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Fig. 1. The proposed OPCPs (red), applied to the Venus dataset [2]: (a) Visual enhancement of small patterns between the first two
dimensions of the data, i.e., small structures obstructed by a strong pattern. - (b) Facilitated identification of distinct patterns between
the second and third data dimension. - (c) Improved readability of outliers, i.e., low density information areas, in the representation. -
(d) Efficient and accurate selection (blue) of a specific data structure, using the proposed O-Brushing (dark blue line).

Abstract—Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualization of multivariate data. However,
for large datasets, the representation suffers from clutter due to overplotting. In this case, discerning the underlying data information
and selecting specific interesting patterns can become difficult. We propose a new and simple technique to improve the display of
PCPs by emphasizing the underlying data structure. Our Orientation-enhanced Parallel Coordinate Plots (OPCPs) improve pattern
and outlier discernibility by visually enhancing parts of each PCP polyline with respect to its slope. This enhancement also allows
us to introduce a novel and efficient selection method, the Orientation-enhanced Brushing (O-Brushing). Our solution is particularly
useful when multiple patterns are present or when the view on certain patterns is obstructed by noise. We present the results of our
approach with several synthetic and real-world datasets. Finally, we conducted a user evaluation, which verifies the advantages of the
OPCPs in terms of discernibility of information in complex data. It also confirms that O-Brushing eases the selection of data patterns
in PCPs and reduces the amount of necessary user interactions compared to state-of-the-art brushing techniques.

Index Terms—Parallel Coordinates, Orientation-enhanced Parallel Coordinates, Brushing, Orientation-enhanced Brushing, Data
Readability, Data Selection

1 INTRODUCTION

Parallel Coordinate Plots (PCPs) [20] are widely used for the vi-
sualization of multivariate data. Here, multiple data dimensions are
mapped one-by-one to a number of parallel vertical axes. Each mul-
tidimensional data object is mapped to a polyline that intersects the
axes, connecting the scalar values of every dimension [20]. PCPs ef-
ficiently display in a single view all 2D projections of adjacent data
dimensions [19, 21, 39], enabling the identification of relations and
the detection of data patterns or trends - especially with the help of
interaction [17, 34], such as brushing [16] or reordering [4, 30, 36].

A limitation of PCPs is that they might suffer from clutter, due to
overplotting [17]. This causes problems in the exploration and inter-
pretation of the data, especially in high density data. Reducing visual
clutter in PCPs is an important topic [5, 11, 27, 29, 45]. However, most
of the previous solutions are complex and focus mainly on aiding the
detection of clusters in the data [5, 45], not in revealing the overall data
structure. In other cases, the proposed visualizations may even unin-
tentionally lead to concealing patterns and outliers [5, 29]. Finally,
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other solutions require interaction to achieve clutter reduction [11, 27].
We propose a simple technique to improve the representation of

datasets in PCPs: the Orientation-enhanced Parallel Coordinates
(OPCPs). Our technique visually enhances specific parts of each PCP
line, depending on its slope. Hereby, it enables discerning individual
trends and patterns, while it may even reveal patterns that are poten-
tially obscured in traditional PCPs. This enhancement also allows us to
introduce a new brushing technique, the Orientation-enhanced Brush-
ing (O-Brushing), to facilitate pattern selection in complex data.

Our paper presents the following two major contributions:
• The concept of Orientation-enhanced Parallel Coordinates (OPCPs)
to improve the view and discernibility of patterns in otherwise clut-
tered PCPs, without loss of low density data information or outliers.
•A versatile brushing technique based on the OPCPs: the Orientation-
enhanced Brushing (O-Brushing). It enables efficient selection of in-
dividual data structures, with reduced user interaction.

2 RELATED WORK

Many different techniques have been proposed for the enhancement of
data display and clutter reduction in Information Visualization repre-
sentations [9], including PCPs. Some approaches require the manip-
ulation of the axes of the representation, using reordering [4, 30, 36,
42]. These approaches are able to reveal hidden patterns and facilitate
data interpretation. However, in data with a large number of points re-
ordering is insufficient. Other approaches involve visual enhancement
of PCPs by rendering curves instead of lines [3, 14, 35, 45]. Such ap-
proaches are especially effective in reducing clutter at the crossings of
PCP lines, but they might suppress data patterns, such as outliers.

