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Abstract

Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape

variations present in a population. A statistical shape model models the distribution in a high dimensional shape

space, where each shape is represented by a single point.

We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our

approach focuses on the dual-space nature of these spaces. The high-dimensional shape space represents the

population, whereas object space represents the shape of the 3D object associated with a point in shape space.

A 3D object view provides local details for a single shape. The high dimensional points in shape space are vi-

sualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a

dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape

that it represents. We further enhance the population-object duality with a new type of view aimed at shape com-

parison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space,

and serves as a link between the two spaces described above.

Our three-view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor

over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Con-

versely, camera manipulation in the object view affects the object visualizations in the other views. We present a

GPU-accelerated implementation, and show the effectiveness of the three-view approach using a number of real-

world cases. In these, we demonstrate how this multi-view approach can be used to visually explore important

aspects of a statistical shape model, including specificity, compactness and reconstruction error.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Applications

1. Introduction

Shape spaces are continuous higher dimensional do-

mains where each position represents a complete 2 or 3-

dimensional object surface [Ken84]. Statistical shape mod-

els (SSMs) represent whole populations of objects by mod-

eling them as distributions in shape space. The most well-

known application of this type of modeling is the Active

Shape Model (ASM) [CCTG95]. An ASM models the dis-

tribution in shape space with its principal components, and

is used to locate similar shapes in volume datasets.

Shape spaces and statistical shape models are an impor-

tant concept in image segmentation, object classification

and recognition, the study of anatomical variation and many

other areas where the understanding or modeling of the vari-

ability in a whole population of shapes is required. Shape

models can be used to represent existing (input) shapes, or

they can be used to synthesize new shapes similar to the in-

put shapes.

Currently, visualization of shape spaces is done using

straight-forward methods, such as showing object shapes

regularly sampled on an axis in shape space, or showing a

scatter plot of the input shapes over the first two principal

axes. A more comprehensive visualization approach would

contribute significantly to the understanding of shape vari-

ability and of the behavior and quality of statistical shape

models. The need for better visualization is further accen-

tuated by cognitive demands made by the high-dimensional

nature of shape space. In spite of these observations, there

are currently no examples in literature of visualization ap-

plications that focus on comprehensive shape space explo-

ration.

In this paper, we present just such a visualization applica-
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tion that enables the visual exploration of shape spaces and

shape models. For such a tool, we identify the following re-

quirements, which are further detailed in section 3:

1. The visualizations should provide insight into the high-

dimensional structure of the population in shape space.

2. The tool should visualize the statistical shape model and

its relation to the population. Important performance as-

pects of the shape model should be visually verifiable.

3. Information should be presented at both the global (pop-

ulation) and the local (object) level whenever possible.

In the following, we first discuss work related to the vi-

sualization of shape models and high-dimensional spaces.

We then discuss these requirements in detail and present our

contributions, which are:

• A strongly-linked multi-view approach to visual shape

model exploration and validation (section 4).

• The shape evolution view: a new type of view in-between

shape space and object space allowing direct visual com-

parison and visualization of a single shape-space direction

or trajectory (section 4.3).

• A GPU-accelerated implementation of natural neighbor

interpolation, allowing real-time continuous exploration

of the population in shape space by smoothly interpolating

between individuals (section 5.2).

A prototype implementation of our multi-view approach

was created as described in section 5. Using this implemen-

tation, we demonstrate the effectiveness of our approach in a

number of real-world cases. Finally, we present conclusions

and directions for future work.

2. Related work

Our work focuses on the visualization of the variation in

a population of shapes by means of shape spaces, where

a shape space is defined as the continuous higher dimen-

sional space in which each input shape is represented by a

single point [Ken84]. The most well-known use of this type

of shape space is probably the Active Shape Model, an SSM

used for segmentation, where the main modes of variation

are found using principal component analysis [CCTG95].

Shape models have been extensively used for image

segmentation both in medicine and other applications, for

studying anatomical shape differences between popula-

tions [GGSK05,FPO∗06], visualizing organ shape variation

in 3D anatomical atlases [HH06] and studying evolutionary

morphological changes [WAA∗05].

