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Abstract

We introduce techniques for the processing of motion and animations of non-rigid shapes. The idea is to regard animations
of deformable objects as curves in shape space. Then, we use the geometric structure on shape space to transfer concepts
from curve processing in Rn to the processing of motion of non-rigid shapes. Following this principle, we introduce a discrete
geometric flow for curves in shape space. The flow iteratively replaces every shape with a weighted average shape of a local
neighborhood and thereby globally decreases an energy whose minimizers are discrete geodesics in shape space. Based on
the flow, we devise a novel smoothing filter for motions and animations of deformable shapes. By shortening the length in
shape space of an animation, it systematically regularizes the deformations between consecutive frames of the animation. The
scheme can be used for smoothing and noise removal, e.g., for reducing jittering artifacts in motion capture data. We introduce
a reduced-order method for the computation of the flow. In addition to being efficient for the smoothing of curves, it is a novel
scheme for computing geodesics in shape space. We use the scheme to construct non-linear “Bézier curves” by executing de
Casteljau’s algorithm in shape space.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically based modeling

1. Introduction

Many problems in geometric modeling and more generally in
graphics are dealing with deformable, flexible or non-rigid shapes.
The idea of geometric modeling in shape space, introduced by Kil-
ian et al. [KMP07], is to equip the manifold of shapes relevant
for a problem with a Riemannian metric and to use the resulting
geometric structure on such a shape space for modeling tasks. A
Riemannian metric on a shape space provides a quantitative mea-
sure for the deformation of shapes and concepts from Riemannian
geometry, like the Riemannian exponential map and parallel trans-
port, have been applied for designing powerful tools for model-
ing tasks such as shape deformation and interpolation, shape space
exploration, deformation transfer, shape correspondences, and the
design of measures of shape similarity. Due to the non-linear na-
ture of shape spaces, geometric modeling in shape space leads to
high-dimensional non-linear problems that have to be solved. For
example, evaluating the distance between two shapes requires com-
puting a geodesic in shape space. Therefore, efficient solvers for
these optimization problems are of central importance.

The main contributions of this work are twofold. The first contri-
bution is a novel approach for processing motion and animations of
non-rigid shapes. We regard sequences of deformations of shapes
as curves in shape space and use the geometric structure on shape

spaces to transfer concepts from curve processing in Rn to the
processing of motion of deformable shapes. Following this prin-
ciple, we introduce a geometric flow for curves in a shape space
of meshes. The flow smoothes a curve by decreasing its length in
shape space. Our analysis of the flow shows that the limits are dis-
crete geodesics in shape space (as defined in [HRWW12]). The def-
inition of the flow involves elastic shape averaging. In every itera-
tion, every shape of the curve is replaced by a weighted average
shape of the shape itself and its predecessor and successor. Since
the limits are geodesics, the flow establishes a connection between
shape averaging (or interpolation) and geodesics in shape space.

Based on the flow, we devise a scheme for the fairing of curves in
shape space. The fairing scheme shortens the (shape space) length
of the curve and thereby decreases the energy stored in the defor-
mations between consecutive shapes. This means that the scheme
is using knowledge of how elastic objects deform to faithfully fil-
ter the motion. For example, artifacts, like shrinkage of parts of an
object, are avoided because the formation of such artifacts would
require additional deformation energy. As of yet, no other temporal
filter for mesh sequences with such properties has been introduced.
We apply the scheme for removing jittering artifacts in motion cap-
ture data and for smoothing non-differentiable transitions that occur
when concatenating different motions of an object.
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The second main contribution is a reduced-order method for the
efficient computation the flow. After a preprocess, the scheme has
a computational cost that is independent of the (spatial) resolution
of the meshes to be processed. Since the processing of sequences
of meshes results in high-dimensional optimization problems, this
method is essential for an efficient processing of curves in shape
space. Moreover, the scheme provides a novel algorithm for the
computation of geodesics in shape space. Compared to timings re-
ported in previous work, this algorithm significantly accelerates the
computation. Additionally, it allows for computing geodesics with
much higher temporal resolution than previous approaches, which
is due to the fact that our scheme performs only local operations in
the temporal domain and the dimensional reduction in the spatial
domain. Our experiments indicate that the combination of spatial
reduction and higher temporal resolution yields a better approxi-
mation of the continuous geodesics.

We use the fast computation of geodesics for constructing non-
linear “Bézier curves” in shape space that are controlled by sets
of poses. The curves are generated by applying de Casteljau’s al-
gorithm in shape space. This example follows the construction of
Bézier curves in shape spaces of images that was recently intro-
duced by Effland et al. [ERS∗15].

Using Riemannian geometry on shape spaces for geometric
modeling tasks is a powerful concept. Crucial for these methods
is the efficient computation of geodesics. We are convinced that the
proposed reduced-order method (as it allows for faster computation
and for higher spatial and temporal resolutions) is a step forward in
this development.

2. Related Work

Riemannian metrics on shape spaces of curves proved to be ef-
fective for various problems in Computer Vision. We refer to the
textbook of Younes [You10] for an in-depth discussion.