Another commonly encountered group of techniques requires clus-
tering, combined with different kinds of visual enhancements, such
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Fig. 2. Overview of different state-of-the-art brushing approaches for PCPs. With red we denote the selections in each case, with blue we denote
the brushing operation.

as: manipulating PCPs by averaging polylines and visualizing corre-
lation coefficients between polyline subsets [33]; filtering PCPs based
on frequency or density of the data [5]; combining polyline splatting
for cluster detection and segment splatting for clutter reduction [44];
using cluster-based hierarchical enhancements and proximity-based
coloring schemes to provide a multiresolution view to the data [11];
enabling context visualization at several levels of abstraction, both for
the representation of outliers and trends [29]; or using several transfer
functions to reveal specific clusters and patterns in the data [22]. All
previously mentioned cases involve clustering methods and they focus
on detecting and differentiating specific clusters or trends in the data
- not data patterns or underlying structures. In certain cases, cluster-
ing solutions inevitably lose information in low density areas, when
reducing overplotting in high density areas. The approach of Zhou
et al. [44] even requires animation, which is not always feasible. Fi-
nally, a more artistic approach was proposed by McDonnell et al. [27].
It incorporates a variety of techniques when rendering PCPs, such as
edge-bundling, visualization of the distribution and density of the data
via opacity and shading, or silhouettes for easy distinction of overlap-
ping clusters. However, not all of these techniques can be used in a
single view as some of them do not work well if combined.

PCPs have also been used in combination with other representa-
tions, such as Star Glyphs [10], radviz [6], or scatterplots [43]. As
recognized by Holten et al. [18], combining scatterplots with PCPs
outperforms many other PCP variants, such as combining with col-
ors, opacity, curved polylines or animations. PCPs have also been
combined with histograms [12], to simultaneously show the density
and slopes of polylines. This combination enables the exploration of
clusters, linear correlations and outliers in large datasets, with more
emphasis on data-driven and not pattern-revealing exploration.

Interaction makes local and dynamic data enhancements possible.
The use of lenses [8, 40] or brushing are typical examples. As part of
the XmdvTool [37], a number of different brushes have been proposed
by Martin et al. [26] and Ward [38]. Depending on the information
that needs to be shown in the data, different brushes are used for high-
lighting, linking or masking the underlying data. Additionally, wavelet
approximations are used to enhance brushing [41], by showing differ-
ent parts of the polylines at different resolutions. However, brushing
two variables in a non-separable way has only been enabled by the
angular brushing proposed by Hauser et al. [16]. The most important
state-of-the-art brushing approaches are presented in Fig. 2.

In summary, there are different approaches for data enhancement
and readability improvement in PCPs. However, most of the solutions
aim at reducing clutter in PCPs, by clustering the data, without giving
a better understanding of the overall underlying structure. Data details,
such as outliers, are often unintentionally hidden. Additionally, some
solutions work better - or only - on a screen, either because they are
animated or because they require interaction. Finally, most of the ap-
proaches require complex steps, which means that they cannot always
be easily reproduced or used. In the following sections, we present our
approach to handle these challenges.

3 ORIENTATION-ENHANCED APPROACH FOR PCPS

Our solution consists of two main components: the Orientation-
enhanced Parallel Coordinate Plots (OPCPs) for visual enhance-
ment of PCPs (Sec. 3.2), and the Orientation-enhanced Brushing (O-
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Fig. 3. Schematic representation of the concept of PCPs for the sim-
ple case of a two-dimensional point D with dimensions d1 and d2 and
dimension values (y1,y2): (a) In a scatterplot. - (b) In a PCP.

Brushing) for interactive selection and analysis in OPCPs (Sec. 3.3).

3.1 Background: Parallel Coordinate Plots
In a simple two-dimensional dataset with dimensions d1 and d2, a data
point D = (y1,y2) is plotted as a PCP line, intersecting the two vertical
axes d1 and d2 at the positions y1 and y2, respectively (Fig. 3). When
plotting the PCP (poly)lines, it is common to employ opacity, as a
simple way of representing the density of the lines [17]. From now on,
We refer to this enhancement as Density PCPs.

3.2 Orientation-enhanced Parallel Coordinate Plots
Holten et al. [18] conducted an evaluation of PCP variants, where they
demonstrated that no other enhancement from the examined alterna-
tives improves PCPs significantly, apart from combining scatterplots
with PCPs. Inspired by this paper, we investigated a simple way to
combine effectively the two representations to enhance the display of
PCPs. In many papers, the combination of PCPs with scatterplots has
been limited to having multiple interactive linked views. This might
entail memory limitations, as a result of switching the view between
the two separate representations. The goal of the proposed visual en-
hancement of PCPs is to provide a better understanding in the visual-
ized data, by integrating PCPs and their corresponding scatterplots in
one view. A similar approach was followed by Yuan et al. [43]. How-
ever, this technique is complex and requires bending the polylines to fit
to the points of the scatterplots. In contrast, we are looking for a sim-
ple approach that keeps the original appearance of PCPs intact. In the
proposed OPCPs, the basic principle is to enhance the PCP lines with
respect to their slope. This solution links PCPs and the corresponding
scatterplot of the neighboring two axes in a natural way.

