because it would need a
length larger than h to be visible.

• Otherwise, the current line is considered to intersect the
view ray.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

2146 T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart

Figure 5: Our new rendering method using ellipsoids with fixed shape to show the fibre orientations in the cross section of
an infarcted heart, which was scanned 28 days after the infarct. We also tracked fibres from two different seeding areas. The
resulting fibres were rendered as thin tubes and RGB colouring of the fibre orientation was used.

Figure 6: Illustration of the seed-point selection. Point P is
the intersection of the view-ray with the POI and ellipsoid
C is the intersection of the POI with cylinder C. Line L is
defined by R + μ �s1/| �s1|. The small grey circles denote seed-
point locations.

The line that will be visible in the current pixel is the line
that has the intersection I with the view ray that is the closest
to the camera position V . Thus, we select that line and render
it with the proper lighting and shadowing.

In the Phong lighting model [Pho75], the light intensity g
at a point on a surface, follows the equation:

g = ka + kd (�l · �n) + ks(�v · �r)p. (4)

The material-specific values of ka , kd , ks and p are the ambi-
ent, diffuse and specular coefficients, and the specular com-
ponent or shininess. Vector �n is the normal at the surface
point. �l is the direction of the light, �v is the view direction,
and �r is the reflection of �l at �n. Vectors �n, �l, �v, and �r have
unit length.

This model cannot be applied to illuminate lines directly,
because lines do not have a single normal �n, but a plane of
normals perpendicular to the tangent direction �w. This prob-
lem can be resolved by choosing for �n the vector in the nor-
mal plane that maximizes (�l · �n) and (�v · �r) in Equation (4).
To avoid explicit calculation of the optimal �n, the following
equations can be used [SZH97]:

�l · �n =
√

1 − (�l · �w)2 (5)

�v · �r = (�l · �n)
√

1 − (�v · �w)2 − (�l · �w)(�v · �w) (6)

Using Equations (5) and (6), the calculation of g in
Equation (4) is implemented directly in the fragment shader.
We also update the current fragment depth, which is stored in
the Z-buffer, such that our rendered line segments integrate
correctly with other objects in the scene.

4.3. Intersection and lighting of ellipsoids

In order to show that our method is general enough to deal
with other glyph-shapes than line-segments, we implemented

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart 2147

ellipsoid glyphs. Later, we explain how to handle view-ray–
glyph intersection and lighting if we have ellipsoid glyphs.
Other parts of the algorithm do not depend on the type of
glyphs that we choose to render.

The equation of an axes-aligned ellipsoid is

x2

r2
x

+ y2

r2
y

+ z2

r2
z

= 1, (7)

where r x,y,z are the radii of the ellipsoid in the x, y and z-
directions. In order to compute the intersection of the view-
ray V(μ) = V + μ�v with the ellipsoid, we fill in V + μ�v for
(x, y, z)T. The resulting equation can be solved using the
quadratic formula

μ = −b ± √
D

2a
, where D = b2 − 4ac (8)

where

a =
∑

i∈{x,y,z}
ri �v2

i (9)

b =
∑

i∈{x,y,z}
2ri(Vi − Si)�vi (10)

c =
∑

i∈{x,y,z}
r(Vi − Si)

2, (11)

where S is the centre of the ellipsoid. The number of solutions
depends on the value of D. For D < 0 there is no intersection.
For D ≥ 0, the closest intersection has μ = (b2 − √

D)/2a.

Here, we render ellipsoids with fixed radii (r x , r y , r z) =
(0.8, 0.1, 0.1), and the long axis aligned with the vector
given at seed-point positions S. In order to solve V = G(S),
where G(S) defines the ellipsoid, we transform view ray V =
V + μ�v into the local coordinate system by multiplying �v
and V (relative to S) with rotation matrix RS , which aligns
the x-axis with the vector in S. Then, we solve equation (8).
We can fill in the computed μ directly in the original equation
for V to compute the intersection point in world coordinates.