Riemannian metrics on the shape space of triangular surface
meshes (with a fixed connectivity) have been introduced by Kil-
ian et al. [KMP07]. These metrics measure the stretching of the
edges of the triangles, hence, the metric distortion of the surface.
Heeren et al. [HRWW12, HRS∗14] propose a metric that in ad-
dition to the metric distortion measures the change of bending of
the surface. Their framework includes a model of elastic materials,
which leads to Riemannian metrics on spaces of elastic shells. A
Riemannian metric on the space of elastic solids was introduced by
Wirth et al. [WBRS11]. Kurtek et al. [KKG∗12, KSKL13] intro-
duce Riemannian metrics on spaces of surfaces parametrized over
the unit sphere. Berkels et al. [BFH∗13] introduce an approach for
computing geodesic regression curves in shape spaces. Important
for the application is the efficient computation of the geodesics
between pairs of points in these shape spaces. This requires solv-
ing non-linear optimization problems, which are high-dimensional
as the search space consists of curves in shape space. Specialized
multi-grid Newton’s solvers have been developed for this problem
in [KMP07, HRWW12].

The problem of shape interpolation (or averaging, morphing,
blending) has many applications in graphics. Early work con-
cerned the morphing of planar shapes [SGWM93, ACOL00]. For

recent work on the interpolation of planar shapes, we refer to
[CWKBC13] and references therein. Approaches for the interpo-
lation of surface meshes are either based on linearized deforma-
tion models, like Poisson reconstruction [SP04,XZWB05] and lin-
ear rotation invariant coordinates [LSLCO05], or on non-linear de-
formation models [SK04, WDAH10, FB11, LG15, vTSSH15]. Lin-
earized deformation models are limited to small deformations, see
[BS08] for a detailed discussion. Fast approximation algorithms
for the shape interpolation problem have been proposed. Fröhlich
and Botsch [FB11] use a combination of mesh coarsening and
deformation-transfer to avoid solving the shape interpolation prob-
lem for the fully-resolved surfaces. A model reduction approach
that yields real-time computation times for shape interpolation has
recently been introduced by von Tycowicz et al. [vTSSH15]. Com-
pared to the Riemannian structure on the shape space, shape in-
terpolation is a simpler concept. For example, elastic shape aver-
aging does not lead to a distance measure that satisfies the trian-
gle inequality [RW11]. A comparison of results of shape interpo-
lation techniques and geodesics can be found in Section 7. Since
our discrete flow is based on shape interpolation and has geodesics
in shape space as its limits, this paper establishes a connection be-
tween shape interpolation and geodesics, which were separate con-
cepts before.

Smoothing filters for mesh sequences are typically applied
directly to the trajectories of the individual vertices. Vlasic et
al. [VBMP08] use bilateral filter in the temporal domain for each
of the vertex trajectories. Li et al. [LLV∗12] smooth the frames of
an animation using a mix of constraints from points on the current,
next and previous frames. These filters smooth the motions of the
individual vertices, but neglect the shape formed by the set of ver-
tices. Thus they are unable to prevent unnatural deformations of the

Figure 1: An illustration of a discrete geodesic in shape space con-
sisting of 256 poses of a shape with 40k vertices is shown.
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shape. An example is shown in the supplementary video as well as
in Section 7.

Related to shape interpolation and geodesics in shape space
is the problem of keyframe interpolation in computer animation.
The spacetime constraints paradigm, introduced by Witkin and
Kass [WK88], provides a variational framework for physically-
based keyframe interpolation. The goal is to help animators in
creating plausible motion by combining physical simulation with
keyframe interpolation. Spacetime optimization of the motion of
deformable objects has been consider in [BdSP09, HSvTP12]. Re-
cently, schemes for interactive editing of simulations and anima-
tions [BSG12,LHdG∗14] and for creating motion using sets of par-
tial keyframes [SvTSH14] have been proposed.

3. Background: Deformation Energies and Shape Averaging

In this section, we briefly introduce deformation energies and the
elastic shape averaging. Our presentation restricts to the discrete
case. For an introduction to elasticity, we refer to [MH94] and for
a background on elastic shape averaging to [RW09, vTSSH15].

Discrete deformation energies We consider a deformable object
consisting of a hyperelastic material. A material is elastic if the
(inner) forces acting on the object depend only on the current con-
figuration and are independent of the deformation path and speed.
This means that the forces can be described by a vector field on the
space of configurations of the object. The material is hyperelastic if
this field is conservative. Then, the function whose negative gradi-
ent equals the force field, is the deformation energy. This function
is only determined up to a constant. The constant is chosen such
that the neutral configuration stores no deformation energy.

In this paper, we restrict our attention to the discrete setting and
consider triangle meshes for representing elastic shells and tetrahe-
dral meshes for elastic solids. After the choice of materials and a
discretization, the discrete deformation energy is a function

E : Rn×Rn→ R≥0.