Mapping. For illustration purposes, we demonstrate our concept
using a two-dimensional case. In the following example, we assume
for simplicity that the data values for each dimension have been nor-
malized to the range [0,1]. A PCP line, as shown in Fig. 4-(a), is
defined by its dimension values (y1,y2) and a slope α:

α =
y2− y1

dx
, (1)

where dx is the distance between the two vertical PCP axes.
We map this PCP line to a unique reference point P = (xp,yp) in

the space between the two PCP axes, with xp ∈ [0,dx] and yp ∈ [0,dy],



where dy is the length of the vertical axis (Fig. 4-(a)). The slope in
Eq.( 1) is linearly mapped to xp, while yp is chosen to make P lie on
its corresponding PCP line:

xp =
d2

x
2dy
·α +

dx

2
(2)

yp = y1 + xp ·α (3)

In Fig. 4-(b), we show an example with multiple PCP lines and
their respective reference points. Eqs.(2,3) result into a point-to-point
transformation, i.e. a warping, of a 2D scatterplot space to the OPCP
space, as shown in Fig. 5. This illustration shows the link between the
scatterplot points and the reference point positions on the PCP lines.

Representation. To visually enhance each reference point and to
preserve the orientation and context of its PCP line, we create a small
line segment: the Orientation-enhanced PCP. It is a small segment that
shares the original PCP line orientation and is centered at the reference
point P. Assigning a constant intensity and a given length to each
segment would result into OPCP segments that would not be visually
separated, if they would be very close to each other. Therefore, we
vary the intensity of the segments using a kernel smoother: we smooth
the edges of the segments and assign higher intensities in the middle,
i.e. at the reference point P (Fig. 6). This desired intensity profile can
be achieved with peak-shape kernels, such as a Gaussian [13]. The
intensity I at a point S = (xs,ys) of the OPCP segment, resulting from
a reference point P = (xp,yp) after applying the Gaussian kernel, is
described as:

I(xs,ys) = k · exp
(
−
‖xs− xp‖2

2 ·σ2

)
, (4)

where σ is the bandwidth of the kernel, which is user-defined and k
is a scale factor (height of the peak) given by 1

σ
√

2π
. The bandwidth

controls the length of the OPCP segments: larger σ values result in
smoother and wider-spread segments. Fig. 7 shows an example of
OPCPs applied to three simple synthetic cases and the effect of σ on
their appearance.
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Fig. 4. Schematic representation of the concept behind OPCPs: (a)
Mapping of the slope α of the PCP line (y1,y2) to the reference point
P = (xp,yp) between the two PCP axes. - (b) Mapping of the slopes of
multiple PCP lines to their corresponding reference points.
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Fig. 5. Schematic representation of the transformation from (a) the
scatterplot space to (b) the OPCP space, using a 2D colormap [32] to
show the injective point-to-point correspondence.

Visual Enhancement. In the paper of Harrison et al. [15], it is
stated that PCPs can emphasize specific correlations more than others.
Depending on the data aspects that need to be emphasized, we propose
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Fig. 6. Alternatives considered for the intensity encoding of the OPCP
segments. Next to each case, we show also the intensity profile.
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Fig. 7. Effect of the σ value of the Gaussian kernel on OPCPs, for
three simple synthetic cases. To increase the visibility of the segments,
we have linearly scaled the image intensities to the range [0,1].
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Fig. 8. Effect of the gamma correction on the appearance of the
OPCPs. Here, the σ was set to 10 and the image intensities were scaled
to the range [0,1].
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Fig. 9. Enhancement of different data aspects, using transfer functions (TFs). Here, we use a synthetic dataset with a dominant linear relation
among the dimensions and a few outliers. The bandwidth σ was set to 10 and the image intensities were scaled to the range [0,1].

to optionally employ three enhancement methods: gamma correction,
transfer functions, and histogram equalization.

Gamma correction [13] allows the user to remap the levels of the in-
tensity range in order to discern more details in the darker parts of the
OPCP segments. This can be accomplished with low values of gamma,
while increasing values of gamma sharpen the OPCPs. Gamma cor-
rection is applied per pixel, transforming the intensity I to Igcorr = Iγ .
The effect of the parameter γ is depicted in Fig. 8.

The effect of gamma correction can be generalized by applying a
transfer function (TF), aiming at controlling the contrast in the repre-
sentation. As introduced in the work of Johansson et al. [22], different
TFs affect the appearence of different data aspects: a linear TF gives
an overview on the data, a logarithmic TF enhances low density ar-
eas, a square root TF emphasizes outliers in the data and a quadratic
TF enhances the high density areas. The effect of the four previously
mentioned TFs is shown in Fig. 9.

Optionally, histogram equalization [13] reassigns the intensity val-
ues of an image such that the output will exhibit a uniform distribu-
tion of intensities. Histogram equalization can create a background-
foreground effect and enable better discernibility of different patterns
in the data, especially in the presence of noise or of strong patterns.
The impact of histogram equalization in OPCPs is depicted in Fig. 10.