In all applications, direct visualization of shape variability

coupled with the flexible visual exploration of shape space

would contribute to a better understanding of the shape vari-

ation, in both the local and global sense, and hence the char-

acteristics of the shape model that is being used. However,

examples in literature of comprehensive visualization ap-

proaches for shape spaces are scarce. General techniques

for high-dimensional visualization can be used to visualize

a population of objects in shape space. An overview of tech-

niques for high-dimensional visualization is given by Wong

and Bergeron [WB97], while a more recent overview of mul-

tivariate techniques is given by Fuchs and Hauser [FH09].

However, such techniques do not take into account the fact

that each high dimensional point also represents a two or

three-dimensional shape, the local details of which are often

important.

Shape variation can be shown at a local level with color

mapping, or by placing ellipsoids at all points on the average

or mean shape, representing the Gaussian variation of each

point in shape space [FPO∗06,FAP∗07]. The distribution in

an SSM shape space can be shown, for the first two modes

at least, with a simple scatter plot, whereas the shape varia-

tion over a particular mode can be shown with a number of

shapes, regularly sampled over that mode, shown side-by-

side [CCTG95], or by animating object shape changes over

the main modes of variation. Lamecker et al. extended this

basic approach by also animating between the mean shape

and the training shapes, although little detail is given on ex-

actly how this is done [LSL∗04]. A good overview of other

mesh morphing techniques, although not in the context of

shape spaces, is given by Alexa [Ale02].

Kilian et al. used shape spaces to interpolate between and

extrapolate from input shapes [KMP07]. Their method can

also be used to explore the shape space spanned by a num-

ber of input models by allowing interaction, primarily curve-

drawing, on a specially constructed 2D polygon with the in-

put models at its vertices. Our approach differs from that

of Kilian et al. in three ways: 1: We project all shape space

points on a 2D plane that can be smoothly and arbitrarily po-

sitioned in shape space, inspired by the method of Blaas et

al. [BBP07]. 2: Our method supports real-time and smooth

visualization of the shape changes represented by interaction

on the shape space projection, without any pre-processing.

3: We make use of a coordinated multiple view approach to

integrate three different visualization techniques for explor-

ing the shape space.

3. Assumptions and Requirements

Creation of a shape model involves first establishing a

point correspondence relation between a population of input

shapes. Next, these shapes are parameterized and a statis-

tical model is fitted to the resulting distribution in a high-

dimensional shape space. Heimann and Meinzer [HM09]

give a good overview of the various techniques that exist for

the creation of such shape models. For this paper, we assume

a shape model has already been created. In particular, we use

active shape models based on landmarks obtained using the

GAMEs algorithm [FOP∗07] to demonstrate our approach.

However, our techniques can be applied to any shape model

that satisfies the following assumptions:
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• Each shape can be represented as a point in an N-

dimensional shape space. Shapes in an active shape model

use a fixed set of landmarks; shapes in shape space are de-

fined as the vector of coordinates for all landmarks.

• Shape space points can be interpolated to form new

shapes. We assume linear interpolation in shape space is

valid. If non-linear spaces are used, the interpolator used

should take this non-linearity into account.

• The distribution of points in shape space is modeled us-

ing a statistical distribution. As in ASMs, we use PCA to

derive the parameters of a multivariate Gaussian distribu-

tion. Other statistical distributions could be used, provided

that their contours can be plotted in arbitrary linear pro-

jections of the shape space.

In the following, we examine the three requirements de-

fined in the introduction in detail, based on these assump-

tions:

1. Provide insight into the high-dimensional structure of

the population in shape space. Statistical shape modeling is

based on the assumption that the population being modeled

follows a certain distribution in shape space, such as the mul-

tivariate Gaussian distribution in our models. Visualization

of this high dimensional space can help to visually verify

such an assumption. Furthermore, it can allow a user to spot

clusters or outliers within the population. Dimensional re-

duction techniques such as PCA can help in selecting appro-

priate projections for visualizing this space.