Here n is the number of degrees of freedom of the discrete ob-
ject. In our setting, we keep the connectivity of the meshes fixed
and n is three times the number of vertices. The first entry speci-
fies the neutral configuration and the second the deformed config-
uration. The value E(x̄,x) measures the energy stored in the de-
formable object when it is deformed from the neutral configura-
tion x̄ to the configuration x. In our experiments, we are using Dis-
crete Shells [GHDS03]. However, other deformation energies like
PriMo [BPGK06], As-Rigid-As-Possible [SA07,CPSS10], or finite
elements discretizations of elastic solids or shells could be used as
well.

Elastic shape averaging We consider a set of µ+1 example con-
figurations {y0,y1, ...,yµ} and positive weights {ω0,ω1, ...,ωµ}.
Elastic shape averaging, introduced by Rumpf and Wirth [RW09],
provides a way to compute weighted averages of the examples. The
weighted average shape is defined as the configuration that mini-
mizes the weighted sum of the energies E(yi,y) and E(y,yi)

A(ω0,y0, ...,ωµ,yµ) = argmin
y∈Rn

µ

∑
i=0

ωi (E(yi,y)+E(y,yi)) . (1)

This is a non-linear and elasticity-based approach for shape aver-
aging that has a number of desirable properties. For example, the
scheme can deal with larger deformations and the weighted aver-
age shape does not change if the example shapes are rigidly trans-
formed.

4. Discrete Curve Flow in Shape Space

In this section, we introduce a curve smoothing flow in shape space
and discuss its application to the fairing of curves in shape space.

Curve smoothing flow in shape space We consider a discrete
curve in shape space given by a sequence of m+ 1 configurations
(x0,x1, ...,xm). The curve can either be closed or have a boundary.
In the latter case, we fix the first and last configurations. In the case
of a closed curve, the indices are to be read modulo m+1.

The discrete curve smoothing flow is defined by the iterative pro-
cedure

x0
i = xi

xk+1
i = A(

τ

2
,xk

i−1,1− τ,xk
i ,

τ

2
,xk

i+1). (2)

The parameter τ ∈ (0,1] controls the size of the steps. It can be a
fixed value or varied in every step. As we will discuss in the next
section, controlling the stepwidth allows to guarantee that every
step decreases an energy whose minimizers are discrete geodesics
in shape space. In every iteration, the flow deforms every shape of
the curve towards an average of the shape itself and its two neigh-
bors and thereby smoothes the deformations between successive
shapes of the curve.

Curve fairing in shape space The smoothing flow combines two
smoothing effects. It decreases the (shape space) length of the curve
(this is discussed in the following section) and it regularizes the
parametrization by equalizing the lengths of the individual seg-
ments. Decreasing the shape space length smoothes the curve in
a way that avoids the formation of artifacts (like linearization arti-
facts or shrinkage of parts of the shape) because this would require
additional deformation energy and hence make the curve longer.
For example, the limit of a closed curve is a static “mean” shape
(Figure 4 illustrates this). The second effect means that the curves
evolve towards a more uniform motion in which the deformations
between successive shapes store the same amount of energy. If this
effect is not desired, it can be reduced by altering the weights for the
shapes xk

i−1 and xk
i+1 in (2). For example, one can use the weigths

τ li−1
li−1 + li

and
τ li

li−1 + li

where li =
√

E(xi,xi+1), in order to better preserve the original
proportions of the energy stored in the deformations between suc-
cessive shapes.

5. Analysis of the Flow and the Computation of Geodesics

In this section, we analyze the relation of the smoothing flow and
geodesics in shape space. First, we show that the stationary points
of the flow are discrete geodesics. Then, we prove that the flow
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decreases an energy whose minimizers are discrete geodesics (as
defined in [HRWW12]). As a consequence, the discrete flow can
be used for the computation of discrete geodesics.

Stationary points of the flow As a first step, we characterize the
stationary points of the flow in the following lemma. By ∂1E(x,y)
and ∂2E(x,y) we denote the derivatives of the energy E with respect
to the first and the second argument.

Lemma 1 A stationary point (x0,x1, ...,xm) of the discrete flow (2)
satisfies

∂1E(xi,xi−1)+∂2E(xi−1,xi)+∂1E(xi,xi+1)+∂2E(xi+1,xi) = 0
(3)

for all interior shapes xi.

Proof Assume (x0,x1, ...,xm) is a stationary curve. This means

xi = A(
τ

2
,xi−1,1− τ,xi,

τ

2
,xi+1)

for all (interior) i. Using (1), we see that xi has to satisfy
τ

2
(∂1E(xi,xi−1)+∂2E(xi−1,xi))+(1− τ)(∂1E(xi,xi)+∂2E(xi,xi))

+
τ

2
(∂1E(xi,xi+1)+∂2E(xi+1,xi)) = 0.

This implies (3) since E(x,x) = 0 for all configurations x.

Limits are discrete geodesics in shape space Different Rie-
mannian metrics on the spaces of shapes have been defined.
We consider the physically-based metric introduced by Heeren
et al. [HRWW12]. It uses viscous dissipation required to deform
physical objects for measuring the distance of shapes. After a spa-
tial discretization (which is the setting considered here) the discrete
geodesics (x0,x1, ...,xm) are defined as the minimizers of the func-
tional

m

∑
i=1

(E(xi−1,xi)+E(xi,xi−1)) (4)

Figure 2: Applying our flow to animations exhibiting artifacts can
remove them: The hand animation from the supplementary video
contains frames with strong artifacts (left, visible on the fingers),
after smoothing the animation, the shape looks artifact-free again,
while the motion is kept intact due to the restoring force.

