Editing Compact Voxel Representations
on the GPU

Mathijs Molenaar, Elmar Eisemann

Delft University of Technology

o]
TUDelft









|\ =&

Editing Compact Voxel Representations on the GPU

3
3 TUDelft



—
8

Sparse Voxel Octree

Voxel Octree Recursively subdivide space into evenly sized 23 regions

Sparse Don’t subdivide empty regions
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Sparse Voxel Octree

Voxel Octree Recursively subdivide space into evenly sized 23 regions

Sparse Don’t subdivide empty regions
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Sparse Voxel Octree (SVO)
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Sparse Voxel Directed Acyclic Graph (SVDAG) [KSA13] \ -
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Sparse Voxel Directed Acyclic Graph (SVDAG) [KSA13] \ -
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Sparse Voxel Directed Acyclic Graph (SVDAG) [KSA13]
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Sparse Voxel Directed Acyclic Graph (SVDAG) [KSA13]
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Sparse Voxel Directed Acyclic Graph (SVDAG) [KSA13]
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Memory Usage

\ &

Citadel 128K3 (No Materials)
13.7B occupied voxels

Citadel 128K:3 (4-bit Materials)
13.7B occupied voxels

San Miguel 64K3 (4-bit Materials)
10.3B occupied voxels

SVDAG [KSA13]

980 MiB 15.4x
22,516 MiB 5,997 MiB 3.7X
14,865 MiB 2,929 MiB 5.0x

]
15 TUDelft



| &

Editing Compact Voxel Representations on the GPU

%
16 TUDelft



HashDAG [CBE20] =

Make modifications to existing SVDAG file

(Guest Editors)

Interactively Modifying Compressed Sparse Voxel Representations

V. Careit'®, M. Billeter! ®, E. Eisemann! ©F

Delft University of Technology. The Netherlands
2Université de Rennes, France

Performance considerations

* Editing CPU (Multi Threaded

Figure 1: To fest and demonstrate our method for editing large sparse vexel geometries, we have implemented an interactive prototype
ing operations. The left image shows a copy operation in the Epic Citadel scene, voxelized ata

application with support far interactive edi
resolution of (128k)". The statue inside this building eoniains about 170k voxels. The middle image shows larger scale edits, eopying an entire
building (order of SOM voxels). The right images ilustrate tools to adel and delete voxels, as well as paint voxel color attributes. The bottom
right image uses the San Miguel meel, voxelized ar (64k ), where we first solidified. then carved a hole in a column

. Abstract
. I t e d e r Voxels are a popular choice to encode complex geometry. Their regularity makes updates easy and enables random retrieval of
I l I I I values. The main limiitation lies in the poor sealing with respeet to resolution. Sparse voxel DAGs (Directed Acyclic Graphs)
overcome this hurdle and offer high-resoluiion representations for real-time rendering but only handle static data. We introduce

a navel data structure 1 enable interactive modifications of such compressed voxel geometry without requiring de- and

color). We illustrate the
¢)-

recompression. Besides binary data to encode geometry, it also supporis compressed antributes (e.g
usefulness of our representation via an inferactive large-scale voxel editor (supporting carving, filling, copying, and pa
€CS Concepts

+ Computing methodologies — Volumetric models;

1. Introduction [KSAI3,JMG16, KRB"16] to achieve significant compression
rates. Kimpe et al. [KSA13] demonstrate (128%)” resolutions at
less than LGB, while still enabling real-time rendering of this
compressed form. Originally, such DAG (directed acyclic graph)-
based structures only encoded solid geometry: however, later works
[DKB" 16, DSKA18] extend the methods to include compressed
per-voxel atiributes, such as color.