2. Visualize the shape model and its relation to the pop-

ulation. As noted, SSMs model a statistical distribution in

shape space. This means shapes can be described in terms

of their likelihood with respect to the model. Additionally,

a number of important measures can be computed describ-

ing the performance of a given shape model with respect to

modeling a given population [DTA∗03,FPO∗06]:

Compactness describes the accuracy with which a given

number of model parameters can be used to model a popu-

lation. The reconstruction error describes the mismatch be-

tween the training shapes and their approximations given by

the model. The generalization error is similar to the recon-

struction error, but approximates the error reconstructing un-

seen shapes in the population. Finally, specificity describes

the difference between the variation in the population and

that in the shape space generated by the model.

These measures were defined originally to yield a single

number per shape model [DTA∗03]. We have adapted the

definitions to show the local behavior of the measures on

a per-shape or even per-point basis, in order to explain the

global result for a given shape model.

3. Present information at both a global and a local level.

Shape spaces have a dual nature in that they can be seen both

as a high-dimensional space, where shapes are single points,

and as a 3D space, in which the 3D objects represented by

such points exist. Similarly, various aspects of a shape can

Figure 1: Prototype implementation of our multi-view ex-

ploration approach, showing the shape space, object space

and evolution views. Due to screen space constraints, the

latter can be switched between the configurations shown in

figure 4. Multiple evolution views can be added if preferred.

be visualized both on a global (population) or local (object)

level. Examples are the deviation from the mean shape or

the reconstruction error, both of which can be computed per

object or per point on the object.

4. Multi-view exploration

We propose a three-view approach to satisfy these require-

ments (figure 1). Overview and global-level visualization are

provided by a visualization of the high-dimensional shape

space. Local details are provided by a 3D object view, show-

ing a single shape.

Variability, however, is hard to visualize on a local scale.

For this purpose we introduce a new type of view: the shape

evolution view. This view shows a combination of object

space and shape space dimensions. Object shapes are re-

duced to two dimensions by extracting their silhouettes, and

the third dimension is used to represent a trajectory through

shape space. Essentially this creates a visualization of “2D +

variability” space.

In this paper we use “global” to mean “per object”. For

information at the shape model or population level, it would

be straightforward to aggregate performance measures or

other statistics over all individuals (each resulting in a sin-

gle value) and display these, as is the current approach in

the field. For example, model-level compactness can be vi-

sualized in a standard compactness plot as used by Davies et

al. [DTA∗03]. The aim of our visualizations is not to replace

such statistical methods. Rather, we provide tools that allow

results to be examined at all levels, allowing deeper insight
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Figure 2: The shape space scatter plot view, visualizing a

population of segmentations of the human scapula. Colors

indicate the likelihood of each shape with respect to the

Gaussian model, which itself is visualized by ellipses rep-

resenting multiples of the standard deviation.

into the distribution-related and shape-related details of such

results.

The visualizations used in these three views are discussed

in the following sections. Section 4.4 discusses linking be-

tween the views, which enables interactive exploration of the

shape space.

4.1. Shape space view

The goal of the shape space view is to give an overview of

the high dimensional shape space. Within this view, the user

can explore the structure of the population, the statistical dis-

tribution modeled by the shape model and global-level infor-

mation about both.

We visualize shape space using a scatter plot, as shown

in figure 2. The scatter plot presents a 2D projection of

the high-dimensional points making up the population. We

base this projection on the technique presented by Blaas et

al. [BBP07], in which the plane of the projection can be de-

fined arbitrarily and interactively. To do this, the user manip-

ulates 2D representations of any number of axes or vectors

in the shape space. From these, a 2D coordinate frame is

created consisting of linear combinations of these vectors.

Specifically, for a point defined by shape vector s, the 2D

projection P(s) is given by P(s) = AFs, where F is a projec-

tion reducing the high-dimensional shape space to the sub-

space spanned by the current set of axes, and A is the 2×N

matrix with the user-defined 2D vectors for each axis as its

columns. Manipulation of an axis corresponds to rotation

(and/or scaling) within the reduced subspace. To enhance

this perceptually, we change the drawing order of shapes

during manipulation to match the order of their projections

along the axis being manipulated.