Figure 3: The bending block sequence (exhibiting a C1-
discontinuity) before smoothing (left) and after 50 smoothing it-
erations (right).

Figure 4: A periodic curve evolves to a constant curve. Top: Orig-
inal sequence, middle: after 1 smoothing step, bottom: after 10
smoothing steps.

for fixed configurations x0 and xm and with respect to variations of
the other configurations xi. The relation of the energy (4) to the Rie-
mannian distance on the (continuous) shape space is that E(xi,xi+1)
is a second-order approximation of the squared Riemannian dis-
tance between xi and xi+1, see [HRWW12]. The Euler-Lagrange
equation satisfied by the minimizers of (4) is exactly equation (3),
which is satisfied by the stationary points of the discrete flow.

This shows that discrete geodesics are stationary points of the
flow. However, this does (in general) not guarantee that curves
evolve towards geodesics. The following lemma shows that for ev-
ery configuration of the curve, a small enough step of the flow de-
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creases the energy (4). As a consequence, if we control the step-
width, the limits of the flow are discrete geodesics in shape space.

Lemma 2 For any non-stationary curve (x0,x1, ...,xm) and small
enough τ > 0, an iteration of the flow (2) decreases the energy (4).

Proof Let us consider τ as a variable and denote the next iterate
by (x+0 (τ),x

+
1 (τ), ...,x

+
m(τ)). To prove the claim, we show that the

derivative

∂

∂τ
(x+0 (τ),x

+
1 (τ), ...,x

+
m(τ)) (5)

at τ = 0 points into a descent direction of the energy (4). From the
definition of the flow, (2), it follows that (x+0 (τ),x

+
1 (τ), ...,x

+
m(τ))

satisfies
τ

2
(∂1E(x+i (τ),xi−1)+∂2E(xi−1,x

+
i (τ)))+(1− τ)(∂1E(x+i (τ),xi)

(6)

+∂2E(xi,x
+
i (τ)))+

τ

2
(∂1E(x+i (τ),xi+1)+∂2E(xi+1,x

+
i (τ))) = 0

We use these equations as an implicit function that determines
x+i (τ). To compute (5), we need the derivatives of the left-hand
side of (6) at τ = 0 with respect to τ and x+i . The former is

1
2
(∂1E(x+i (0),xi−1)+∂2E(xi−1,x

+
i (0)) (7)

+∂1E(x+i (0),xi+1)+∂2E(xi+1,x
+
i (0)))

and the latter is

∂1∂1E(x+i (0),xi)+∂2∂2E(xi,x
+
i (0)). (8)

The configuration x+i (0) equals xi. Plugging this into (7) and (8),
we see that (7) is the gradient direction of (4) at xi. Furthermore, the
matrices ∂1∂1E(xi,xi) and ∂2∂2E(xi,xi) are positive definite (mod-
ulo rigid transformation of the shape) because E(xi,xi) is a mini-
mum of E for variations of the first and of the second argument.
This implies that (8) is positive definite. The implicit function the-
orem implies that the derivatives in (5) satisfy

(∂1∂1E(xi,xi)+∂2∂2E(xi,xi))
∂

∂τ
x+i (0) (9)

=
1
2
(∂1E(xi,xi−1)+∂2E(xi−1,xi)+∂1E(xi,xi+1)+∂2E(xi+1,xi)) .

Since the right-hand side is the gradient direction of (4) and the
matrix ∂1∂1E(xi,xi)+∂2∂2E(xi,xi) on the left-hand side is positive
definite, ∂

∂τ
x+i (0) points into a descent direction of (4). This implies

that for small enough τ an iteration of the flow will decrease the
energy (4).

6. Efficient Computation of the Flow

Integrating the discrete flow requires solving a number of shape
averaging problems. We use a reduced-order technique for this,
which combines dimensional reduction in the spatial domain and
a scheme for the efficient evaluation of the reduced deformation
energy and its gradient. Before we introduce the reduction strategy,
we first discuss an asymmetry in the elastic potential and its effect
on the definitions of elastic shape averaging and geodesics in shape
space.

Remark on shape averaging and geodesics The elastic potentials
are not symmetric in their two arguments, i.e., in general we have
E(x,y) 6= E(y,x). This means the energy stored in an object with
rest shape y that is deformed into configuration x is not the same
as the energy stored in an object with rest shape x that is deformed
into configuration y. Because of this asymmetry, we have defined
the elastic shape averaging using both terms E(y,yi) and E(yi,y)
in (1). As an alternative, one can use only one of the terms to define
the averaging. For example, in [RW09, vTSSH15] only the terms
E(yi,y) are used. Then the averaging is

A(ω0,y0, ...,ωµ,yµ) = argmin
y∈Rn

µ

∑
i=0

ωi E(yi,y). (10)

In the same spirit, we define the geodesics in shape space using
E(xi−1,xi) and E(xi,xi−1) in (4). In [HRWW12], only the terms
E(xi−1,xi) were used to define geodesics. This introduces a slight
asymmetry in the definition. The discrete geodesic from shape x
to y is not exactly the same as that from shape y to x. However,
the difference is small and reduces with temporal refinement of the
geodesic.