Compressed sparse voxel structures have gained popularity as an
altemative representation for highly-detailed geometry. Voxel-based
approaches encode the scene as a high-resolution grid. where cells
(“voxels”) hold information to define the scene. While naively
storing such grids is infeasible for large resolutions. hierarchi-
cal representations can exploit sparsity [Mea82] and similarity

Uniil now, sparse voxel DAG structures are pre-built in a separate,
- often off-line, construction step, which limits their use to static ele-
t fr; {mj nl ments. We introduce a solution to dynamically modify sparse voxel

202 The Ausbarts)
Computer Grapies Foran © 2020 The
Wik & Soms Ll Pubiisec by ok W

waghics Ascciation and Jon
& Soan L
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HashDAG [CBE20] - Fixed-Size Hash Table \

Hash table size heuristically determined at start-up:
*  Number of buckets

*  Maximum size of each bucket

Custom virtual memory system to store the hash table.
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imitations

HashDAG [CBE20] -L

ing

ted scalability due to mutex locki

imi

° L

 CPU = GPU copy of scattered data

* Designed for local edits

TUDelft
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imitations

Addressing These L

ing

ted scalability due to mutex locki

imi

° L

 CPU = GPU copy of scattered data
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Our Work

Editing on the GPU
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Conceptual Overview

1. Construct a Sparse Voxel “Octree” of the modified scene -

*  Point to existing SVDAG for unchanged regions

Existing SVDAG SVO after editing

Stored in hash tables Stored in contiguous arrays
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Top-Down SVO Construction
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Conceptual Overview

2. Remove duplicates within this Octree

* Use hash table to find duplicates

Existing SVDAG SVO after editing

.

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

2. Remove duplicates within this Octree

* Use hash table to find duplicates

Existing SVDAG SVO after editing

.

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

2. Remove duplicates within this Octree

* Use hash table to find duplicates

Existing SVDAG SVO after editing

.

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

2. Remove duplicates within this Octree

* Use hash table to find duplicates

Existing SVDAG SVO after editing

.

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

2. Remove duplicates within this Octree

* Use hash table to find duplicates

Existing SVDAG SVO after editing

.

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

3. Merge into existing SVDAG

Existing SVDAG SVO after editing

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

3. Merge into existing SVDAG

Existing SVDAG SVO after editing

= =y—

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

3. Merge into existing SVDAG

Old SVDAG SVO after editing

Stored in hash tables Stored in contiguous arrays
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Conceptual Overview

3. Merge into existing SVDAG

Old Root

New Root

.

Stored in hash tables

37
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GPU Hash Table

]
38 TUDelft



SlabHash [AFCO18]

Matches most of our requirements:
* Optimized for the GPU

* Pointer stability under insertion

€€ ) 3

2018 [EEE International Parallel and Distributed Processing Symposium

A Dynamic Hash Table for the GPU

Saman Ashkiani Martin Farach-Colton John D. Owens
Electrical and Computer Engineering Computer Electrical and Computer Engineering
University of California. Davis Rutgers University University of California, Davis
sashkiani @uedavis.edu Jarach@cs.rutgers.eche jowens@ ece.ucdavis.edu
Absi We design and i a fully hash, that supports bulk and incremental builds. One might

dynamic hash table for GPUs with comparable performance
to the state of the art static hash tables. We propose a
wa tive work sharing strutegy thal reduces branch
divergence and provides an efficient alternative to the tradi-
onal way of per-thread {or per-warp) work assignment and
processing. By using this strategy, we build a dynamic non-
blocking concurrent linked list, the slab list, that supports
asynchroneus, concurrent updates (insertions and deletions)
as well as search queries. We use the slab list to implement
a dynamic hash table with chaining (the slab hash). On an
NVIDIA Tesla Kde GPU, the slab hash performs updates with
up to 512 M updates/s and processes search queries with up to
937 M queries/s. We also design a warp-synchronous dynamic
memory allocator, SlabAlfoc, that suits the high performance
needs of the slab hash. SlabAlloe dynamically allocales memary
at a rate of 600 M allocationss, which is up to 37x faster than
alternative methods in similar scenarios.

L. INTRODUCTION

A key deficiency of the GPU ecosysiem is its lack
of dynamic data structures, which allow incremental up-
dates (such as insertions and deletions). Instead, GPU data
structures (; cuckoo hash tables [1]) typic: address
incremental changes to a data structure by rebuil
entire data structure from scratch. A few GPU data structures
(e.g.. the dynamic graph data structure in cuSTINGER [2])
implement phased updates, where updates occur in a differ-
ent execution phase than lookups. In this work we describe
the design and implemeniation of a hash table for GPUs
that supports truly concurrent insertions and deletions that
can execute together with lookups.