Central to our approach is that the projections of points are

updated in real-time during interaction. This way, dependen-

cies between points in shape space and the axis being manip-

ulated can be learned intuitively by observing the speed and

direction of their movement relative to the axis. A user there-

fore often does not need to examine all possible projections;

manipulation of each axis in turn suffices to locate features

like outliers, and projections that highlight such features can

be created incrementally.

To further aid the user in locating useful projections, the

axes of the scatter plot can be toggled between dimensions

from the original shape space, or from the reduced space

created by the shape model. As our shape models use PCA,

the resulting reduced set of axes is guaranteed to create a

projection showing maximum variability. Alternative tech-

niques for locating good viewpoints, such as the Grand

Tour [Asi85] and Projection Pursuit [FT74] methods, could

easily be integrated in our approach.

In addition to the points in the population, the projec-

tion of the shape model’s Gaussian distribution is visualized

using a set of elliptical contours representing multiples of

the distribution’s standard deviation. This projection can be

computed by projecting the covariance matrix for the popu-

lation to the scatter plot frame: P(C) = AFCF
T AT . Principal

component analysis is then performed using the projected

covariance matrix to extract the axes for the ellipses and the

2D standard deviation of the model.

We enhance the basic scatter plot visualization by render-

ing each high dimensional shape space point as a small rep-

resentation of the 3D object represented by that point. These

small multiples [Tuf90] can be color coded to visualize addi-

tional scalar information, such as the likelihood of the shape

with respect to the shape model or the shape model perfor-

mance measures described in section 3.

4.2. Object space view

The object space view visualizes the 3D object correspond-

ing to a single, arbitrary point in shape space. The purpose

of this view is to give insight into local details of the shape

and/or measures (see figure 3).

Deformation with respect to the mean, for instance, can

be visualized for each point on the object by computing the

length of the 3D deformation vector (a sub-vector of the

shape vector) corresponding to that point. Similarly, we can

compute the local distance of each point to the correspond-

ing point on any reference shape as the length of the differ-

ence between their deformation vectors. A special instance

of this is the local reconstruction error, where the reference

shape is defined as the shape reconstructed using a limited

number of shape model parameters, computed by project-

ing the shape to a basis of eigenvectors and then back to the

original shape space. For visualization purposes, distances

are made signed with respect to the angle between the defor-

mation vector and the local surface normal, and visualized
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Figure 3: The object space 3D view, here showing per-point

reconstruction errors for a brain ventricle shape using a

color map. Blue indicates areas where the actual shape is

larger than the reconstructed surface, yellow indicates simi-

lar size and red indicates areas where it is smaller.

using a isoluminant and perceptually linear color map, as

suggested by Borland and Taylor [BT07].

In this view, the camera can be manipulated interac-

tively. Alternatively, our system can automatically generate

an interesting viewpoint by performing principal component

analysis on the 3D deformation vectors. By choosing a view-

ing direction orthogonal to the plane spanned by the first two

principal components, a view can be created that shows max-

imal deformation in the image plane.

4.3. Shape evolution view

The shape space view provides global information, while the

object view provides local details for a single shape. Using

only these two views, it is hard to gain insight into the vari-

ability of such local details in the population. We introduce

the shape evolution view as a way to solve this limitation.

The evolution view visualizes local shape variability

along a single direction or trajectory through shape space.

This way, the high-dimensional space is essentially reduced

to a single dimension, leaving two dimensions for visual-

izing object shapes along the trajectory. Our current imple-

mentation supports only straight lines for interpolation be-

tween shapes, but extension to other curves, for instance

user-defined strokes or shape-space geodesics (as used by

Kilian et al. [KMP07]), is relatively straightforward.

The goal of the evolution view is to provide a detail level

for trends in shape space or comparisons between sets of

shapes. To enable these two applications, we define two

types of visualization of shape space trajectories:

• Trend trajectories - trends can be explored by visualiz-

ing the population itself, as seen from a user defined tra-

jectory through shape space. This means we visualize the

actual individuals, with positions along the trajectory de-

termined by their projections.