In order to compute the normal �ne of the ellipsoid in the
intersection point I, we first compute the vector pointing
from S to I. This would be the proper normal �ns , if we were
dealing with a simple sphere. However, because we have an
ellipsoid, we compute the derivative of (x2/r x + y2/r y +
z2/r z − 1) in the local coordinate system

�ne = RT
S (2M(RS �ns)), (12)

where M is the diagonal matrix of the inverse ellipsoid radii,
thus Mii = 1/r i for i ∈ {x, y, z} and Mij = 0 if i
= j . RT

S

is the transpose of rotation matrix RS . Vector �ne can be used
in standard lighting calculations.

5. Results

We applied the proposed visualization to a series of healthy
and infarcted mouse hearts. Four datasets were available of
healthy hearts. For infarcted hearts we had 5, 4 and 5 datasets
measured, respectively, at 7, 14 and 28 days after infarction.
Each heart is only a few millimeters long and the scanning
resolution was 117 μm × 117 μm × 234 μm. Each dataset
has 128 × 128 × 64 voxels. We also used 7 healthy rat heart
datasets with dimensions varying from 64 × 64 × 128 to 96 ×
96 × 128 voxels.

We visualized the data with our proposed technique and
compared it with a previous method that generates geom-
etry [PVStHR06]. First, we analyze the visual results in
Section 5.1 and then we give performance measurements
and a comparison in Section 5.2.

5.1. Visual aspects

Figure 3 shows a short-axis cross section of a healthy mouse
heart. The visualization shows how the fibre orientation
changes in the heart wall. We applied RGB colouring of
the fibre orientation to the fibres. We also applied it to the
textured plane showing a coronal cross section in the back-
ground. The user can enable the plane widget that can be
used to modify the POI by translating and rotating it. The
line segments originating from the POI are immediately vis-
ible while interacting with the POI. For 2D images, coloured
cross sections can be more clear, but when the user has the
possibility to interact with the scene, our visualization con-
veys the fibre structure in a more intuitive way.

The results of the proposed method look the same as the
method that generates geometry [PVStHR06]. To illustrate
this, Figure 4 shows a cross section using geometry, as well as
a cross section rendered using our new method. The topmost
short-axis cross section (1) uses short line segments that were
rendered as geometry. The bottom short-axis slice (2) shows
fibre orientations as colours using αh colouring (as described
in Section 2). Note that for neither method shadows cast by
other geometry is supported. The third slice (3) was placed
freely using our interactive POI and is close to a long-axis
cross section. It was rendered using our proposed method.
In order to distinguish the two methods for rendering line
segments, we applied tone shading to the geometry-based
rendering to give it a different colour. The seeding distance
and fibre length was the same for both methods.

Besides a comparison of the two methods, Figure 4 also
shows how our new method integrates well with geome-
try. Because for each fragment that we render, we send the
correct depth to the depth buffer, depth-based visibility is au-
tomatically dealt with by the GPU. This Figure shows that it
combines well with line segments and with a textured plane
that is transparent where no fibres are present. But it works
for any geometry that is rendered in the same scene.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

2148 T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart

Table 1: Performance measurements for rendering line segments and ellipsoids in several datasets with different methods.

Method Dataset Number of seeds h Generate geometry (s) Render performance (FPS) Figure

Ray cast lines Mouseheart 10 K 1.0 – 35–50 3
Geometry lines Mouseheart 10 K 1.0 5 28–30 1(d)
Ray cast lines Mouseheart 27 K 1.0 – 30–40 4
Geometry lines Mouseheart 27 K 1.0 14 25–28 –
Ray cast ellipse Infarcted 8 K 3.0 – 20–35 5
Geometry ellipse Infarcted 8 K 3.0 10 10–12 –

Note: Rendering was done on a PC with an Intel Pentium 4 3.20 GHz CPU, 3 GB RAM and a GeForce 8800 GTX graphics card with 768 MB
of memory. The rendering viewport was 1024 × 768 pixels. The mouseheart and infarcted datasets both have dimensions of 128 × 128 × 64
voxels. The generated ellipses for method ‘geometry ellipse’ have 64 vertices per glyph. The value of h is the length of the line segments or the
largest radius of the ellipsoids.