Supporting h-performance concurrent updates of data
structures on GPUs represents a significant design challenge.
Modern GPUs support tens of thousands of simultaneous
resident threads, so traditional lock-based methods that en-
force concurrency will suffer from substantial and

expect that supporting incremental insertions and deletions
would result in cantly reduced query performance
compared to static data structures. However, our hash table
not only supports updates with high performance but also
sustains build and query performance on par with static GPU
hash tables. Our hash table is based on a novel linked list
daia structure, the slab list. Previous GPU implementations
of linked lists [4], which operate on a thread granularity
and contain a data element and pointer per linked list node,
exhibit poor performance because they suffer from control
and memory divergence and incur significant space over-
head. The slab list instead operates on a warp granularity,
with a width equal to the SIMD width of the underlying
machine and contains many data elements per linked list
node. Its design minimizes control and memory divergence
and uses space efficiently. We then construct the slab hash
from this slab list as its building block, with one slab list per
hash bucket. Our contributions in this work are as follows:

The slab list is based on a node structure that closely
matches the GPU’s hardware characteristics.

The slab list implementation leverages a novel warp-
cooperative work sharing strategy that minimizes
branch divergence, using warp-synchronous program-
ming and warp-wide communications

The slab hash, based on the slab list. supports concur-
rent operations with high performance.

To allow concurrent updates, we design and imple-
ment a novel memory allocator that dynamically and
efficiently allocates and deallocates memory in a way
that is well-matched to our underlying warp-cooperative

will thus likely be inefficient. Non-blocking approaches offer
more potential for such massively parallel frameworks, but
most of the multi-core system literature (e.g., classic non-
blocking linked lists [3]) neglects the sensitivity of GPUs
access patterns and branch divergence, which
nt to directly translate those ideas to the

In this paper, we present a new GPU hash table, the slab

1530-2075/18/831.00 ©201% IEEE
DOI 10.1109PDPS. 201800052

119

Our memory allocator is scalable, allowing us t© sup-
port data structures up to | TB (far larger than the
memory size of current GPUs) and without any CPU
infervention.

The slab hash’s bulk-build and search raies are com-
parable to those of static methods (e.g.. GPU cuckoo
hashing [1]). while additionally achieving efficient in-
cremental updates.

EEE
dicomputer
psucle‘r,'

Authorized boensed use bmited to: TU Delft Library. Downloaded on September 15,2024 at 14:41:01 UTE from IEEE Xplore. Restictions apply
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SlabHash [AFCO18] - Terminology

Bucket

gl i |0 ot oo fbulvilia| epjuulaalea] | | | |
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SlabHash [AFCO18] - Terminology \

Linked list of 32-slot groups (aka slabs)

Shown as slabs of 8 slots for brevity

. EEDnNne DNEE
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SlabHash [AFCO18] - Terminology
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Parallel Operations

Empty slots are indicated by a reserved special value (typically “07).

Atomically swapped with the to-be inserted item.

Supports multiple operations in parallel:
* Insertion
* Search

*  Removal

]
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Extending SlabHash
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Extending SlabHash

Extending SlabHash [AFCO18]to store large items (of uniform size)

We propose three hash table designs:

1. 64-bit Atomic Compare-and-Swap

3. Acceleration Hash (both 8-bit and 32-bit)

]
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Inner Node Encoding

* 32-bit header (8-bit child mask)

* 32-bit pointers to non-empty children

11110011

XXXXX:

]
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Leaf Encoding (43 voxels)

e 64-bit bitmask

[ /\
NV

01010101... 01010101...
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Leaf Encoding (43 voxels)

e 64-bit bitmask

* 4-bit material per occupied voxel

01010101... 01010101...

]
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Hash Table Insertion and Removal

Note: items never start with 64-bit “0”
* Leaf must have at least 1 filled voxel

* Nodes must have at least 1 child

Atomically swap “0” to insert or remove

51
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64-bit Atomic

* Store first 64 bits (8 bytes) of each slot

Slot O
Bytes 0..7

128

11110011

Slot 30
Bytes 0.7

UNUSED

Slot O
Bytes 8.

256

Slot 30
Bytes 8.