• Comparison trajectories - direct comparisons between

shapes are possible by generating (synthetic) objects in-

terpolating between their shapes. This is essentially the

direct visualization of a line or curve through the high-

dimensional shape space connecting the points being

compared.

The combined “2D + variability” space of the evolution

view can be shown in a number of visualization configu-

rations, shown in figure 4. Each of these serves a different

purpose in analyzing local variability:

• Side-by-side - shapes along the trajectory are visualized

using a grid of small multiples, in order of appearance

along the trajectory. This configuration can be used to get

an overview of the population.

• Overlaid contours - by directly overlaying all shapes and

only visualizing their projected contours, we create a 2D

visualization similar to “onion-skinning” techniques used

in animation. Contours are color coded using a perceptu-

ally linear black-to-white color map to show their order-

ing with respect to the trajectory. The resulting visualiza-

tion allows intuitive comparison of object shapes along

the trajectory. Due to the sparseness of contours it is not

possible to visualize other measures in this configuration.

• Shape stack - the most direct interpretation of 2D + vari-

ability is the 3D structure created by stacking all ob-

ject contours along the third dimension. Offsets between

shape “slices” are determined by their positions along the

trajectory, thereby visualizing the distribution of shapes.

Optionally, interpolation can be used to create a continu-

ous shape, representing a continuous morph between all

shapes along the trajectory. This configuration provides a

level in-between the other two, in that local details can

be compared between shapes without losing information

about the relation of those shapes to the population.

4.4. Linked interaction

A key part of our multi-view exploration approach is

strongly linked interaction between all views (figure 1). Such

linkage helps to maintain overview and provides continuous

feedback about the relations between the different visualiza-

tions displayed in each view. Linked interaction is used in

four scenarios:

• Shape selection - the object view displays only a single

shape. By simply hovering the mouse over the shape space

view, the object view smoothly deforms between shapes

encountered along the path of the cursor, allowing intu-

itive exploration of the shape variability in the population.

This is achieved by using a GPU-based interpolation tech-

nique, detailed in section 5.2. Alternatively, shapes can be

selected in the evolution view in order to examine them

in detail. When a shape is selected in either view, the pro-

jected position of the shape is highlighted in the shape

space scatter plot, and the selected shape is integrated

and/or highlighted in the evolution view visualization.

c© 2010 The Author(s)

Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

977



S. Busking & C.P. Botha & F.H. Post / Dynamic Multi-View Exploration of Shape Spaces

(a) Side-by-side (b) Overlaid contours (c) Shape stack

Figure 4: The shape evolution view and its configurations, used to examine variation in the scapula and brain ventricle datasets.

(a) Side-by-side display of a subset of the brain ventricle population, ordered by projection along the first principal component.

(b) Overlaid contours for a side view of the scapula population, demonstrating that most variation occurs in the acromion

and coracoid process. Ordering along the first principal component is visualized using a black-to-white scale. (c) Shape stack

visualization of the shapes in (a), showing an increasing trend in the overall size of the shapes along the first eigenvector.

• Trajectory selection - in the current implementation, the

trend trajectory shown in the evolution view is linked to

the x-axis of the scatter plot. It can therefore be defined by

manipulating the projection as described in section 4.1.

Alternatively, a shape comparison trajectory can be de-

fined by selecting two shapes using the selection methods

mentioned above. As mentioned in section 4.3, sketch-

based curve selection can be added in a future extension.

• Object space camera manipulation - viewing parameters

for the object shape visualizations in all views are linked.

The camera for these projections can be manipulated in

the object space, updating the other views in real-time.

This also affects the viewpoint used for contour extrac-

tion in the overlay and shape stack configurations of the

evolution view.

• Dimensionality selection - the number of axes shown in

the shape space view directly determines the number of

dimensions used for determining shape likelihood and re-

construction errors. The number of axes can be adjusted

interactively by the user, with visualizations in all views

updating in real-time.

