In Proceedings of CIG

Explainable AI for designers: a human-centered perspective on mixed-initiative co-creation

Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G Michael Youngblood

Growing interest in eXplainable Artificial Intelligence (XAI) aims to make AI and machine learning more understandable to human users. However, most existing work focuses on new algorithms, and not on usability, practical interpretability and efficacy on real users. In this vision paper, we propose a new research area of eXplainable AI for Designers (XAID), specifically for game designers. By focusing on a specific user group, their needs and tasks, we propose a human-centered approach for facilitating game designers to co-create with AI/ML techniques through XAID. We illustrate our initial XAID framework through three use cases, which require an understanding both of the innate properties of the AI techniques and users’ needs, and we identify key open challenges.


More Information

Citation

Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G Michael Youngblood, Explainable AI for designers: a human-centered perspective on mixed-initiative co-creation, In Proceedings of CIG, pp. 1–8, 2018.

BibTex

@inproceedings{bib:zhu:2018,
    author       = { Zhu, Jichen and Liapis, Antonios and Risi, Sebastian and Bidarra, Rafael and Youngblood, G Michael },    
    title        = { Explainable AI for designers: a human-centered perspective on mixed-initiative co-creation },
    booktitle    = { In Proceedings of CIG },
    year         = { 2018 },
    pages        = { 1--8 },
    publisher    = { IEEE },
    doi          = { 10.1109/CIG.2018.8490433 },
    dblp         = { conf/cig/ZhuLRBY18 },
    url          = { https://publications.graphics.tudelft.nl/papers/181 },
}