Next Pointer .
+ UNUSED

N
384 512 640

52

768

]
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64-bit Atomic -

* Store first 64 bits (8 bytes) of each slot

|

Slot 30 Slot O Slot 30 Next Pointer . >
;“-m Bytes 8. Bytes 8. + UNUSED
0 128 256 384 512 640 768

]
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64-bit Atomic

 Storeitem remainders at the end of the slab

11110011 (0]

|
0

128

Slot 30
Bytes 0.7

UNUSED

Slot O
Bytes 8.

256

Slot 30
Bytes 8.

Next Pointer .
+ UNUSED

b
384 512 640

54

768
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64-bit Atomic -

 Storeitem remainders at the end of the slab

Slot 30 TV Slot 30 Next Pointer
0
eSOl TOSED _“_
0 128 256 384 512 640 768

]
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64-bit Atomic

* 31 slots per slab to improve memory alignment

Slot O Slot 30 Slot O Slot 30 Next Pointer
Bytes 0..7 Bytes 0.7 Bytes 8.. Bytes 8. + UNUSED
128 256 384 512 640 7608

3
s | FuDelft
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64-bit Atomic - Look-Up Efficiency \ =

Search for the following node:

o]

3 0 2 1
Slot O Slot 30 Slot O Slot 30 Next Pointer
Bytes 0..7 Bytes 0.7 UNUSED Bytes 8.. Bytes 8. + UNUSED .-_>
0 128 256 384 512 640 7608

]
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64-bit Atomic - Look-Up Efficiency

Warp of 32 7 threads  collaboratively check first 64-bits of each item

e

3 0 2 1
4
Byii(s)t 87 Bystleost 3O(?..7 UNUSED Biizg g Bsyltoets 38?.. NeitUESégger .-_>
| | | |
0 128 256 384 512 640 768

]
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64-bit Atomic - Look-Up Efficiency

Only test remainder for potentially matching slots M

3 0 )

] ] ] ] ]
| ] ] ] ] ll' —
Slot O Slot 30 Slot O Slot 30 Next Pointer ‘ >
Bytes 0..7 Bytes 0.7 UNUSED Bytes 8.. Bytes 8. + UNUSED
128 256 384 512 640 768

]
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64-bit Atomic - SVDAG Traversal Performance \

Visiting a node often requires loading two cache lines

v
.

1 2 3

Slot 30

Slot 30 Next Pointer ‘
»
Bytes 0.7

ED
UNUS Bytes 8.. + UNUSED

o
256 384 512 640 768

]
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Ticket Board

Inspired by Stadium Hashing [KBGB15]

32-bit mask M to indicate slot usage

No alignment padding

11110011 0]

Slot 0

Slot 31

128 256 384 512

640

61
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Ticket Board

Inspired by Stadium Hashing [KBGB15]
* 32-bit mask M to indicate slot usage

* No alignment padding

Slot 31

128 256 384 512

640

62
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Ticket Board - Look-Up Efficiency

Look-ups require loading the entire slab from memory

10110111

3 I I I u u u u I I I I — 4

0 128 256 384 512 640

]
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Best of Both Worlds

* ltems are contiguous in memory (SVDAG traversal)
* Fast hash table look-ups

* Low memory overhead

Our solution: “acceleration hash”

]
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Acceleration Hash (32-bit)

* 32-bit secondary hash of each slot

* Fast look-ups by first comparing secondary hash

* 31 slots per slab; aligned to cache line

hash2( IS ) = 1763

UUUUUU

Slot O

—
)

Next Pointer

o—>

N
256 384 512 640

65

768
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Acceleration Hash (32-bit)

32-bit secondary hash of each slot

Fast look-ups by first comparing secondary hash

31 slots per slab; aligned to cache line

hash2( RN ) = 1763

1763

SSSSS

—
)

128

Next Pointer

o—>

N
256 384 512 640

66

768
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Acceleration Hash (32-bit)

32-bit secondary hash of each slot

Fast look-ups by first comparing secondary hash

31 slots per slab; aligned to cache line

hash2( RN ) = 1763
[

1763

SSSSS

—
)

128

Next Pointer

o—>

N
256 384 512 640

67

768
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Acceleration Hash (8-bit)

hash2( TS ) = 17

8-bit secondary hash to reduce memory overhead

32 slots per slab; no alignment padding

7

Slot 31

o
128 256 384 512 640

68

)
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Evaluation
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Evaluation