We have used the symmetric definitions involving both of the en-
ergy terms for shape averaging and geodesics in shape space in Sec-
tions 4 and 5 because in this case the connection between averaging
and geodesics in shape space established by the proposed discrete
smoothing flow is exact. The geodesics are exactly the limits of the
flow. This makes the presentation simpler and easier accessible.

In our experiments, we have not noticed significant differences
between the results obtained with the different definitions, which
matches the observations reported in [RW09]. Experiments con-

Figure 5: Applying our flow to concatenated animations (like the
centaur animation shown in the supplementary video) results in a
visually smooth animation without visible “corners” in the motion.
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cerning the issue can be found in Table 2 in Section 7. The compu-
tation, of course, is faster if only one of the energy terms is used.
Therefore, we used (10) for shape averaging in most of our experi-
ments.

Dimensional reduction For the dimensional reduction, we are re-
stricting the variations of every shape to a low-dimensional affine
subspace of Rn. We have used two subspace constructions for our
experiments. If the input is a curve in shape space, a good candidate
is the affine span of all shapes of the curve. This space can be rep-
resented as a linear space attached to one of the shapes. To further
reduce the dimension, we select one shape xσ and compute a prin-
ciple component analysis (PCA) of the displacement vectors to all
other shapes. The new affine space is the d-dimensional linear sub-
space spanned by the left singular vectors (of the matrix formed
by the displacement vectors) with the highest singular value at-
tached to xσ. This affine space does not contain all shapes anymore.
Therefore, we use for every shape xi the affine span of this space
and the vector representing xi itself. To represent these spaces, we
only need to store one subspace basis, which is augmented with the
missing vector (the difference of the shape xi and xσ) for each shape
at runtime. The additional vectors can be orthonormalized against
the basis in the preprocess.

If the curve to be processed is very coarse, e.g., less than 20
frames, using on the affine span of the shapes would provide
enough flexibility. In such a case, we use the flow tangent direc-
tions, ∂

∂τ
x+i (0) in equation (9) for every shape as an additional in-

put for constructing the space. In the case, that only two shapes x
and y are given and we want to compute a geodesic joining them,
we follow the subspace construction in [vTSSH15]. The starting
point is the affine space spanned by the two shapes. This space is
enriched with additional vectors. First, two vectors, v1 and v2, ob-
tained from linearizing the deformation from x to y and from y to
x are computed. Then, further vectors are generated using a Krylov
sequences that involves the Hessians of the elastic potentials, the
mass matrices and v1 and v2. For details, we refer to the original
work.

Energy and force approximation In addition to dimensional re-
duction, we are using a scheme for the efficient approximation of
the reduced energy and force. Since we are working in a reduced
space, the deformations of the individual vertices are correlated.
The approximation schemes aim at exploiting this structure. Dif-
ferent schemes have been proposed in the literature.

We adapt the mesh coarsening technique introduced
in [HSvTP11] to our setting. The idea is to create a coarse
mesh and a subspace V̄ for the coarse mesh that is isomorphic to
the subspace V for the fine mesh. To approximate the energy at
a point in V , the energy of the coarse mesh at the corresponding
point in V̄ is evaluated. To evaluate the gradient of the energy, the
gradient of the coarse mesh is projected onto V̄ . The corresponding
vector in V is the vector that has the same reduced coordinates
(however this vector is not explicitly computed, as we only work
with the reduced coordinates). Explicitly, we use an edge-collapse
scheme to generate a coarse version x̄σ of the selected shape xσ.
Edge-collapse schemes implicitly generate a map from the vertices
of the fine to the vertices of the coarse mesh, see [HSvTP11]

for details. We use this map to get subspace basis vectors for the
coarse mesh.

An alternative approach for reduced force approximation is the
optimized cubature [AKJ08, vTSSH13]. A second alternative is
polynomial restriction [BJ05], which allows for exact evaluation
of a finite elements discretization of St. Venant–Kirchhoff materi-
als for elastic solids at costs depending only on the subspace di-
mension. By combining the dimensional reduction and the reduced
energy and force approximation, we obtain a computational cost
for the integration of the flow that is independent of the resolution
of the meshes.

Solving the reduced problem To solve the reduced problems,
we use the BFGS scheme (see [NW06]). This is a quasi-Newton
scheme that maintains an approximation of the inverse Hessian of
the objective functional. Approximating the inverse Hessian avoids
costly solving of a linear system to get the Newton direction. It
is efficient to initialize the BFGS scheme with an inverse Hessian
approximation to get a warm start. In the preprocess, we once com-
pute the inverse Hessian (of the energy of the ghost mesh) of the
mean shape of the predecessor and successor (on the initial curve)
for every shape.