Figure 5 shows a short-axis slice of an infarcted mouse
heart. The fibre orientations were rendered using ellipsoids
as described in Section 4.3. An exact border for the infarct
cannot be given, but in the infarcted area the heart wall is
thinner than normally. Also, the fibre orientations are less
structured. We show this by visualizing fibres tracked using
streamline tracing in a healthy and an infarcted area. The
difference in how well aligned fibre orientations are locally is
also visible from the ellipsoids that we render. In the infarcted
area (lower-right) there is no apparent structure, while in, e.g.
the left of the image the ellipsoids are nicely aligned and their
orientation changes smoothly when going through the heart
wall.

5.2. Performance

We compared the performance of the proposed method to the
performance of a method where geometry is generated. The
results are shown in Table 1. The measurements were taken
such that the whole rendered scene is visible in the current
viewport, and covering more than half the screen area (similar
to what is shown in the figures). If we zoom very far such that
only a few dozen glyphs fill the viewport, the performance
drops because coverage of screen space by the glyphs in-
creases, but not lower than 10–15 FPS. When zooming out the
performance increases, with an upper limit of about 100 FPS.
Performance doubles if shadows are disabled.

Although the methods we used for generating and ren-
dering geometry were not optimized, it can be seen that the
two different rendering approaches are competitive when it
comes to rendering performance. However, if the user wants
to change the POI or properties of the lines or ellipsoids that
are being rendered, then new geometry needs to be generated
which currently takes a waiting time in the order of seconds.
With our proposed ray casting method, this step is not needed
so we clearly outperform geometry-based methods there.

The performance of the geometry-based method can be
improved, for example by making use of geometry shaders.

However, the seed points will still need to be generated on
CPU. Also, for rendering ellipsoids with a high visual qual-
ity, a lot of vertices are needed and thus a geometry-based
approach will not outperform our ray-casting approach.

6. Conclusions and Future Work

Our main contribution is a new GPU-based ray casting tech-
nique for interactively visualizing cross sections of the heart,
which consists of densely-packed muscle fibres. This cross
section can be chosen interactively by the user by moving
and rotating a POI. In the POI, the full 3D fibre orientations
are visualized as short lines or ellipsoids, using proper light-
ing and shadowing. This enables the user to quickly inspect a
volume of vectors derived from a DTI scan of mouse hearts.
For this application, it is very important that the seeding is
very dense in order to show the gradual change in fibre ori-
entation througout the heart wall. It is also important that the
user can interactively place the POI. The proposed method
outperforms the approach where geometry is generated, and
can be used for fast inspection of the data to identify inter-
esting areas where further analysis is necessary. It can be
used, for example, to select areas where quantification (e.g.
statistics of fibre orientation or FA in healthy vs. infarcted
areas) is done or where to place seed points to initiate fibre
tracking. An additional advantage of our technique is that
it allows interactive changes in parameters, such as seeding
density and line-segment length, without the need to generate
geometry.

It would be a useful extension to support triangles to define
the cross section instead of the rectangular plane that we
have now. Because our visualization integrates well with
other rendered objects in the scene, this would allow for
visualization of any triangulated surface with our method.
The main challenge with this extension is, however, to define
a meaningful surface in the heart-wall that we could visualize.

Another possible extension is to show more information
in the glyphs. In DTI data, the diffusion tensors contain more

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart 2149

information than fibre orientations. It is possible to show that
information using, for example, colour, line-segment length,
or ellipsoid shape. However, the main challenge in show-
ing additional information, especially if the seeding is very
dense, is how to convey such large amounts of information
to the user in an effective way such that important patterns
in the data become visible.

Acknowledgements

We thank the Biomedical NMR group, and especially Gustav
Strijkers and Annemiek Bouts, of the Department of Biomed-
ical Engineering of the Technische Universiteit Eindhoven
for the datasets. This study was financially supported by
the Dutch BSIK program entitled Molecular Imaging of Is-
chemic heart disease (project number BSIK 03033). Part of
this work was supported by the VENI program of the Nether-
lands Organisation for Scientific Research (NWO).

References

[AHR∗05] ANDERSON R., HO S., REDMANN K., SANCHEZ-
QUINTANA D., LUNKENHEIMER P.: The anatomical arrange-
ment of the myocardial cells making up the ventricular
mass. European Journal of Cardio-Thoracic Surgery 28
(2005), 517–525.

