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Abstract. The recent challenge in diffusion imaging is to find acquisi-
tion schemes and analysis approaches that can represent non-gaussian
diffusion profiles in a clinically feasible measurement time. In this work
we investigate the effect of b-value and the number of gradient vector
directions on Q-ball imaging and the Diffusion Orientation Transform
(DOT) in a structured way using computational simulations, hardware
crossing-fiber diffusion phantoms, and in-vivo brain scans. We observe
that DOT is more robust to noise and independent of the b-value and
number of gradients, whereas Q-ball dramatically improves the results
for higher b-values and number of gradients and at recovering larger an-
gles of crossing. We also show that Laplace-Beltrami regularization has
wide applicability and generally improves the properties of DOT. Knowl-
edge of optimal acquisition schemes for HARDI can improve the utility
of diffusion weighted MR imaging in the clinical setting for the diagnosis
of white matter diseases and presurgical planning.

1 Introduction

Diffusion-weighted Magnetic Resonance Imaging (DW-MRI) is a clinical medical
imaging technique that provides a unique view on the structure of brain white
matter in-vivo. White matter fiber-bundles are probed indirectly by measuring
the directional specificity (anisotropy) of local water diffusion. Post-processing
of diffusion weighted images is fundamentally aimed at calculating the probabil-
ity distribution function (pdf) for the displacement of water molecules in each
imaging voxel. In general, the task is to find the transform Φ that takes the mea-
surements S(gi), for a finite set of 3D diffusion gradient vectors gi = {xi, yi, zi}
i ε{1, . . . , N}, to the desired pdf P (ri), as in P (ri) = Φ[S(gi)](ri). Here the pdf
P (ri) is a function of the 3D displacement vector ri, and we generally have mea-
sured signals S(gi). In Diffusion Tensor Imaging (DTI) the pdf is assumed to be
a 3D gaussian distribution represented as a rank-2 tensor and the effect of the
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diffusion gradients on the MR signal is assumed to be of an exponentially decay-
ing form. However, the diffusion tensor cannot resolve more than a single fiber
population per voxel, because partial volume effects will cause a non-gaussian
diffusion profile with multiple maxima [1].

It has been shown if we re-express our signal as E(qi) = S(qi)/S0, that the
sought relation is the Fourier Transform, where qi is the diffusion wavevector,
defined as qi = (2π)−1γδgi (where γ is the gyromagnetic ratio and δ is the dura-
tion of the diffusion gradients), and S0 is the unweighted or zero-weighted base-
line signal obtained without any applied diffusion gradients. However, directly
calculating the Fourier Transform, as in Diffusion Spectrum Imaging (DSI) [2],
requires a very large number of gradients, thus ensuing long measurement times.
In High Angular Resolution Diffusion Imaging (HARDI) a moderate amount
(from about 60 to a few hundred) of diffusion gradients are scanned that together
sample a sphere of given radius [3]. Among the analysis techniques that trans-
form this data to certain probability function (Orientation Distribution Func-
tion, Fiber Orientation or Probability Function given a position, etc.) are Q-ball
imaging [4], Spherical Deconvolution (SD) [5], Diffusion Orientation Transform
(DOT) [6] and Persistent Angular Structure (PAS-MRI) [7].

In this work we use computational simulations, hardware crossing-fiber dif-
fusion phantoms, and in-vivo brain scans to investigate the effect of acquisition
parameters on the ability to reconstruct non-gaussian diffusion profiles in cross-
ing fiber regions. We quantify the angular resolution of two selected reconstruc-
tion methods Q-ball imaging, and the Diffusion Orientation Transform under
different acquisition schemes. We vary b-value (defined as b = γ2δ2(Δ − δ/3),
where Δ is the time between the two complementary diffusion gradients) and
number of gradients directions in a structured way to investigate their effects
and interaction.