5. Technical details

We implemented a prototype of our multi-view explo-

ration approach (figure 1) using C++ and OpenGL.

The OpenGL Shading Language was used to implement

all GPU-based algorithms and the IT++ math library

(http://itpp.sf.net/) was used for CPU-side linear al-

gebra operations.

5.1. Shape visualization

For the purposes of statistical analysis, populations in shape

space are often centered on the mean. Therefore, object

shapes in a statistical shape model are defined as the sum

of the mean shape and a high-dimensional shape vector. In

case dimensional reduction has been applied, a shape vector

first has to be transformed back to the original space in order

to visualize its corresponding object.

We visualize shapes in object space using a polygonal

model of the mean shape, which is deformed on the GPU to

match any given shape. Deforming on the GPU allows us to

simultaneously compute derived measures to be visualized

in object space, such as local reconstruction errors.

The surface normals of the mean shape are no longer valid

after deformation. We use a deferred shading pass to com-

pute normals in screen space. When visualizing a large num-

ber of shapes, individual objects may be hard to distinguish

in the scatter plot and evolution views due to overlap. To

alleviate this, the same deferred shading approach used to

render the objects can be used to add contours or halos to

each of the object miniatures.

5.2. Shape interpolation

As described in section 4.4, we allow a user to select and

morph between shapes in the shape space view using in-

terpolation. The interpolation technique should enable inter-

active performance with minimal pre-computation, as both

querying for shapes and updating the (projected) positions of

all original points should be real-time operations. To achieve

this, we created a GPU-accelerated implementation of natu-

ral neighbor interpolation [Sib81]. Natural neighbor interpo-

lation was chosen because it results in smooth interpolation,

and can provide results even outside the convex hull of the

projected points.

Our approach is image-based rather than geometry-based,

as we do not require the potentially higher accuracy of the

latter approach and can therefore avoid its higher computa-

tional complexity. Our approach differs from that presented

by Fan et al. [FEK∗05] in that we make use of hardware oc-

clusion queries to avoid slow reads from graphics memory.

Natural neighbor interpolation is based on the Voronoi

c© 2010 The Author(s)
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Figure 5: Rendering the Voronoi tessellation of a set of

points (shown in yellow) using cones. When viewed from the

top, standard depth-buffering ensures the pixels covered by a

cone belong to the Voronoi area for the corresponding point.

tessellation of a given set of points. An image of the Voronoi

tessellation can be constructed by rendering each point as a

cone seen from the top, centered at the point’s projected po-

sition. This way, the depth values for the cone’s pixels cor-

respond to the distance between that pixel and the original

point. By making use of a standard depth buffer, parts of the

cone which are closer to a different point will be removed,

as their pixels will be covered by the cone for the other point

(see figure 5). We generate the cone depth values in a full-

screen fragment shader pass in order to avoid discretization

artifacts that occur when using polygonal approximations.

During rendering of the Voronoi tessellation we use the

stencil buffer to record an identifier for each pixel corre-

sponding to the visible cone (i.e. closest point) for that pixel.

In natural neighbor interpolation, we consider insertion of

a new point into the Voronoi tessellation. The interpolated

value is a weighted summation of the values vi at the orig-

inal points pi. These weights are computed corresponding

to the ratio between the Voronoi area A′(x) created by the

new point x and the overlap between this area and the areas

for the original points in the original tessellation A(pi) (see

figure 6):

v(x) =
N

∑
i=1

A′(x)∩A(pi)

A′(x)
vi

We use occlusion queries as a fast way to determine these

areas. An occlusion query is a fast hardware-accelerated

method to query the number of pixels (potentially) modi-

fied by a drawing operation. The total area for the new point

can be approximated by simply inserting the corresponding

cone into the Voronoi tessellation image. The overlap with

existing areas can be computed by repeating the process, but

Figure 6: Weights for natural neighbor interpolation are

computed as the ratio between the area of the Voronoi cell

corresponding to a given point if it were inserted into the

tessellation (orange), and the overlap between this cell and

each of the existing cells in the diagram (gray).

using the stencil buffer to restrict drawing to the area cov-

ered by each existing cone. After running all queries, results

are collected, weights are computed and the interpolation is

performed on the shape vectors in the population.