Overlay. We enhance PCPs by overlaying the OPCP segments on
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Fig. 10. Effect of histogram equalization on the appearance of OPCPs.
Here, the σ was set to 10 and γ to 1.
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Fig. 11. Example of alpha blending in random noisy data: (a) Alpha
blending of histogram equalized OPCPs with Density PCPs - (b) Color
encoding of the foreground blended OPCPs (red) and background Den-
sity PCPs (black).

top of the traditional PCP polylines, e.g., on Density PCPs, using alpha
blending [31] (Fig. 11-(a)). Overlaying OPCPs on top of PCPs helps
in preserving their main benefit, namely the connectivity across data
dimensions. In this way, PCP polyline bundles can still be traced. Ad-
ditional color encoding of OPCPs can enhance and visually separate
them from the underlying PCPs (Fig. 11-(b)). To reduce as much as
possible user distraction from overlaying OPCPs on the PCP polylines
and interfering with PCP bundle tracking, the appearence of OPCPs
can be adjusted. The user can modify the color and opacity of the
OPCP segments, but also to fine-tune the σ and γ values to make the
OPCPs more or less prominent. For the purpose of this paper, we
decided to encode the OPCP intensities as black color values in the
explanatory examples and red in the overlay examples.

Parameter values. The parameters involved in the visual enhance-
ment of the OPCPs, such as the bandwidth σ and the gamma correc-
tion value γ , should depend on the specific aspects of the data that
needs to be brought forward. Therefore, we do not assign a specific
set of values, but leave them user-controllable. In our interactive tool,
we initially assign a set of values (σ=10 and γ=1), which give already
a good result, but can be changed adequately by the user.

3.3 Orientation-enhanced Brush (O-Brushing)
Brushing [17, 34] is a common selection approach in PCPs. However,
when the amount of plotted lines increases, selection also becomes dif-
ficult. OPCPs have an important property: they establish for each 2D
data point a unique position in the space between each pair of the PCP
axes. This allows us to introduce a new brushing approach that is ap-
plied in the OPCP space, for easier and more efficient selection of spe-
cific data patterns: the Orientation-enhanced Brushing (O-Brushing).

O-Brushing is performed on OPCP segments, in two ways: either
with a traditional brush metaphor (O-Brush), or with a prober (O-
Prober) (Fig. 12). The O-Brush acts as a lasso brush [17], applied
only in the OPCP space and requires two user interactions, i.e., two
clicks (Fig. 12-(a)). The O-Prober is an interactive rectangle that can
be resized and moved around the representation (Fig. 12-(b)). It works
similarly to an area brush, applied only in the OPCP space and re-
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Fig. 12. Schematic representation of the concept behind O-Brushing.
The thick gray segments represent OPCPs for each underlying PCP
line. With red we denote the selections in each case, while with blue the
brushing operation.
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Fig. 13. Example for the comparison of O-Brush and O-Prober against traditional brushing methods, when attempting to select the same part, i.e.,
data points with middle values of both dimensions. All brushes have been applied individually to the data. In this example, the lasso and area brush
do not succeed in selecting the specific data region. We show also the number of user interactions, i.e., the number of clicks, required for each
of the brushes. The composite slider brush requires maximally four clicks, the O-Brush requires two clicks and the O-Prober requires maximally 3
user interactions (resize in both dimensions and translate).
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Fig. 14. Examples showing that the OPCPs allow the discernibility of (multiple) patterns or clusters in the synthetic data.

quires maximally three interactions, i.e., 2D resizing and translation.
Compared to the traditional brushing methods, the O-Brush and O-
Prober act only in the OPCP space, hereby allowing for a more precise
and local selection and resulting in a reduced amount of required user
interaction. The O-Prober and the O-Brush can produce the same re-
sult, but their main difference is that the former can be used to probe
through the dataset for multiple similar patterns, i.e., lines with a given
slope or a range of slopes, with minimal user interaction. In our current
implementation, the O-Prober is a simple movable rectangle of user-
defined size, but it could be easily extended to any arbitrary shape.

Fig. 13 shows a comparison of the O-Brushing methods with alter-
native PCP brushing methods. It depicts for each brushing technique
the best achieved result and the user interactions required to select one
specific pattern of interest. In this example, the specific selection is
only possible with the composite slider brush and the two proposed O-
Brushing methods. However, the O-Brushing methods require fewer
user interactions than the composite sliders. In our interactive tool, we
included also the state-of-the-art brushes, to enable users to perform
selections both in the traditional PCP space and the OPCP space.

4 RESULTS

In this section, we present the results obtained by the application of
OPCPs and the O-Brushing to different datasets, intending to provide a
deeper understanding into the OPCPs space and its characteristics. To
this end, the visualization of the OPCPs was implemented in Python on

the GPU, using OpenCL. The interaction for the brushing was realized
using the Visualization ToolKit (VTK).