2 Methods

2.1 Ground Truth Synthetic Data

We generate synthetic data by simulating the diffusion-weighted MR signal at-
tenuation from molecules, with free diffusion coefficient D0, restricted inside
a cylinder of radius ρ and length L as in [8]. Two fiber crossings were simu-
lated under 40 ◦, 45 ◦, 50 ◦, 55 ◦, 60 ◦ and 90 ◦, with the following set of parameters
(see [6]): L = 5mm, ρ = 5 μm, D0 = 2.02 10−3mm2/s. All simulated imaging
parameters were chosen to be the same as in our MRI acquisition protocol, de-
scribed in section 2.3. Simulations were performed with and without noise. For
the noise simulations, Gaussian noise was added to the real and complex part of
the signal, with standard deviation according to the SNR calculated in our MRI
acquisition protocol (Fig. 1) for the corresponding b-values. Mean and standard
deviation were calculated over 100 noise realizations for each set of gradient
directions, b-values and simulated angle. The angular error was taken as the
mean of the individual absolute differences between the simulated and recovered
angles.
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2.2 Ground Truth Hardware Phantoms

Hardware phantoms were constructed using the method described earlier [9].
Two bundles, each composed of 25 sub-bundles of 400 fibers (KUAG Diolen,
Germany; Each fiber consists of 22 filaments of ≈ 10μm) were positioned inter-
digitated to create artificial crossings. Three phantoms were constructed, with
crossings at 30 ◦, 50 ◦ and 65 ◦ respectively. The phantoms were placed in a
container, filled with a 0.03 g/l MnCl2· 4 H2O solution (Siemens, Erlangen,
Germany) to obtain T2 relaxation of approximately 90ms, corresponding with
human white matter T2. 2.4 g/l NaCl was added for resistive coil loading.

2.3 MRI Data Acquisition

Human: DW-MRI acquisition was performed on subject VP (25 yrs, female) us-
ing a twice refoccused spin-echo echo-planar imaging sequence on a Siemens Al-
legra 3T scanner (Siemens, Erlangen, Germany). Informed consent was obtained
prior to the measurement. FOV 208× 208 mm, voxel size 2.0× 2.0× 2.0mm. 10
horizontal slices were positioned through the body of the corpus callosum and
centrum semiovale. Custom gradient direction schemes, created with the electro-
static repulsion algorithm [10] were used for DW-MRI. The diffusion-weighted
volumes were interleaved with b0 volumes every 12th scanned diffusion gradient
directions. Data sets were acquired with #vols(#dirs): 132(120) 106(96), 80(72),
54(48) directions, each at b-values of 1000, 1500, 2000, 3000, 4000 s/mm2, using
gradient timing δ: gradient pulse duration, and Δ: gradient spacing as given
in Fig. 1. In the same session, two anatomical data sets (192 slices, voxel size
1 × 1 × 1mm) were acquired using the ADNI protocol. Total scanning time was
75 minutes.

1000 1500 2000 3000 4000
32.44 35.94 38.94 43.44 47.44
25.34 28.84 31.84 36.34 40.34
15.3 14.1 13.3 12.0 11.9

parameters
b (s/mm )

(ms)

(ms)

SNR

2

Fig. 1. Parameters from our acquisition protocol

Hardware phantom: The hardware phantom was scanned using exactly the same
DW-MRI protocol as the human subject. The 54 direction scheme and ADNI
were omitted from the protocol. Slices were positioned orthogonal to the legs of
the phantom, through the crossing region.

2.4 Analysis

We implemented the analytical Q-ball imaging [11] and the parametric and non-
parametric DOT [6]. Both of the implemented DOT techniques gave identical
results. It is important to note that DOT has two extra tunable parameters:
the effective diffusion time t, and the radius of a sphere R0 that defines the
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probability function. As the results of DOT depend on these values, we exper-
imentally found the optimal R0 and extracted the effective diffusion time from
the imaging parameters as t = Δ − δ/3 (see Fig. 1). For finding the optimal
R0, we varied the value of R0 over a wide range of discrete values, and in our
analysis we considered the ones that gave smallest angular error (e.g., in the
simulation cases the ”good candidates” were R0 ={0.022, 0.024, 0.026, 0.028,
0.03}μm). We varied the order of the Spherical Harmonics 	, between 4 and 8.
As a preprocessing step for the noisy data sets, we included Laplace-Beltrami
smoothing on the signal, for both of the methods with λ = 0.006 as in [12]. We
assume that the fiber directions are simply given by the local maxima of the
normalized [0,1] ODF/probability profile where the function surpasses a certain
threshold (here, we use 0.5). To ensure that the minimal expected error related
to the sphere tessellation is less than 7.2 ◦ [13], we use 4th order of tessellation
of an icosahedron.