6. Results and validation

In this section, we demonstrate how our approach enables

exploration of shape space using two real-world datasets.

The first consists of two sets of segmentations of the ven-

tricles in the human brain. One set consists of 28 control in-

dividuals, the other of 58 patients with Alzheimer’s disease.

For each individual, positions are given for 949 points on the

ventricle surface. The second dataset consists of 39 segmen-

tations of the human scapula, with 379 points per segmenta-

tion surface.

We will use these as example use cases to demonstrate

how our approach satisfies each of the requirements defined

in section 3.

1. Provide insight into the high-dimensional structure of

the population in shape space. The interactive scatter plot

projection of the shape space view can be used to explore

the distribution of the population in the high dimensional

shape space. By choosing an appropriate projection, clus-

ters, trends and outliers can be identified. Figure 7 shows an

example of an outlier, while figure 2 shows a skewed distri-

bution of shapes that may not satisfy the Gaussian distribu-

tion assumption.

2. Visualize the statistical shape model and its relation to

the population. For any population, the shape space view dis-

plays the projected Gaussian distribution of the shape model,

allowing visual inspection of the model’s statistical proper-

ties. Shapes in the population with low likelihood can be
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Figure 7: Outliers in the population can be highlighted in

the shape space view, both by selecting an appropriate pro-

jection and by coloring shapes according to their likelihood.

High-valued shapes are yellow, low values are blue.

found by changing the projection, and are highlighted in

all projections when coloring shapes by their likelihood (see

figure 7).

Alternatively, shapes can be colored by reconstruction er-

ror. As the number of shape model parameters is directly

linked to the number of axes in the shape space view, vary-

ing this number while visualizing reconstruction errors al-

lows for visual inspection of the model’s compactness, and

helps in determining a good cut-off for the shape model’s

dimensionality (see figure 8).

Specificity is defined as the average distance of random

shapes to the nearest shape in the population [DTA∗03]. The

nearest shape can be determined during interaction in the

shape space view, and can be used as the reference shape.

This way, the dissimilarity of arbitrary shapes to the popula-

tion can be visualized on a local level.

For computing the generalization error, Ferrarini et al.

[FPO∗06] use a leave-one-out approach, where the general-

ization error for any object is essentially the reconstruction

error of the object using a shape model based on the popula-

tion with that object removed. Such models could be created

in a pre-processing step, allowing the generalization error to

be visualized in the shape space view in a way similar to

the reconstruction error, but using a different model for each

object in the computation.

3. Present information at both a global and a local level.

The strong linking between all views in our exploration con-

cept enables findings in the shape space view to be easily

explored at a local level. By simply hovering the cursor over

clusters or along trends in the shape space view, the local

details of these features can be explored interactively in the

object view. If a problematic shape is identified, such as the

outlier in figure 7, the local views can be used to determine

which parts of the object cause it to be an outlier. Similarly,

Figure 8: Inspecting compactness of the shape model by

varying the number of axes. Shapes are colored by their

reconstruction error, based on a reconstruction using the

axes shown. When reducing the number of parameters of the

model from 5 (top left) to 2 (bottom right), the number of

shapes with high reconstruction errors (yellow) visibly in-

creases.

the reconstruction error can be examined on a per-point ba-

sis, as seen in figure 3.

The evolution view allows trends to be explored at a local

level (see figure 4). The three configurations serve differ-

ent purposes. The side-by-side configuration is suitable for

giving a quick overview of the entire population. Overlaid

contours give insight into the local variability in the shape of

parts of the object. Shape stacks give simultaneous insight

into such trends and into the distribution of shapes along a

user-defined direction in shape space.

The evolution view can also be used to determine if a cer-

tain local error occurs more than once in the population, or if,

for instance, high reconstruction errors have various causes

when examined locally. In order to facilitate exploration of

such trends in local details, we allow the user to define a

threshold on the reconstruction error. Parts of the object with

values above this threshold will be highlighted in the visual-

ization. While contours remain, the opacity of other parts of

the objects is reduced to increase visibility of the areas with

large errors.