For the computation of the geodesic between two shapes, we
use a coarse-to-fine strategy in the temporal domain. Starting with
the two boundary shapes, we perform a two-step procedure. First
the temporal domain is refined by inserting a fixed number (two
or three in our experiments) of new shapes between every pair of
successive shapes xi and xi+1. These shapes are initialized as inter-
polating shapes between xi and xi+1. Secondly, the geometric flow
(2) is iterated until the squared norm of the reduced gradient of (4)
is below 1−8 times the degrees of freedom.

7. Applications and Experiments

First, we want to point to the supplementary video that shows
curves in shape space computed with our method. Details of the
experiments and computation times are shown in Table 1. The im-
plementation was done in Java and the experiments were performed
on a custom laptop (Intel Core i7-4600U, 2.1GHz). The precompu-
tation times shown in the table (Tp) include the construction of the
subspace, the initialization of the deformation energies and the ini-
tialization of the minimizer (computing initial Hessian approxima-
tions as a warm start for the BFGS minimizer). The precomputation
time is significantly lower when the subspace can be constructed
from a PCA on the shapes of the input curve, and not via the more
involved subspace construction from [vTSSH15]. For our experi-
ments, we used the Discrete Shells energy [GHDS03] as the elastic
energy E, where we set the parameters to kB = 1 and kL = kA = 1/2
(following the notation from that paper).

Basic examples The twisting block sequence (Figure 4) is meant
as a simple demonstration of how a periodic sequence converges to
a single point (or constant curve) when we perform several smooth-
ing steps, akin to the contraction of closed curves to single points
under the curve shortening flow. Since the original sequence con-
sists of few shapes, the limit is reached after a few iterations (ex-
plicitly after 10 iterations with τ = 0.6).
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Animation #verts. #verts. ghost #shapes |V | #steps Ts Tp

Twisting Block 450 (not used) 6 24 10 0.26 3.44
Bending Block 450 (not used) 155 20 10/50/200 1.02 0.16
Centaur 15768 1252 138 15 50 2.13 12.08
Finger Geodesic (short) 2046 (not used) 5 14 214 0.03 3.51
Finger Geodesic (long) 2046 1252 81 7 115 0.17 3.48
Elephant Geodesic 39969 1246 256 14 270 1.09 82.18
Hand Linear Artifacts 6094 1252 49 14 100 0.92/0.94∗ 0.56
Hand Temporal Noise 6094 1252 49 14 100 0.91/0.94∗ 0.54
Motion Capture 2502 1252 91 20 50 1.81 0.34

Table 1: Data for the experiments. |V | = size of subspace, Ts = seconds per step on average, Tp = seconds for precomputation, ∗: flow with
restoring force.

We demonstrate the ability of our smoothing technique to get rid
of sudden jumps in the object’s velocity (i.e. C1-discontinuities in
the temporal domain): the bending block sequence shows a block
starting from a bent-over position, getting into an upright position
and back into a bent-over position, this time bending to a different
direction (cf. Figure 3). The animation has a visible jump in the
velocity around the frame where the block stands upright, since
there is a sudden change in the direction of the motion. Applying
smoothing steps to this animation leads to a smoother motion: the
block does not get into a fully upright position anymore, and the
direction of the motion evenly changes across the full animation.

The usefulness to this type of animation smoothing becomes
clear when used on a more complex animation: the centaur ani-
mation (cf. Figure 5) was created by concatenating interpolation
curves to 6 successive poses of the centaur shape. This results in
an animation with visible jumps in the moving direction at the in-
put poses. After some steps of the discrete flow, to the animation
is visibly smoother and without discontinuities. This can be made
precise in the following sense: we can look at the part of the gra-
dient of the energy functional (4) of the animation (as a curve in
shape space) that corresponds to a certain frame of the animation,
in particular at the norm of the l.h.s. of (3). In case of the centaur
sequence, we can make the observation that the norms of these in-
dividual parts of the gradient are much larger at the discontinuities
than at the other shapes. This leads to large spikes in the norm of
the gradient parts corresponding to these frames. In Figure 7, we
plot the norm of these individual parts of the gradients after various

Figure 6: Plot of the length of the bending block geodesic (y-axis)
with a varying number of intermediate shapes (x-axis).

iterations of smoothing. One can observe how the spikes become
less sharp while smoothing the animation.

Computing geodesics As explained in Section 5, we can use our
technique to compute geodesics. The advantage of only having to
solve optimization problems involving one unknown shape at a
time and the application of the model reduction techniques lead
to a significant speed-up when comparing to the times stated in
[HRWW12]: when computing the discrete geodesic of the finger
mesh on 8 shapes, Heeren et al. report a computation time of
628s for a multilevel optimization. For the same setting, our tech-
nique needed 6,42s, including the precomputation time (subspace
construction and computation of initial Hessians). To justify our
reduced-order modeling, we computed the same geodesic using the
full-order model in the space Rn and compared the lengths of both
curves, which differed by less than 0.1% of the length of the full
geodesic, as well as the L2-distances of all shapes, which differed
by less than 1−3 % of the summed lengths of the shape vectors.