We tested the OPCPs on two different types of data. First, in-
spired by previous work [22, 43], we tested the behavior of OPCPs
on a number of synthetic cases with two-dimensional data with 1000
data points, containing predefined patterns and structures. PCPs and
OPCPs are meant for multidimensional data, but we employ these two-
dimensional examples for illustration purposes. Secondly, to demon-
strate a real usage scenario of OPCPs, we used multivariate data, ob-
tained from various sources [1, 2, 23, 25].

4.1 Results with two-dimensional synthetic stimuli
In Fig. 14, we show our approach as applied to the synthetic stimuli,
together with their corresponding scatterplots and Density PCPs. The
transformation, i.e., the warping of the scatterplot space on the PCPs
that was described in Section 3.2, becomes apparent. We confirmed
that the OPCPs facilitate the discernibility of (multiple) data patterns,
data outliers and also data structures obstructed by noise compared to
PCPs, which we illustrate with examples, in the following paragraphs.

Discernibility of (multiple) data patterns. We include two main
subcategories of relationships in the data: either there is a single re-
lationship in the data, but it is not immediately recognizable, or there
are multiple and more complex relationships (Fig. 14). In the first cat-
egory, we included four different stimuli. For the cubic and square root
stimuli, the OPCPs facilitate the identification of the different patterns



compared to PCPs, because of the visible correspondance to the scat-
terplot space. Additionally, the double spread and sinusoidal stimuli,
have a similar appearance when shown in the Density PCPs. However,
the OPCPs allow to see that these are different patterns. Finally, for
the second category, it is also easier to identify the multiple relations
between the two data dimensions - or data clusters - when employing
the OPCPs, as depicted in Fig. 14.

Discernibility of data outliers. We use two synthetic stimuli for
which the dimensions are linearly correlated (Fig. 15). However, the
second stimulus contains some outliers. By overlaying the OPCPs on
the Density PCPs, we enhance the main pattern in the data, i.e., the
linear relationship, without obscuring the outliers.

Discernibility of noise-obstructed data structures. We created
two stimuli with initially no correlation between the two dimensions
(Fig. 16). An additional pattern, i.e., a structure with a linear relation-
ship between the dimensions, was then added to the second stimulus.
In Density PCPs, this structure is hidden. By overlaying the OPCPs
on the Density PCPs, we can visually enhance the obstructed structure
in the data and recover the linear relationship.

4.2 Results with multivariate synthetic/real data
In a real-world analysis, PCPs are used to visualize multivariate
data. To additionally assess our approach using more complex data
with more realistic data patterns across their dimensions, we em-
ploy four well-known datasets from various databases. The em-
ployed datasets are the apartments dataset from [1] with 2290 data
points, the Venus dataset from [2] with 8784 data points, the Out5d
dataset from [2] with 16384 data points and the household dataset
from [25] with 2075259 data points. Fig. 17 shows the results of using
OPCPs to represent the above mentioned datasets. The OPCP advan-
tages discussed in 4.1 are again apparent in these cases.

In the apartments dataset, especially between the first two data
dimensions, multiple data patterns are emphasized and more dis-
cernible when using OPCPs (Fig. 17-a). This also occurs between
the second and third dimension of the same dataset (Fig. 17-b). In
this dataset, OPCPs are also able to bring forward outliers, e.g., be-
tween the second/third and third/fourth data dimensions, which were
not easily discernible in the Density PCPs (Fig. 17-c). In the Venus
dataset, the OPCPs facilitate the identification of distinct patterns, e.g.,
three patterns between the second and third data dimension (Fig. 17-
e). Additionally, OPCPs allow to visually enhance the multiple small
clusters between the first two dimensions (Fig. 17-d), as well as out-
liers between the third and fourth data dimension that are not visible in
the respective Density PCPs (Fig. 17-f). In the Out5d dataset, pattern
identification becomes easier throughout all dimensions, especially in
parts of the representation, where the patterns are obstructed by noise,
e.g., in the last three dimensions of the data (Fig. 17-g,h,i). Finally, in
the household dataset, between the first two dimensions, but also
between the third and fourth dimensions of the data, patterns that were
not visible in the traditional Density PCPs are brought forward with
the use of OPCPs (Fig. 17-j,k). Especially, in Fig. 17-k, there are two
main patterns in the data, which appear as a single pattern in the Den-
sity PCPs. Also, between the last two data dimensions there are several
outliers, which are significantly enhanced with the OPCPs (Fig. 17-l).

Based on the added benefits of OPCPs, it is expected that O-
Brushing will facilitate the selection of the respective data structures in
the OPCP space, in comparison to state-of-the-art brushing methods,
which act in the PCP space, such as the lasso brush, the angular brush
and the composite slider brush, as shown in Fig. 13 and 18.