An example of this can be seen in figure 9. As in fig-

ure 3, red indicates parts of the actual individuals that are

larger than the reconstructed shapes while blue indicates

smaller parts. Although many errors are unique to specific

objects, several shapes show a red region in the area around

the glenoid cup as well as red and blue areas around the

acromion, indicating that the current shape model has trou-

ble modeling these parts of the scapula.

7. Conclusions and future work

We presented a new method for visual shape space ex-

ploration and validation, based on multiple strongly-linked
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Figure 9: The evolution view can be used to explore trends

on a local level. Here, reconstruction errors for the scapula

dataset are explored on a local level and compared over

the population by showing a shape stack highlighting errors

above a user-defined threshold.

views showing both global and local aspects simultaneously.

Additionally, we make the following technical contributions:

• The shape evolution view: a new type of view visualizing

“2D + variability” space, a combination of shape space

and object space. This view allows for direct visual com-

parison of local details over a single shape-space direction

or trajectory.

• A GPU-accelerated implementation of natural neighbor

interpolation, allowing real-time continuous exploration

of the population in shape space by smoothly interpolating

between individuals (section 5.2).

The continuity provided by interpolation helps in ini-

tial exploration of shape changes and trends, understand-

ing of which is further aided by visualizations in the evo-

lution view. Continuity may also benefit other aspects of the

visualizations, for instance, animations may help maintain

overview when switching between evolution view configu-

rations or scatter plot projections.

Although not considered for this work, our shape explo-

ration approach could further benefit from the inclusion of

filtering techniques. For example, in addition to highlighting

single shapes, it would be helpful to allow subsets of shapes

to be extracted and explored. Selections could be made man-

ually, or based on clustering techniques applied to the high-

dimensional population.

The complete implementation of our shape space explo-

ration prototype is to be released as open source.

7.1. Future extensions

Although the shape modeling approach used in this paper is

the most common in shape modeling literature, alternative

techniques have been proposed. Our framework should be

extended to allow for the visual comparison of shape mod-

els using different parameterizations, landmark sets or statis-

tical distributions. In particular, non-linear shape modeling

techniques have been presented in recent literature, allowing

for more flexibility in modeling non-Gaussian distributions

of shape in a population [CKS01, COS06]. Most of these

non-linear techniques consist of first non-linearly mapping

shapes to a different space, in which normal PCA or other

density estimators can be applied. This means we can either

use our current techniques on the space resulting from the

mapping. Alternatively, contours of the non-linear distribu-

tions can be shown in the original shape space, similar to the

figures in the papers by Cremers et al., but using our interac-

tive techniques to select the projection.

Different dimensional reduction techniques such as inde-

pendent component analysis could also be integrated, to aid

in selecting good projections of the high-dimensional shape

space. Additionally, automated approaches could be inte-

grated, such as the Grand Tour [Asi85] and Projection Pur-

suit [FT74] algorithms, or even intelligent methods aimed at

locating specific patterns.

The current techniques for shape space interpolation re-

main close to the original points when extrapolating. This

could be extended with more accurate extrapolation tech-

niques to allow a user to magnify trends in the population by

displaying shapes with “exaggerated” deformations. Boback

et al. [BFHU09] enhanced extrapolation in the natural neigh-

bor algorithm by dynamically adding extra “ghost points” to

the population. Such a technique would be straightforward

to implement on our GPU accelerated implementation, as

the basic interpolation scheme remains identical. Alterna-

tively, geodesic-based interpolation and extrapolation tech-

niques could be used, such as those presented by Kilian et

al. [KMP07].

Finally, we plan to apply our techniques to interactive

shape-model-based segmentation by integrating surface fit-

ting techniques. This way, possible (locally optimal) loca-

tions for a new object in shape space can be explored interac-

tively, with both global and local feedback on, for instance,

the reconstruction error or likelihood of a given reconstruc-

tion of the surface.
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