Figure 7: The norm of the energy gradients of the individual
shapes (left-hand side of (3)) for the centaur sequence after vari-
ous smoothing iterations.
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The dimensional reduction of the spatial domain and the fast
computation times allow for computing discrete geodesics with
finer time discretizations: the finger geodesic on 64 shapes leads
to a computation time of 19.55s, the elephant geodesic (cf. Figure
1) on 256 shapes (40k vertices per shape) leads to a computation
time of 376s.

To demonstrate the convergence of our flow to a geodesic, we
plot the squared length of the curve and the length of the gradi-
ent of functional (4) in Figure 9 for the computation of the ele-
phant geodesic on 100 shapes, where we initialize the geodesic
with 100 interpolation shapes right away (instead of using the adap-
tive scheme). The plot shows that the length of the curve decreases
monotonically.

While the loss of precision due to model reduction is very
low, we actually gain accuracy by being able to compute discrete
geodesics with more shapes. In Figure 6, we plot the length of
the geodesic between the bent over and upright block on a vary-
ing number of shapes. The plot demonstrates that the length dif-
fers significantly when comparing a geodesic with 10 to a geodesic
with 100 shapes. This shows the benefit of computing geodesics on
many shapes.

De Casteljau algorithm in shape space The fast computation of
geodesics makes it possible to evaluate geometric constructions
that require repeated computation of geodesics. As one example,
we construct nonlinear “Bézier curves” in shape space by executing
the de Casteljau algorithm with respect to the shape space metric.
This means the straight lines used in Euclidean space are replaced
by geodesics in shape space. In [ERS∗15], Effland et al. applied the
de Casteljau algorithm in a shape space of images to obtain smooth
curves from a few input images, we refer to this paper for further
details on the algorithm.

To compute a point of the “Bézier curves” controlled by four
shapes, we need to compute the three geodesics between each suc-
cessive pair of boundary shapes once and three additional geodesics
per shape of the final curve. The supplementary video and Fig-
ure 10 show an example of such a “Bézier curves” with four control
poses of a block shape. The computed curve consists of 32 shapes
and each auxiliary geodesic was also computed on 32 shapes. The

Figure 8: A frame of the smoothed centaur sequence. Left:
Our technique. Right: bilateral filtering of the vertex trajectories
[VBMP08], where the head appears to be shrunken.

Figure 9: Plot of the squared curve length (blue) and size of the
gradient of functional (4) (orange) while smoothing a sequence of
12 elephant shapes (initialized as the interpolation curve). The x-
axis denotes the number of smoothing iterations in both plots.

 

Figure 10: Visualization of the de Casteljau algorithm in shape
space: the straight lines are geodesics between shapes.

computation time for the whole procedure (which requires the com-
putation of almost 100 geodesics) was 241s. This could be drasti-
cally reduced by using coarser time discretizations for the auxiliary
geodesics.

Denoising and animation repair Our smoothing technique is also
able to enhance and repair noisy data: an animation of a hand bend-
ing its fingers with temporal noise becomes completely denoised
after 100 smoothing steps. The shape of the fingers remains plausi-
ble even after applying a large amount of smoothing. However, the
motion itself has also changed: before smoothing, the index finger
and thumb touched, whereas after the smoothing, the fingers stay
far away from each other throughout the whole animation.

If the flow is used for noise removal, curve shortening can lead
to over-smoothing. To reduce this effect, we use a restoring force
that pushes the curve towards its initial state. To achieve this, we
modify the flow equation (2):

y0
i = xi

yk+1
i = A((1−ρ)

τ

2
,yk

i−1,(1−ρ)(1− τ),yk
i ,(1−ρ)

τ

2
,yk

i+1,ρ,xi),

that is, in addition to the current shape and its neighbors, we take
the original shape into the local averaging processes. The parameter
ρ ∈ [0,1] controls the strength of the restoring force. The restoring
force can be used for all shapes of the curve or just for some se-
lected shapes.

With this force, the animation is denoised, while articulation of
the motion remains intact. We perform a similar experiment with an
animation obtained by linear blending of a coarse set of keyframes
(cf. Figure 2). By adding a restoring force to the keyframes, we
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Bending Block Centaur Elephant

Length of (10)-geodesic 0.3680 142.1023 368.5427
Length of (1)-geodesic 0.3648 141.7774 348.3585
Length of interpolation curve 37.4360 155.9907 613.1286
Rel. L2-error of geodesics 5.2375−5 1.4173−5 4.2512−5

Table 2: Geodesics computed using the symmetric (1) and the
asymmetric averaging operator (10).

are able to remove the linear-blending artifacts, while keeping the
overall motion intact.

In addition, we tested our method on motion capturing data from
Gall et al. [GSA∗09], which exhibits temporal and spatial noise.
Again, using our smoothing technique with restoring force, we are
able to acquire a smooth animation, which at the same time keeps
its main characteristics. An advantage of using our smoothing flow
to denoise motion capturing data is that each smoothing step reg-
ularizes the motion of the whole mesh instead of individual vertex
positions. This implies that unwanted deformations and artifacts
due to strong noise can be filtered without smoothing the mesh it-
self.