3 Results

3.1 Noiseless Synthetic Simulations

Results of the angular errors are shown on Fig. 2 for the different simulated di-
rection tables and b-values. Both of the methods managed to recover most angles
with identical angular error over a wide range of b and 	. Naturally as the angle
of crossing increases the angular error decreases. Tables on Fig. 2b summarize
the optimal b value and model order 	 for Q-ball and DOT respectively, where
as optimal, we consider the lowest combination of b and 	 for which the angular
error for each simulated angle is minimal. From the table we can conclude that
DOT is able to recover the simulated angles with the same angular error as

l=8;b=2000 l=6;b=3000 l=6;b=2000 l=4;b=2000
l=8;b=1500 l=8;b=1500 l=6;b=1000

l=8;b=1500 l=6;b=3000 l=4;b=2000
l=8;b=1500 l=6;b=1000

l=8;b=1500 l=6;b=4000 l=4;b=2000
l=8;b=1500 l=6;b=1000
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Gradient
directions

40 45° 50° 55° 60° 90°
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80

l=4;b=2000
l=6;b=1000
l=4;b=2000
l=6;b=1000
l=4;b=2000
l=6;b=1000
l=4;b=2000
l=6;b=1000

36,7313° 47,5762° 52,5901° 52,5901° 60,5194° 89,3214°
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Fig. 2. a)Detected angular difference for DOT and Q-ball in noiseless synthetic data,
for all sets of gradient directions. b),c) Optimal set of b-value and order �, for the
minimal angular error (per corresponding simulated angle) w.r.t. number of gradient
directions for DOT and Q-ball respectively.
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Q-ball, but with lower combination of b and 	 order. Furthermore, DOT recon-
structs the correct profiles, for each simulated angle, generally at lower values of
	 than Q-ball.

3.2 Noisy Synthetic Simulations and Hardware Phantom Data

In Fig. 3, the angular error of the minimal recovered angle for the different
acquisition schemes is shown. Our criteria for minimal detected angle is the
smallest angle for which the angular error is no more than 20 ◦, given that the
standard deviation (σ) over the noise realizations is no more than 20 ◦. It should
be noted that a liberal threshold on σ was needed as it was generally very high
over 100 realizations at the simulated low but realistic SNRs. If multiple angles
are found within this criteria, we choose the one whose probability is highest.
The results from Fig. 3 coincide with the conclusion from the noiseless data
sets. DOT is more robust to noise, thus it manages to recover, in most of the
cases, angles of 45 ◦, whereas Q-ball is quite dependent on the b-value and the
number of gradient directions in case of small angles of crossings. Furthermore
for the same set of parameters, the angular error of the same recovered angle
is smaller in DOT (e.g., In Fig. 3, for 54 gradients and b = 1000s/mm2 DOT
found angle of 90 ◦ with smaller error than the reported one in Q-ball. Yet we
report angle of 50 ◦ for DOT, since that is the minimal angle that was recovered
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Fig. 3. The angular error is plotted for the smallest found angle within our criteria, for
each combination of b-value and direction table (given on the x-axis), both for DOT
(upper panel) and Q-ball (lower panel). On the x-axis are given (from top to bottom):
the best detected angle, order �, b-value and number of gradient directions. Different
colors correspond to different b-values.
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Fig. 4. The found angular error of the recovered angles in phantom data, by DOT and
Q-ball respectively, for each combination of number of gradients, b-value and simulated
angle. On the x-axis are given (from top to bottom): order �, b-value, number of gradient
directions and simulated angle. Different colors correspond to different b-values.

with this parameter combination and within our criteria. In this concrete case
Q-ball failed to accurately recover angles smaller than 90 ◦).

In Fig. 4 the analysis of the phantom data is shown. Using the same criteria as
above on 60 voxels located in the crossings, we show that DOT is able to recover
even an angle with 30 ◦ of crossing, at a cost of very high 	 order and number
of gradient directions. Again we observe that DOT is more robust to noise and
independent of the b-value and number of gradients, whereas Q-ball improves
the results for higher b-value and number of gradients and at recovering larger
angles of crossing.