Implemented inside the HashDAG framework [CBE20]

Using the same test scenarios as previous work

Machine: Nvidia RTX4080, AMD 7950X3D, PopOS 22.04

]
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Memory Usage
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Memory Usage

\ &

Scene  TMethod  [Memoy

Citadel 128K3 (No Materials) Atomic U64
SVO 15117 MiB
SVDAG 980 MiB |

1199 MiB (+22.3%)

Citadel 128K3 (With Materials) Atomic U4
SVO 22516 MiB
SVDAG 5997 MiB

7164 MiB (+19.5%)

San Miguel 64K3 (With Materials) Atomic U4
SVO 14865 MiB
SVDAG 2929 MiB

3509 MiB (+19.8%)

]
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Memory Usage

\ &

scene  Twemoa  Imemy

Citadel 128K3 (No Materials)
SVO 15117 MiB
SVDAG 980 MiB |

Atomic U4
Ticket Board

1199 MiB (+22.3%)
1155 MiB (+17.9%)

Citadel 128K3 (With Materials)
SVO 22516 MiB
SVDAG 5997 MiB

Atomic U64
Ticket Board

7164 MiB (+19.5%)
7082 MiB (+18.1%)

San Miguel 64K3 (With Materials)
SVO 14865 MiB
SVDAG 2929 MiB

Atomic U4
Ticket Board

3509 MiB (+19.8%)
3461 MiB (+18.2%)

75
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Memory Usage

Scene  TMethod  [Memoy

Citadel 128K3 (No Materials) Atomic U64 1199 MiB (+22.3%)
Svo  1S17MIB Ticket Board 1155 MiB (+17.9%)
SVDAG 980 MiB .

Acceleration Hash (32-bit) 1400 MiB (+42.9%)

Acceleration Hash (8-bit) 1203 MiIB (+22.8%)
Citadel 128K3 (With Materials) Atomic U64 7164 MiB (+19.5%)
SVO 22516 MiB Ticket Board 7082 MiB (+18.1%)
SVDAG 5997 MiB

Acceleration Hash (32-bit) 8685 MiB (+44.8%)

Acceleration Hash (8-bit) 7404 MiB (+23.5%)
San Miguel 64K3 (With Materials) Atomic U64 3509 MiB (+19.8%)
SVO 14865 MiB Ticket Board 3461 MiB (+18.2%)
SVDAG 2929 MiB

Acceleration Hash (32-bit) 4269 MiB (+45.7%)

Acceleration Hash (8-bit) 3622 MiB (+23.7%)

]
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Hash Table Trade-Offs

Memory Usage

64-bit Atomic ==
Ticket Board P
32-bit Acceleration Hash -

8-bit Acceleration Hash
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Editing Performance
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Frame Time (Without Materials)

350 ms

300 ms

250 ms

£ 200 ms
F

150 ms

100 ms

50 ms
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Merge SVO with SVDAG (Without Materials)
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Merge SVO with SVDAG (With Materials)
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Hash Table Trade-Offs :

Memory Usage Editing

64-bit Atomic == oy
Ticket Board == -
32-bit Acceleration Hash . “r
8-bit Acceleration Hash “r

]
83 TUDelft



Rendering Performance
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Path Tracing — Inside of Stanf

Bunny 16K3
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Path Tracing - Interior of Stanford Bunny 16K3
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Hash Table Trade-Offs

Memory Usage Editing Ray Tracing
64-bit Atomic == oy
Ticket Board == — E
32-bit Acceleration Hash - als ==
8-bit Acceleration Hash == =+
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Hash Table Trade-Offs E

Most compact with good

editing performance Editing Ray Tracing

64-bit Atomic == A

Ticket Board -+ - s
32-bit Acceleration Hash = e =k
8-bit Acceleration Hash == ==

Fast rendering and editing, at

the cost of memory usage.

]
88 TUDelft



%

Limitations & Future Work \

* Using materials reduces SVDAG compression ratio significantly

* More advanced Garbage Collection
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Closing Remarks

Details can be found in the paper & supplemental material

Planning to release the code on our website and GitHub:
https://publications.graphics.tudelft.nl/papers/13
https://github.com/mathijs727/ GitHUb

]
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