4.3 Performance
The performance of our approach was tested on several datasets from
various databases [1, 2, 23, 25]. The datasets vary between 1000 and
2 million data points. The test was conducted on an Alienware Aurora
R4 with an Intel Core i7-4820K @ CPU 3.70GHz Processor, 16GB
RAM and NVIDIA GeForce GTX 780. The performance results are
depicted in Fig. 19. The system is implemented on the GPU and en-
ables interactive brushing. The O-Brush and O-Prober can be em-
ployed for almost real-time data-driven selection.
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Fig. 15. Examples showing that the OPCPs enable the discernibility of
outliers in the synthetic data.
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Fig. 16. Examples showing that the OPCPs enable the discernibility of
noise-obstructed structures in the synthetic data.

5 EVALUATION

To test our approach with respect to the state-of-the-art, we conducted
a user evaluation. We used the implemented interactive prototype,
which enables visualizing data with Density PCPs and OPCPs, as well
as data selection with all five brushing techniques: composite slider
brushes, classical lasso brush [17], angular brushing [16], as well as
our O-Brush and O-Prober.

The evaluation was designed based on the paper of Lam et al. [24]
and consisted of two main parts. The first part was a controlled
user study to measure User Performance [24] with the OPCPs and
O-Brushing, against Density PCPs and traditional brushing. For this
part, we performed three experiments, which are described in detail
in the following subsections. The second part consisted of answering
a questionnaire to measure User Experience [24], using Likert scales,
ranking, and open questions.

We employed 16 participants, with various backgrounds: Computer
Science (11, out of which 5 from Computer Graphics and 4 from Vi-
sualization), Electrical Engineering (3), Physics (1) and Biomedical
Engineering (1). Most of them (9) had preliminary knowledge of
PCPs, although only one participant had worked with PCPs before.
Before the evaluation, we gave a short introduction, we demonstrated
the functionality of the prototype, e.g., how to perform data selections
with each method, and we allowed participants to use it, until they felt
confident with it. In average, people spent around 5 minutes on the
prototype before the experiment.

5.1 First Part: User Performance
We performed three experiments. The first experiment aimed at mea-
suring the performance of users in discerning (1) patterns, (2) out-
liers, and (3) data structures obstructed by noise using Density PCPs
or OPCPs. We created two comparable, two-dimensional synthetic
datasets per case and we visualized them with both representations.
Then, we showed static images of the representations to the users
in a randomized order, and we asked them to perform tasks such as
identifying and pointing out patterns in the data, outliers and noise-
obstructed data structures. For each one of the static images, we mea-
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Fig. 17. Application of OPCPs to multivariate synthetic or real data obtained from various databases [1, 2, 25].

  

(a) (b) 

Fig. 18. Examples showing that the OPCPs allow the selection of (a)
outliers and (b) noise-obstructed structures in the data.

 

Fig. 19. Performance times of OPCPs for multivariate synthetic or real
data from various databases [1, 2, 23, 25].

sured the time that users needed to give a conclusive answer and accu-
racy of their answers. Since the data were synthetic, we already knew
the exact number of, e.g., patterns in the data. Thus, every wrong or
unidentified pattern was penalized in the accuracy measurement.

The second experiment aimed at measuring user performance in se-
lecting (1) specific patterns, (2) outliers, and (3) noise-obstructed data

structures, with state-of-the-art brushing or O-Brushing. We created a
two-dimensional synthetic dataset per case. We showed static images
to the users, explaining which part of the data needed to be selected.
Then, we asked them to perform a selection of the previously speci-
fied data part, using only one of the brushing techniques at a time, in
a random order. All tasks were possible with all methods. Again, we
measured time, accuracy, and number of interactions, i.e., number of
clicks, required for task completion.

The third experiment aimed at measuring performance with mul-
tivariate, complex data and tasks. We created two comparable five-
dimensional synthetic datasets, using the PCDC tool [7]. Then, we
designed a set of questions, which were related to identifying and/or
selecting data patterns, outliers and noise-obstructed structures. The
users were asked to apply traditional brushing to one of the datasets
with PCPs, and O-Brushing to the other dataset with OPCPs to per-
form the given tasks. The order of the dataset and approach, as well as
their combination, was alternated randomly to reduce bias from learn-
ing. We measured completion time, accuracy and number of interac-
tions, i.e., clicks required from the user, for the task completion.