3.3 In-Vivo Human Brain Data

The centrum semiovale was used for the qualitative analysis of the Q-ball and
DOT techniques. It is a challenging region for DW-MRI analysis techniques,
since fibers of the corpus callosum, corona radiata, and superior longitudinal
fasciculus form a three-fold crossing there. Region-of-interest (ROI) was defined
on a coronal slice.

Fig. 5 shows the normalized Q-ball and DOT glyph reconstructions of the DW-
MRI datasets with 4th order of Spherical Harmonics, for 54 and 132 gradient
directions and b-values of 1000 and 4000 s/mm2. All the images are from similar
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Fig. 5. Q-ball and DOT representations of the DW-MRI data, with 54 and 132 gradient
directions, and b=1000 and b=4000 s/mm2, of a human subject in a ROI defined on a
coronal slice in the centrum semiovale. The glyphs are shown for 4th order of Spherical
Harminics.

region in the different datasets, but no registration was done, so the shown glyphs
do not correspond exactly. In the background, the color coded FA map is visible,
with the corpus callosum (CC) in red, going from lower right to upper left and
corona radiata (CR) in blue, from lower left to upper right. The crossing region
in the middle is shown in purple.

Both CC and CR structures can be clearly separated. Overall, the data shows
an increase in quality when raising the number of gradient directions. When
comparing the Q-ball images, the higher b-value (4000 s/mm2) case shows more
detail than the lower b-value (1000 s/mm2) across all data sets. The DOT images
do not show a decrease in quality when comparing both b-values and are rather
invariant to the number of the sampled gradient directions.

It’s important to note that tuning the optimal R0 parameter for the DOT,
is not trivial in in-vivo data sets, and by simplicity and speed of calculations of
the reconstructed ODFs, Q-ball has significant advantage.

4 Discussion and Conclusions

In the comparison between the two tested methods there seems to be a tendency
for DOT to be more robust to noise and relatively independent of the b-value
and number of gradients, whereas Q-ball improves the results for higher b-value
and number of gradients and at recovering larger angles of crossing. DOT is able
to recover the same (in the noiseless simulations) or even smaller angles (in the
noisy simulations) as the used Q-ball implementation, with smaller b-values, and
generally at a smaller 	. In the hardware phantom data DOT seems to be able
to recover even an angle with 30 ◦ of crossing, at a high 	 order and number
of gradient directions. This makes DOT comparable to today’s state-of-the art
Spherical Deconvolution, and future work is addressed in finding the minimum
angle at which DOT can still distinguish between two crossings. A few cautions
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are in place here. First, these results are specific to the implementations of the
methods used here. Particularly, a spherical harmonic transform was used on
the data as a first preprocessing step that served to smooth the data and regu-
larize the fit of the models in a unified and standard way for both methods. Our
results are thus dependent on choices for the SH order 	 and Laplace-Beltrami
regularization coefficient λ, which we fixed to 0.006, as detailed in [12]. It is very
interesting to see that this regularization approach originally constructed for fast
and robust Q-ball imaging seems to have a more general utility, since the DOT
also benefits from its smoothing properties. Future work should investigate in
details the optimal values for Laplace-Beltrami regularization coefficient λ for
the DOT, or consider different regularization approaches that might improve
DOT’s properties. A second important aspect of implementation is the R0 pa-
rameter for the DOT. The results of DOT are highly dependent on the choice
of R0, which we tried to resolve by computing the DOT at several values of R0

and then reporting the best result. Future work should be aimed at robustly
finding the optimal R0 under different acquisition protocols. Last aspect is on
maxima detection. Current maxima detection approaches in HARDI are quite
poor. Finding some more general and robust algorithms, can improve the accu-
racy of the HARDI methods, as well as help in developing better fibertracking
techniques. This work shows that validation of HARDI methods in the ranges of
noise present in actual clinical data sets is highly important. Here we compared
only two of the many available (and clinically applicable) HARDI techniques. It
would be very interesting if techniques as Spherical Deconvolution and PAS-MRI
can be subject of similar comparison.

Acknowledgements

We greatly acknowledge Maxime Descoteaux for many fruitful discussions and
sharing of code. Furthermore we are thankful to Evren Özarslan, for all valuable
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