[ASM∗04] AKERS D., SHERBONDY A., MACKENZIE R.,
DOUGHERTY R., WANDELL B.: Exploration of the brain’s
white matter pathways with dynamic queries. In Proceed-
ings of IEEE Visualization 2004 (2004), IEEE Computer
Society, pp. 377–384.

[BBP∗05] BLAAS J., BOTHA C., PETERS B., VOS F., POST

F.: Fast and reproducible fiber bundle selection in DTI
visualization. In Proceedings of IEEE Visualization 2005
(2005), pp. 59–64.

[BP96] BASSER P. J., PIERPAOLI C.: Microstructural
and physiological features of tissues elucidated by
quantitative-diffusion-tensor MRI. Journal of Magnetic
Resonance B 111, 3 (1996), 209–219.

[CL93] CABRAL B., LEEDOM L.: Imaging vector fields us-
ing line integral convolution. In Proceedings of ACM SIG-
GRAPH ’93 (1993), ACM, pp. 263–272.

[DS79] STREETER J. D. D.: Gross morphology and fiber ge-
ometry of the heart. In Handbook of physiology—The Car-
diovascular System vol. 1 (1979), Berne R. (Ed.), Williams
and Wilkins, pp. 61–112.

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids
with depth correction. In VMV (2003), Ertl T. (Ed.), Aka
GmbH, pp. 245–252.

[HA04] HELGELAND A., ANDREASSEN O.: Visualization of
vector fields using seed lic and volume rendering. IEEE
Transactions on Visualization and Computer Graphics 10,
6 (2004), 673–682.

[IG97] INTERRANTE V., GROSCH C.: Strategies for effec-
tively visualizing 3d flow with volume lic. In VIS ’97:
Proceedings of the 8th conference on Visualization ’97
(Los Alamitos, CA, USA, 1997), IEEE Computer Society
Press, pp. 421–424.

[JPSH04] JIANG Y., PANDYA K., SMITHIES O., HSU E.:
Three-dimensional diffusion tensor microscopy of fixed
mouse hearts. Magnetic Resonance in Medicine 52 (2004),
453–460.

[LHD∗04] LARAMEE R. S., HAUSER H., DOLEISCH H.,
VROLIJK B., POST F. H., WEISKOPF D.: The state of the art
in flow visualisation: Dense and texture-based techniques.
Computer Graphics Forum (2004), 203–221.

[MCG94] MAX N., CRAWFIS R., GRANT C.: Visualizing 3d
velocity fields near contour surfaces. In VIS ’94: Proceed-
ings of the conference on Visualization ’94 (Los Alamitos,
CA, USA, 1994), IEEE Computer Society Press, pp. 248–
255.

[OBM00] OLIVEIRA M. M., BISHOP G., MCALLISTER D.:
Relief texture mapping. In SIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and
interactive techniques (New York, NY, USA, 2000), ACM
Press/Addison-Wesley Publishing Co., pp. 359–368.

[Pho75] PHONG B. T.: Illumination for computer generated
pictures. Commun. ACM 18, 6 (1975), 311–317.

[POC05] POLICARPO F., OLIVEIRA M. M., COMBA J. L. D.:
Real-time relief mapping on arbitrary polygonal surfaces.
In I3D ’05: Proceedings of the 2005 symposium on In-
teractive 3D graphics and games (New York, NY, USA,
2005), ACM, pp. 155–162.

[PVStHR06] PEETERS T., VILANOVA A., STRIJKERS G., TER

HAAR ROMENY B.: Visualization of the fibrous structure of
the heart. In Proceedings of Vision Modeling and Visu-
alization 2006 (2006), Kobbelt L., Kuhlen T., Aach T.,
Westermann R. (Eds.), pp. 309–316.

[SBH99] SCHEUERMANN G., BURBACH H., HAGEN H.: Vi-
sualizing planar vector fields with normal component us-
ing line integral convolution. In VIS ’99: Proceedings of
the conference on Visualization ’99 (Los Alamitos, CA,
USA, 1999), IEEE Computer Society Press, pp. 255–
261.