The outcome of the statistical analysis of the experiments is sum-
marized in Fig. 20. The first and third experiment were analyzed
with Paired t-tests, while the second was analyzed with ANOVA and
Tukey’s HSD test, for statistical significance. The results of the first
experiment indicate that identification of patterns, outliers and noise-
obstructed structures is more accurate with OPCPs than with PCPs
(ρ<0.01). Especially, in case where a structure is obstructed by noise
in the data, the OPCPs were much more accurate (µ = 1,σ = 0) than
PCPs (µ = 0.06,σ = 0.25). The distinction of noise-obstructed struc-
tures is also faster (ρ<0.05) in OPCPs: users required half the time to
recognize these kinds of structures in the data with OPCPs than with
PCPs. For pattern and outlier detection, there is no conclusive result
for the time performance, but the accuracy is significantly improved
with OPCPs. The outcome of the second experiment shows that O-
Brushing is faster and more accurate (ρ<0.01) in all cases. For pat-
tern and outlier selection, O-Brushing also requires significantly less
interactions (ρ<0.05). From Tukey’s HSD test, it results that there is
no statistically significant difference between the performance of users
when using the O-Brush or the O-Prober. Based on this test, the overall
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Fig. 20. Results for the experiments conducted as part of the evaluation, for the User Performance part. The small white circles denote outliers
in the measurements. The asterisks denote a statistically significant difference (ρ <0.05) between the measurements, as it resulted from our
statistical analysis using ANOVA and Tukey’s HSD test.

ranking of the different brushing techniques for the three investigated
tasks results as: the two variants of O-Brushing, angular brushing,
composite brushing using sliders and lasso brushing. The results of
the third experiment demonstrate that our approach is more accurate
than the state-of-the-art approach for the four given tasks. The com-
bined use of OPCs with O-Brushing had an average accuracy of 0.96
for all tasks, while traditional PCPs with standard brushing only 0.75.
In this experiment, there were no indications that pattern discernibility
requires less time with OPCPs. However, for the other three tasks the
use of OPCPs and the proposed O-Brushing makes a big difference in
performance times. For example, for pattern selection our approach
requires half the time of the traditional approach. Overall, there is an
indication that when selection is involved, our approach is also signif-
icantly faster and requires less interaction (ρ<0.05).

5.2 Second Part: User Experience

The second part of the evaluation consisted of conducting a survey.
First, we asked users to grade PCPs and OPCPs and, also, the five
previously used brushing methods, using Likert scales. The outcome
of the statistical analysis of the experiments is summarized in Fig. 21.
From the statistical analysis, it resulted that the PCPs were easier to
understand, but the OPCPs were considered significantly easier to use
(4.13), more useful (4.44) and also more suitable for the identification
of patterns (4.44), outliers (4.38) and noise-obstructed data structures
(4.31), compared to traditional PCPs. Moreover, the composite slid-
ers and O-Brushing were considered easier to use and useful, while

the easiest to understand were composite sliders and the O-Prober.
The sliders and O-Brushing were considered most suitable for pat-
tern selection, while for outlier and obstructed structure selection only
O-Brushing was preferred. The next part of the questionnaire con-
sisted on ranking the two representations using the same scale and the
five brushing methods. The OPCPs were ranked significantly higher
(8.31) than the PCPs (5.81) (ρ<0.05), while the O-Brush and the O-
Prober were ranked significantly higher (8.25 and 8.29, respectively)
than the sliders (6.50), the lasso (4.81) and the angular brushing (5.25)
(ρ<<0.01). The questionnaire was concluded with open questions.
The evaluation participants replied that the OPCPs ”can be very strong
in structure detection in the data”, especially ”when there is a lot of
overlap in the data”. However, ”the OPCPs take more time to get used
to” and ”might require some training for naı̈ve users”. Also, finding
”simple correlations across dimensions can be easier sometimes with
PCPs only”. O-Brushing makes it ”easier to select patterns locally”,
but ”O-Prober could be improved by using also different shapes, other
than the rectangle”. Most users commented that our approach sup-
ported them more in the identification and selection of patterns and
outliers, in particular. For simple cases, due to the fact that OPCPs
require prior familiarization and training, they might be less suitable.
However, for cluttered data, the advantages are straightforward.

6 DISCUSSION

The results of the application of OPCPs on synthetic and real datasets
presented in Sec. 4, as well as the evaluation results of Sec. 5 raised



 

Fig. 21. Results for the experiments conducted as part of the evaluation, for the User Experience part. The asterisks denote a statistically
significant difference (ρ <0.05) between the measurements, as it resulted from our statistical analysis using ANOVA and Tukey’s HSD test.

several points for discussion and limitations.
Firstly, the proposed OPCPs are a visual enhancement of PCPs for

more efficient discernibility of patterns, outliers and noise-obstructed
structures in the data. In the paper of Holten et al. [18], it is stated
that combining scatterplots with PCPs can result in significant perfor-
mance gains for the users. In many papers, the combination of PCPs
with scatterplots is limited to having multiple linked views, where in-
teractive linking and brushing can reflect selections from one represen-
tation to the other. However, in this case, users need to switch between
windows and use their mental memory for data exploration and anal-
ysis, e.g., when the user performs an operation and sees the result in
another window. Our OPCPs, instead, are not aiming at substituting
scatterplots or at using linked scatterplot views. They focus on giving
a better understanding of the data represented by PCPs, by integrating
in a seamless way the two representations in one, combining their ben-
efits and reducing the memory limitations that result from switching
between the two separate representations. We consider that a compar-
ison between scatterplots linked to PCPs against solely OPCPs is out
of the scope of this paper, as the latter is a visual enhancement of PCPs
and not a new representation on its own. In fact, as noticed by Holten
et al. [18], PCPs might still be better than scatterplots in showing the
actual shape of clusters, which is evident in our visualization. Still,
OPCPs could be combined with linked scatterplots and it would also
be interesting to investigate a comparison between scatterplots linked
to PCPs and scatterplots linked to OPCPs.