Averaging operators As discussed in Section 6, we used the for-
mulation (10) of the shape averaging in most of our experiments
to enhance computation speed. We observe that the choice of the
operator used for shape averaging, (1) or (10), does not lead to
significantly different geodesics. Table 2 shows the results of an
experiment performed in this regard: We computed three different
geodesics using both formulations (1) and (10). We state the energy
(4) of these geodesics (with the energy of the interpolation curve as
a comparison) as well as their relative L2-error. This error was com-
puted by first registering each pair of corresponding shapes via a
best rigid fit, and then taking the ratio of the norm of the difference
of both geodesics (interpreted as vectors in Rn·m) and the norm of
the (1)-geodesic.

Comparisons

For comparisons to the timings and accuracy of computing
geodesics using our technique as opposed to [HRWW12] see the
paragraph above.

To prevent confusion, we first want to stress that our flow for-
mulation is based on shape averaging, which is closely related to
shape interpolation. This being the case, every interpolation tech-
nique can be used to define a smoothing flow using our formulation.
However, not every interpolation scheme exhibits the properties of
elastic shape averaging required to prove existence of a metric and
convergence of our flow to geodesics in shape space.

Nonlinear shape interpolation While our model reduction and
flow formulation allow for a fast computation of geodesics, inter-
polation curves can be produced even faster. The reason is that
each interpolating shapes can be computed directly (without the

need to compute all interpolating shapes). This cannot be done for
geodesics, we always have to compute the whole curve. Hence, the
optimization problem for geodesics is more involved. On the other
hand, the more complex problem couples the shapes of a geodesic
to each other, which is not the case for shape interpolation. For ex-
ample, if the computations of interpolating shapes end in different
local minima, we can get a stuttering interpolation curve. Due to
the coupling of the shapes such effects are smoothed out during
the computation of geodesics. We demonstrate this in the supple-
mentary video. To produce the shown examples, we used the same
elastic deformation energies, reduction techniques and minimiza-
tion schemes, for both the geodesic and the interpolation curve.

Poisson-type shape interpolation We also compare to a Poisson
interpolation curve (see supplementary video, cf. [XZWB05]). We
show that our technique does not suffer from problems that arise in
Poisson interpolation when elements are rotated by more than 180
degrees. Also, as can be seen in our video, while offering a smooth
deformation over time, linear interpolation of the vertex positions
leads to strong artifacts, even for very small deformations.

Comparison to other smoothing and denoising techniques
Temporal filtering of the vertex positions, as proposed in
[VBMP08], also leads to a smoother motion, but since a lot of
filtering is required, the shape undergoes unnatural deformations,
similar to linearization artifacts, as can be seen in Figure 8. Addi-
tionally, in the supplementary video, we compare our results for de-
noising the motion capture data to applying a temporal filter to the
vertex trajectories. As can be seen, with the latter type of smooth-
ing, the noise is converted to a wiggling surface, since it does not
include a physical model of deformations of objects.

8. Conclusion

In this paper, we are proposing techniques for the processing of
curves in shape space. In particular, we introduce a discrete geo-
metric flow for curves in shape space. The flow iteratively computes
local weighted average shapes and thereby decrease the magnitude
of the deformation between consecutive shapes of the curve. Based
on the flow, we design a novel type of smoothing filter for motions
and animations of shapes. In contrast to previous work, the filter
only smoothes the deformations between the shapes and thereby
minimizes the distortion of the shapes themselves. One application
of this filter is the smoothing of motions and animations of objects.
We use the filter for reducing jittering artifacts in motion captured
data and for smoothing transitions that appear when different mo-
tions are concatenated.

Our analysis shows that the flow converges to geodesics in shape
space. To compute the flow, we propose a reduced-order scheme
that combines a dimensional reduction with a scheme for reduced
energy and force approximation. The approach significantly ac-
celerates the computation of geodesics in shape space. In addi-
tion, it allows for finer temporal discretizations, which improves
the approximation quality. We think that these two benefits are im-
portant for an effective processing of curves in shape space. We
demonstrate results obtained with our scheme for the computation
of geodesics that blend between two shapes as well as the computa-
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tion of nonlinear “Bézier curves” in shape space that are controlled
by a coarse polygon in shape space.

Future work We introduce techniques for the processing of curves
in shape space. We think that this is a promising direction for pro-
cessing motion and animation and we expect to see more algo-
rithms that transfer techniques from the processing of curves in Rn

to curves in shape space. For example, analogous to the example
of De Casteljau’s algorithm, curve subdivision schemes like corner
cutting could be transferred to shape space. Another example is the
fairing of curves in shape space. The proposed smoothing filter is
the first of this kind and we expect that more filtering techniques for
curves in Euclidean space will be transferred to filters for motion
and animation of deformable shapes.

Furthermore, we think that reduced-order modeling has a great
potential for geometry processing in shape space and other applica-
tions using Riemannian metrics on shape spaces. Fast approxima-
tion algorithms for shape space computations can be designed and
larger data sets can be processed.

With a growing market for devices which are able to directly
capture deforming geometry, processing of motion and animation
becomes more and more important. The concept of curves in shape
space provides powerful and theoretical sound tools for processing
this data (in particular for template-based approaches).
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