[SE02] SCHNEIDER P. J., EBERLY D.: Geometric Tools for
Computer Graphics. Elsevier Science Inc., New York,
NY, USA, 2002.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

2150 T. H. J. M. Peeters et al. / Interactive Fibre Structure Visualization of the Heart

[SFCN02] SUZUKI Y., FUJISHIRO I., CHEN L., NAKAMURA

H.: Case study: hardware-accelerated selective lic vol-
ume rendering. In VIS ’02: Proceedings of the conference
on Visualization ’02. Washington, DC, USA, 2002, IEEE
Computer Society, pp. 485–488.

[SML04] SCHROEDER W., MARTIN K., LORENSEN B.: The
Visualization Toolkit, Third Edition. Kitware Inc., 2004.

[SWBG06] SIGG C., WEYRICH T., BOTSCH M., GROSS M.:
GPU-based ray-casting of quadratic surfaces. In Euro-
graphics Symposium on Point-Based Graphics. Botsch
M., Chen B. (Eds.) (2006), pp. 59–65.

[SZH97] STALLING D., ZOCKLER M., HEGE H.-C.: Fast dis-
play of illuminated field lines. IEEE Transactions on Vi-
sualization and Computer Graphics 3, 2 (1997), 118–128.

[TvW03] TELEA A., VAN WIJK J. J.: 3D IBFV: Hardware-
accelerated 3d flow visualization. In VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03) (Washing-
ton, DC, USA, 2003), IEEE Computer Society, pp. 233–
240.

[vW02] VAN WIJK J. J.: Image based flow visualization.
In SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques
(New York, NY, USA, 2002), ACM, pp. 745–754.

[VZKL05] VILANOVA A., ZHANG S., KINDLMANN G.,
LAIDLAW D.: An introduction to visualization of diffusion
tensor imaging and its applications. In Visualization and
Processing of Tensor Fields. Weickert J., Hagen H. (Eds.),
Mathematics and Visualization, Springer-Verlag, Berlin,
2005, ch. 7, pp. 121–153.

[WSE07] WEISKOPF D., SCHAFHITZEL T., ERTL T.: Texture-
based visualization of unsteady 3d flow by real-time ad-
vection and volumetric illumination. IEEE Transactions
on Visualization and Computer Graphics 13, 3 (2007),
569–582.

[WV05] WANG Z., VEMURI B.: DTI segmentation using an
information theoretic tensor dissimilarity measure. IEEE
Transactions on Medical Imaging 24, 10 (2005), 1267–
1277.

[ZB03] ZHUKOV L., BARR A. H.: Heart-muscle fiber re-
construction from diffusion tensor MRI. In Proceedings
of IEEE Visualization 2003 (2003), IEEE Computer Soci-
ety, pp. 597–602.

[ZTW06] ZIYAN U., TUCH D., WESTIN C.: Segmentation
of thalamic nuclei from DTI using spectral clustering. In
Ninth International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI’06)
(Copenhagen, Denmark, October 2006), Lecture Notes in
Computer Science 4191, pp. 807–814.

Appendix A: Closest Points Between Two Lines

The closest points of two lines L0 = P0 + s �d0 and L1 =
P1 + t �d1 can be calculated as follows [SE02]:

�u = P0 − P1;
a = �d0 · �d0; b = �d0 · �d1; c = �d1 · �d1;
d = �d0 · �u; e = �d1 · �u; f = �u · �u;
g = ac − bb;
\\Check for (near) paralellism
if (g < ε) { \\ Small ε

s = 0;
\\ Choose largest denominator
\\ to minimize numerical errors
if (b > c) t = d/b;
else t = e/c;

} else {
s = (be − cd)/g;
t = (ae − bd)/g;

}

By filling out s and t in the equations of L0,L1 we can
compute the closest points Q0, Q1 of the two lines, and their
distance dq = ||Q1 − Q0||. In our case, if L1 is the line
that we want to render, we only take the line into account if
t(�d1 · �d1) ≤ h and if dq ≤ r .

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Video Clip S1. The video clip is an .avi file.

Please note: Blackwell Publishing are not responsible for
the content or functionality of any supporting materials
supplied by the authors. Any queries (other than missing
material) should be directed to the corresponding author for
the article.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