Additionally, from the evaluation, it resulted that the interpretability
of the patterns might not be straightforward and requires a certain level
of familiarization with the enhancement. However, during the evalua-
tion, the users were able to identify patterns more accurately than with
traditional PCPs. Also, the cognitive load of OPCPs is not so signif-
icant to slow down the analysis of the data. As it can be seen in the
evaluation results, in the vast majority of the tasks, the time needed
to perform an operation using OPCPs and the related O-Brushing is
significantly less than the time needed to perform the same operation
with the state-of-the-art techniques. This is a first indication that the
interpretability of patterns in OPCPs is not compromised. In a future
additional evaluation, it would be interesting to research this further.

Moreover, there was no evidence so far in the user evaluation that
the use of OPCPs might be distractive for the user or interfering with
bundle tracking, which is the main advantage of the use of PCPs.
OPCPs are indeed a new visual enhancement that requires some train-
ing, as pointed out by users. However, in our interactive tool the ap-
pearance of OPCPs can be adjusted by fine-tuning the σ and γ values
to make the enhancement as prominent as the user would like. Also,
there is always the option to adjust the color and opacity of the OPCP
segments, to interfere less with the underlying PCPs and the poly-
line bundles. In the user evaluation, we included tasks where bundle
tracking was necessary. In these cases, the users could perform the
tasks without problems. However, for a more conclusive answer to
this point, a more extensive study would be needed.

For the brushing functionality, in the interactive version of our tool,
the user can select in which of the two spaces, i.e., PCP space or OPCP
space, he/she would like to brush. In the OPCP space, the two pro-
posed O-Brushing methods can be employed, while in the PCP space,

state-of-the-art brushing, such as angular or lasso or composite brush-
ing, can be used. As some users stated during the evaluation, having
this possibility to choose the space to perform selections on the data is
useful in different occasions: for example, if the user needs to perform
selections based on the range values of some dimensions, the state-of-
art brushing methods are more appropriate and more straightforward
to use. However, if specific patterns, or outliers or structures in the
data need to be selected, then O-Brushing is more efficient.

Limitations. We foresee some limitations of our approach. First,
OPCPs require some familiarization, as they are not immediately in-
tuitive. Additionally, they require a wider spacing between the di-
mension axes as compared to traditional PCPs in order to be effective.
Moreover, the OPCPs should be accompanied by PCPs, to preserve
context and connectivity across dimensions. Finally, the O-Prober
could improve by using free-hand shapes or a scribbling interface in-
stead of the predefined rectangle. This would enable easier, faster and
more accurate selection of specific patterns with OPCPs, similarly to
the shape-based method by Muigg et al. [28] for traditional brushing.

7 CONCLUSIONS AND FUTURE WORK

Parallel Coordinate Plots exhibit overplotting, which results in a clut-
tered view on the data. Therefore, discerning the underlying data in-
formation and selecting interesting patterns can become difficult. We
proposed a new technique, the Orientation-enhanced Parallel Coordi-
nate Plots, to improve the view and discernibility of patterns in oth-
erwise cluttered PCPs. We achieved our goal by visually enhancing
parts of each PCP line with respect to its slope, hereby incorporating
information from 2D scatterplots in the representation [18]. Compared
to the state-of-the-art, our approach is simple and provides better dis-
cernibility of data patterns, especially when there are multiple over-
lapping patterns or when there are outliers and structures, obstructed
by noise. We evaluated our approach with several synthetic and real-
world datasets. One of the main advantages of OPCs is that thy allow a
new and versatile selection method, the Orientation-enhanced Brush-
ing. Brushing in the OPCPs space enables an efficient selection of
individual data structures involving a reduced user interaction when
compared to the state-of-the-art selection tools in PCPs. On the other
hand, OPCPs require more training, compared to PCPs.

A direction for future work includes employing color transfer func-
tions in the OPCPs for better discrimination of the different data pat-
terns, or even clustering. Moreover, it would be interesting to extend
the evaluation of our proposed visual enhancement, but also of the
related brushing method, to cover the points discussed in Sec. 6. Fi-
nally, the extension of the O-Prober to other shapes should allow eas-
ier, faster, and more interactive selections of data patterns.
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