2023

 Overview of our method
Lukas Uzolas, Elmar Eisemann, and Petr Kellnhofer
In Proceedings of NeurIPS, 2023
Simulation of balloon inflation (Model: Armadillo, 180k vertices).
Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt
In Proceedings of SIGGRAPH (Conference Paper Track), 2023

2022

Scenes used for our tests
Leonardo Scandolo and Elmar Eisemann
In Proceedings of Conference on High-Performance Graphics, 2022
Thomas Kroes, Thomas Höllt, Elmar Eisemann, Matthias Alfeld, Francesca Gabrieli, et al.
In Proceedings of Eurographics Workshop on Graphics and Cultural Heritage, 2022
Segmentation results when using DV3X, a fully connected multilayer perceptron (ANN), and the method proposed by Biermann et al. (2020) based on the floating debris index (FDI). Both the ANN and the Biermann et al. approaches achieve significantly less accurate results than DV3X.
Àlex S. Gómez, Leonardo Scandolo, and Elmar Eisemann
Int J Appl Earth Obs Geoinformation, 2022
Mosaic image of the ground truth aligned digitisations.
Jules van der Toorn, Ruben Wiersma, Abbie Vandivere, Ricardo Marroquim, and Elmar Eisemann
In Proceedings of GCH, 2022
(left) An image domain, (middle) Hough Transform, (right) Gaussian Sphere
Yancong Lin, Ruben Wiersma, Silvia-Laura Pintea, Klaus Hildebrandt, Elmar Eisemann, and Jan van Gemert
In Proceedings of CVPR, 2022
Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt
ACM Transactions on Graphics, 2022
Cehao Yu, Maarten Wijntjes, Elmar Eisemann, and Sylvia Pont
Journal of Vision, 2022
Incorporating image texture information into dimensionality reduction
Alexander Vieth, Anna Vilanova, Boudewijn P. F. Lelieveldt, Elmar Eisemann, and Thomas Höllt
In Proceedings of PacificVis, 2022
Teaser
Nejc Macek, Baran Usta, Elmar Eisemann, and Ricardo Marroquim
ACM Comput Graph Interact Tech, 2022
Yoann Coudert-Osmont, Elmar Eisemann, and Ricardo Marroquim
In Proceedings of GCH, 2022
Peiteng Shi, Markus Billeter, and Elmar Eisemann
ACM Comput Graph Interact Tech, 2022
Baran Usta, Sylvia Pont, and Elmar Eisemann
Computer Graphics Forum, 2022
Our method leverages a pair of spatial hierarchies over the embedding (center right) and a field (far right) over the embedding space to accelerate t-SNE minimization. Progression of minimizations (left) using these hierarchies is shown for a 60K point MNIST dataset (top) and a 1.2M point ImageNet dataset (bottom). The hierarchies are visualized for the last iteration of minimization.
Mark van de Ruit, Markus Billeter, and Elmar Eisemann
IEEE Transactions on Visualization and Computer Graphics, 2022

2021

A proposed interactive workflow for our mixed-initiative approach. We arbitrarily chose the steps shown in this illustration.
Mijael Bueno, Elmar Eisemann, and Rafael Bidarra
In Proceedings of ICIDS, 2021
Left: Horizon-based ambient occlusion (HBAO) uses only a depth map and underestimates occlusion due to hidden geometry. Right: Our stochastic-depth HBAO captures occluded geometry stochastically (2ms in full HD).
Jop Vermeer, Leonardo Scandolo, and Elmar Eisemann
ACM Comput Graph Interact Tech, 2021
Our method decreases error for wavelength-dependent scattering in the presence of non-uniformly distributed emission, reflectance, and transmission throughout the scene
Mark van de Ruit and Elmar Eisemann
Computer Graphics Forum, 2021
Wineglass with dispersive dielectric materials with 32 samples per pixel. As can be seen, our reweighted schemes improve upon uniform and stratified samples and produces much smoother result in terms of color noise. Significant improvements can be observed in low discrepency sequences. All results are plotted in log-log scale.
Jerry Guo and Elmar Eisemann
Computer Graphics Forum, 2021
Left: Visible layer transitions where bin boundaries cut through primitives. Right: Smooth layer transitions improve the results but artifacts are still visible.
Fabian Friederichs, Martin Eisemann, and Elmar Eisemann
In Proceedings of Graphics Interface, 2021